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ABSTRACT

Although modern graphics hardware provides up to 1.5 gigabytes of memory, methods for effective texture com-
pression are still required since there is always demand for more detailed and realistic images. In this paper, we
present a method for the effective compression of large images and textures based on a quadratic B-Spline wavelet.
The transformation is followed by a tree-compaction algorithm, which achieves high compression ratio at good

image quality.
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1 INTRODUCTION

Compression of large textures and images is of crucial
interest in many fields in computer graphics. The pro-
grammability of modern GPU allows texture and image
compression and decompression algorithms to exploit
the full parallel processing power and streaming capa-
bility. However, one considerable obstacle is yet the
limited support and capacity for general purpose data
storage on the graphics card: Though provided with up
to 1.5 gigabytes of memory, modern GPU’s texture size
is still limited to currently 8192x8192 pixels.

Wavelet encoding has proven to be an appropriate
tool for image compression, as in JPEG2000 [15]. Ad-
vantages are that it is easily implemented in software
and can be adapted to hardware for improved perfor-
mance [16]. There are several benefits arising from
wavelet compression. First, the encoding itself leads to
a straightforward lossy compression scheme by quan-
tizing the coefficients. By encoding the wavelet coef-
ficients into a quadtree, some memory can be saved by
removing subtrees containing only zero coefficients af-
ter quantization. This means that textures will require
less memory for storage, allowing them to fit into the
limited texture size of the graphics card without the use
of tiling. This way a shader program can be used for
decompression and filtering.
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Based on these observations, we present a compact
tree-coding algorithm for the efficient high-quality
compression of two-dimensional image data and a
real-time random access decompression algorithm
running on the GPU. Our approach is easily extensible
to multidimensional data and to non-linear HDR data.

2 RELATED WORK

The S3 Inc. introduced five simple lossy block-
decomposition-based compression schemes with
compression rates of 4:1 and 8:1 [10] for 8-Bit RGBA
images, which have been adopted by the Microsoft
DirectX framework. Based on the observation that
large textures, as required for terrain rendering, are
not supported by graphics cards, Tanner et al. [14]
proposed the clipmapping algorithm, which subdivides
a huge texture into small tiles which fit into the texture
memory.

For the compression of images the JPEG2000
standard [15, 2] supports the use of the LeGall and the
Cohen-Daubechies-Feauveau 7/5 wavelet, superseding
the discrete cosine transform used in regular JPEG
compression.  Wavelet-based compression schemes
have proven to be more flexible, providing higher
compression rates while yielding higher quality.
Compared to other algorithms, they demand a higher
decompression complexity. Therefore, recent work
aimed at the use of modern graphics-hardware to yield
interactive frame rates.

Beers et al. [1] introduced a vector-quantization-
based technique that uses a precomputed codebook and
stores a smaller texture of indices into this codebook.
The size of the codebook determines the level of
compression. More recently, Fenney [4] described a
way to store a compressed texture so that decompres-



sion needs one lookup per sample only. Schneider et
al. [12] introduced a compression scheme for static and
time-varying volumetric datasets. This algorithm is
based on a vector quantization with a fixed bit-rate. To
initialize the compression they use a codebook, which
is obtained using a splitting technique. The number
of generated entries is confined to the bit-rate of the
quantization. The compression rate is nearly 20:1.

Shaprio [13] presents the embedded zerotree wavelet
algorithm (EZW), which is based on a discrete wavelet
transform and a zerotree coding to store a compact mul-
tiresolution representation of significance maps, which
contains the positions of the significant wavelet coef-
ficients. This method can provide good performance
with very low complexity. The disadvantage of the
EZW procedure is, that all values are classifed by an
certain threshold. Coefficients below this threshold are
simply omitted. As an result of this it will remove noise
in uniform regions but also it generates blurry artifacts
in the reconstructed image. DiVerdi et al. [3], proposed
a method to implement the EZW algorithm for decod-
ing on graphics hardware using the Haar wavelet. The
wavelet coefficients are arranged in a tree with a zero
node, where all child pointers of the leaves and nodes,
which contain coefficients equal to zero, point to the
zero node. While they achieve good compression rates,
noisy images are problematic since too few wavelet co-
efficients are sufficiently close to zero for an imperceiv-
able difference.

3 WAVELET-TRANSFORMATION

Wavelet transformation in general has been well studied
in literature so we will not discuss it in detail. The most
important property of the wavelet transformation is that
it decomposes the image into perceptually meaningful
subbands that can afterwards be compressed more effi-
ciently than the original image.

Before the wavelet transformation the gamma correc-
tion is applied for linearization of the intensity values.
This step needs to be replaced by a log-mapping in the
case of HDR data. In both cases, the RGB color space is
converted to the Y’ P, P, color space, where a luminance
value and two differential color values are stored to con-
sider the human visual system, which is more sensitive
to changes in luminance than in color.

The choice of the wavelet basis is crucial for the
wavelet compression. The two major characteristics of
a basis are the width of support and the compression
it can provide. A wider support yields better compres-
sion results, but is computational more expensive. We
implemented three different wavelet bases in order to
compare their benefits and disadvantages.

Our first implementation is the Haar wavelet, which
has the most compact support. This simplicity makes it
optimal for decoding performance. Disadvantages are,
however, that it is neither continuous nor differentiable.
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This results in highly visible block artifacts in the com-
pressed image.

The LeGall biorthogonal wavelet, which is also
described in the JPEG2000 specification [15, 2], is
continuous, but not differentiable. Compared to the
Haar wavelet, it represents local changes in frequency
smoother and thus produces more appealing compres-
sion results. As shown in Figure 1, its support is three
times as wide as the Haar wavelet.
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Figure 1: Haar, LeGall and quadratic B-Spline mother
wavelet.

The quadratic B-Spline wavelet [11] is both continu-
ous and differentiable. It therefore should achieve the
best compression results compared to the two previous
bases. It has the same support width as the Le Gall
wavelet so the decompression performance is equiva-
lent. The associated coefficients of the analysis and
synthesis filter are shown in Table 1.

4 TREE-BASED COMPRESSION

Unfortunately, an entropy-based coding of the quan-
tized wavelet coefficients as in image compressions al-
gorithms like JPEG2000 is not suitable for real-time de-
compression on the GPU. Instead we first build a tree
data structure from the wavelet decomposed image and
then exploit redundancy in this tree by converting it into
a general directed graph. In this procedure, identical
or similar nodes are iteratively combined into a single
node until a desired compression ratio is achieved.

Analysis Filter Synthesis Filter
Coefficients Coefficients
i | Lowpass | Highpass | Lowpass | Highpass
Filter Filter Filter Filter
-1 1/4 1/4 -1/4 -1/4
0 3/4 3/4 3/4 3/4
1 3/4 -3/4 3/4 -3/4
2 1/4 -1/4 -1/4 1/4

Table 1: Coefficients of the quadratic B-Spline analysis
and synthesis filter.



4.1 Wavelet tree

Based on the dyadic decomposition a natural tree struc-
ture for the wavelet coefficients is to store the LH, HL,
and HH coefficients of a single pixel in the current level
together with four pointers to the next finer level. The
LL coefficient for the root level then needs to be stored
outside the tree. This way the coefficients required to
reconstruct a single pixel can be collected by traversing
the tree from the root node to the leaf containing the
highest resolution coefficients for that pixel. The major
drawback is that for storing the quantized coefficients
only 9 bytes are required, while the pointers require 12
bytes, when using up to 24 Bits which allows up to 16
MB for the compressed representation.
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Figure 2: Dyadic decomposition and derived tree data
structure.

In our approach we reduce the pointer overhead by
grouping the wavelet coefficients of a two by two pixel
block on each level. This way, only four pointers are
required per 12 quantized YCC coefficients. Thus, the
overhead is only 12 bytes per 36 bytes of data or in other
words roughly 33%. Since the lowest resolution level
only contains one coefficient of each type, four coeffi-
cients need to be stored outside the tree instead of only
one. As these must be considered seperately anyways,
we stop the wavelet decomposition at two by two pix-
els and store all of them as LL coefficients. Figure 2
shows the dyadic decomposition and the resulting tree
data structure.

4.2 Tree compression

After the tree data structure is generated, redundant
nodes are iteratively removed. Since combining two
nodes also joins their subtrees, only nodes with the
same children are candidates for such a collapse op-
eration. The final data structure now is a general di-
rected graph with the addition of a specifically marked
root node (see Figure 3). As a collapse operation might
introduce an approximation error the ordering of col-
lapses as well as the choice which two nodes are col-
lapsed at each step determine the quality of the decom-
pressed result.

We use a priority queue to perform the node collapse
operations in an optimal order on the directed graph. To
minimize the total mean square error (MSE), the key
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Figure 3: Uncompressed (left) and compressed (right)
directed graph data structure. The colors depict identi-
cal coefficients stored in the tree nodes.

by which the operations are sorted needs to be propor-
tional to the sum of squared differences (SSD) of all
nodes collapsed together by this operation, i.e. all orig-
inal nodes collapsed into the two candidates i and j.
As the coefficients of each node are the average coeffi-
cients of all contained original nodes, this error £(i, j)
can be computed by summing up the SSD of both nodes
(& and €;) with the appropriately weighted SSD when
collapsing the coefficients of the two candidates:
Wiw

e(i,j) = &i+&+d* (i), =
i J

where d*(i, j) is the sum of squared differences of the
coefficients of node i/ and j and w;/; is the sum of
the weights of all original nodes collapsed to i and j,
respectively. For the computation of the new coeffi-
cients, those of node i and j are simply multiplied by
the weight stored in each of these nodes and divided by
the new weight which is the sum w; and w.

Since each node is always collapsed with the one for
which the collapse has the lowest cost, we only need to
find the closest node c¢; for each node i and store this
pair in the priority queue. This problem is similar to the
nearest neighbor search in high dimensional spaces as
our coefficient vector has a dimensionality of 36. The
only exception is that the distance beween two nodes
with different child nodes must be set to infinite to pre-
vent collapsing them. Section 4.2 discusses the nearest
neighbor search algorithm we use in more detail.

When a collapse is performed, some of the queue en-
tries become invalid and need to be recomputed. As-
suming that the new nearest neighbor of those nodes
introduces a higher SSD we can postpone the recom-
putation until that collapse is fetched from the prior-
ity queue. The only nodes for which we need to im-
mediately find the nearest neighbor are the newly con-
structed node and all nodes that had one of the two col-
lapsed nodes as immediate children. The latter is nec-
essary as these nodes might now have a closer neighbor
than the one that was previously found. Another prop-
erty we used to speed up the initial filling of the priority
queue is that inner nodes cannot be collapsed before the
first few leaf nodes were removed since they cannot ini-
tially have the same child nodes.

Zerotree coding In addition to the optimizations de-
scribed above we can also remove all leaf nodes for



which their coefficients are all quantized to zero by in-
troducing a zero node similar to [3]. Since the zerotree
coding does not need a nearest neighbor search or a pri-
ority queue, those parts of the wavelet tree that do not
contain any information can be quickly removed. In
contrast to [3] we do, however, not collapse nodes con-
taining near-zero coefficients although these might be
collapsed with the zero node at a later time if the intro-
duced SSD is the lowest one.

As this step reduces the total number of nodes be-
fore the first neighbor search and the maximum number
of collapse operations in the priority queue it can sig-
nificantly reduce the total runtime. This is especially
important for images that required a padding before the
wavelet transformation.

Nearest neighbor search  As mentioned above the
coefficient vector for which we need to find the nearest
collapse candidate is 36-dimensional. Thus we require
an efficient method to search the nearest neighbor in
this 36-dimensional space. Since each collapse implies
removing two and adding one point to the candidate set,
a spatial acceleration data structure like the r-tree [6]
cannot be used and we need to restrict ourselves to a
linear ordering based on some sort of key value.

Fortunately, we can exploit the fact that most coeffi-
cient vectors will be centered around the origin with a
more or less gaussian distribution. Therefore, we chose
our hash function to be the distance to the origin and
only need to search those node with a similar distance.
As soon as we find the first candidate, we can thus ef-
ficiently stop searching in one of the two directions if
points farther away or closer to zero cannot introduce a
lower error.

S IMPLEMENTATION

To achieve real-time decompression, we had to meet
some contraints that are given by the graphics hard-
ware. First the coefficient values have to be quantized
to the range 0 — 255 using a global scaling to the range
[0, 1] when storing them in a 24 bit RGB texture. After
this, all values are simply scaled by the factor 255. The
quantization also restricts us to textures of size 256 in
each dimension since the color value is to be directly
used as texture coordinate. Therefore, we use a three-
dimensional texture to encode the tree. The size of this
texture is 2562 x 2", where 0 < n < 8 and each pixel
uses 24 bit in the regular RGB format.

As shown in figure 5 we encode blocks in pairs of
4 x 4 pixels. In each block, the upper left four pixels
contain pointers to the children of the current node. In
each pointer pixel, the color values contain the texture
coordinates of the child nodes upper left pixel. With
this scheme, we can encode 64 x 64 = 4096 nodes in
each layer of the texture so we can store up to one mil-
lion nodes or 36 million unique coefficients.
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Figure 4: Part of the compressed wavelet data stored in
the 3D-texture. Since the image is taken from depth O,
the root node is visible in the upper left corner.

5.1 Parallel decompression

For parallel decompression on the GPU, all wavelet
functions contributing to the current pixel need to be
evaluated and multiplied with the corresponding coeffi-
cients. The number of coefficients per pixel depends on
the width of the mother wavelet and is one for Haar and
three for LeGall und quadratic B-Spline in each dimen-
sion. This yields a total of 3 or 27 coefficients per level
for Haar and LeGall/quadractic B-Spline, respectively.
To extract these coefficients, one (Haar) or four nodes
(both others) have to be visited per level. This sums up
to 5 texture lookups per level for the Haar wavelet and
31 for the other two wavelets. Note, that since the child
nodes are not queried at the leaf level, the total number
of lookups if 4/ — 1 for the Haar wavelet and 31/ — 4
for both others, where [ is the number of levels in the
coefficient tree.

Although the number of lookups for the more com-
plex wavelets might seem rather high, the Haar wavelet
only allows nearest neighbor interpolation and thus pro-
duces inferior quality when zooming. To achieve bilin-
ear interpolation the number of lookups for the Haar
wavelet is quadrupled. This yields a total of 16/ — 4
which is approximately half than that of the other two
wavelets. Due to the smoother wavelet functions how-
ever, these produce better quality images at the same
compression rate and thus the higher number of texture
lookups is tolerable.

6 RESULTS

To evaluate our proposed algorithm and compare it to
existing approaches, we mainly used images from the
image compression benchmark [5] (Figure 6 and 7).

A quality comparison of the three implemented
wavelet transformations is shown in Figure 5. The
Haar wavelet shows significant block artifacts, which
neither appear using the LeGall nor the quadratic
B-Spline wavelet. Since the LeGall scaling function is
a linear filter, it tends to produce star-shaped artifacts.
The quadratic B-Spline wavelet reproduces sligthly



Figure 5: From left to right: Haar-, LeGall- and B-
Spline wavelet.

more detail than the LeGall wavelet. In addition, the
biquadratic interpolation that comes for free with the
B-Spline wavelet generates smoother results when
magnifying the image. The PSNR is similar for all

three wavelets, where the Haar wavelet has the lowest
(41.7 dB) and LeGall (45.4 dB) and quadratic B-Spline
(42.9 dB) are slightly better.

Figure 6: Compression results with embedded zero tree
coding (left) and with our approach (right).

Figure 6 shows the differences between embedded
zero tree coding [13] (354 dB) and our method
(37.6 dB). Both were compressed at a rate of 23:1.
One disadvantage of the zero tree coding is, that all
values below a certain threshold are simply omitted.
While this removes noise in uniform regions, it cannot
compress data in images containing high frequencies.
In these cases the threshold needs to be significantly
increased to achieve a desired compression ratio and
thus the quality of the reconstructed image is degraded.
In contrast to this, our clustering approach can also
exploit similarities in high frequency regions and thus
much fewer nodes need to be collapsed with the zero
node. This greatly improves the visual quality when
compressing this type of images.
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Figure 7: Comparison between S3TC (middle) and our
approach with same compression ratio (top, no visual
difference to original) and same quality (bottom).

In Figure 7 a comparison between S3TC (DXT1) and
our approach is shown. The upper two images are both
encoded with a compression ratio of 6:1 (8:1 for RGBA
images) at 55.1 dB. Note, that our approach yields a
significant higher quality (60.7 dB) at slightly smaller
texture size (1.5 MB compared to 1.6 for DXT1). With
four times the compression rate (26:1) the visual quality
of our method (still 57.1 dB) is equivalent to S3TC, as
shown in the lower image. Figure 8 shows an aerial
image with a resolution of 3000 x 3000 compressed at a
rate of 34:1 with 36.4 dB. Despite the high compression
rate, important features are still preserved.

The decoding was performed in a pixel shader run-
ning on an nVidia GeForce GTX 295 in real-time. The
performance for a 4096 x 4096 texture is approximately
400 Mpixels per second using the Haar wavelet and
nearest neighbor filtering (100 Mpixels with bilinear
filtering) and roughly 55 Mpixels per second with the
LeGall and quadratic B-Spline wavelet. For smaller or
larger images, the runtime is almost linear in the num-
ber of levels of the wavelet decomposition. E.g. for a
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Figure 8: Drastic compression (34:1) of a 3000 x 3000
pixel aerial image. The marked area is magnified below
the full image.

16kx 16k texture we still achieve 46 Mpixels per sec-
ond.

7 CONCLUSION AND LIMITATIONS

We presented an effective method for the compres-
sion of large textures and images based on the linear
LeGall and quadratic B-Spline wavelet. With our tree-
compaction algorithm, we achieve high compression
ratios while still preserving high visual quality. The de-
compression is implemented as a pixel shader on a GPU
and runs in real-time on current graphics hardware. Our
approach has shown to be superior to simple zero-tree
removal.

In the future we want to improve the compression
time, which is currently 30 minutes for a 67 Mpixel im-
age (8192 x 8192 pixel) and thus still rather slow. In ad-
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dition, we want to extend our method to high dynamic
range images and multi-dimensional datasets.
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