
RenderManʼs Power to Visualizationʼs Rescue

Julio Espinal
jae3161@rit.edu

Virginia Allen
vla8446@rit.edu

Kwesi Amable
kxa9006@rit.edu

Reynold Bailey
rjb@cs.rit.edu

Hans-Peter Bischof
hpb@cs.rit.edu

Department of Computer Science, Rochester Institute of Technology

ABSTRACT

Most visualization systems employ a data flow approach in order to create visual representations of data. The
data flows along a directed graph through the different components, gets filtered, extracted, analyzed, and finally
converted into an image. Most visualization systems use one graphic toolkit or library to create the image. These
toolkits and libraries are not created equally; some are better suited than others to solve given problems. Being
able to pick and choose would often generate a better result. Within the Spiegel framework any toolkit, which
can be used in a Java environment, can be employed to create the image. In this paper, we explain the Spiegel
framework and how Pixar's PhotoRealistic RenderMan® can be used to visualize scientific data.

Keywords
Visualization Framework, RenderMan®, Data Flow Languages.

1. INTRODUCTION
Most visualization systems employ a data flow
approach along a directed graph to filter, extract,
analyze, and finally convert data into an image. They
generally use one specific, unchangeable graphic
toolkit or library to create images. The features of
these toolkits and libraries vary significantly; some
are better suited than others to solve given problems.
Simply changing from one toolkit or library to
another often produces strikingly different results.
Additionally, visualization systems run on different
hardware platforms, which use different drivers to
access the graphics card. For example, OpenGL
running on two different platforms, Mac OS X and
Windows, using the same NVIDIA GeForce 9400
graphics processor will not execute all shaders in the
same manner. As a result, the images generated from
the same program may differ in quality.
Within the Spiegel framework [Bis05], any toolkit
that can be used in a Java environment can be
employed in order to create the best possible image.
In this paper, we explain the Spiegel framework and
how Pixar's PhotoRealistic RenderMan® can be used
to visualize scientific data.
The rest of the paper is structured as follows: section
2 discusses general visualization principles; section 3
presents an overview of how a data flow architecture
can be used for creating visualizations; a brief survey
of related work is presented in section 4; Our
approach for incorporating RenderMan® into the

existing Spiegel visualization framework is described
in sections 5, 6, 7, and 8. Finally, results and future
work are presented in sections 9 and 10 respectively.

2. VISUALIZATIONS
Spiegel was designed as a visualization tool for the
Center for Computational Relativity and Gravitation
(CCRG) at Rochester Institute of Technology.
Spiegel has been used mainly to visualize simulations
of galactic events like black hole mergers,
gravitational waves, and galaxy mergers. However, it
can be used to visualize any type of data. For CCRG,
the visualizations created by Spiegel are used to help
debug and understand the simulations from which
they are generated, as well as explain the science to
the general public.
Certain galactic events like black hole mergers
cannot be observed in practice. Therefore, a
visualization of a black hole merger cannot be
compared to a photograph. This makes it relatively
easy to generate visualizations because it is not
bound to a specific pre-conceived image. On the
other hand the Hubble Space Telescope took images
of nebulas like the one shown in Figure 2. It is
difficult to accurately generate this scene in 3D on a
computer.
A typical simulation writes the current state of the
model into a file at discrete moments in time. The
visualization of scientific data always follows the
same rules. The state at successive time steps of the

WSCG 2010 Communication Papers 243

simulation data is read and subsequently converted to
a visual representation.
This can be done for all time steps in parallel if the
data of each time step is complete and independent of
other time steps. If this is not the case, the data can
always be pre-processed. Because of this,
visualization systems are excellent candidates for
execution on a cluster. The Spiegel framework is no
exception. As shown in Figure 1, individual frames
of the visualization can be generated in parallel thus
reducing execution time.

Figure 1: Overview of the Spiegel framework.
Data is extracted from one or more file severs and
distributed to a cluster of computers. Each
processing unit in the cluster generates one (or
more) frames of the complete visualization
sequence in parallel. These frames are then
combined to create a video.

Prior to this work, the Spiegel framework utilized
only Java3D or JOGL to create 3D images. However,
these libraries were limited to rendering simplistic
models, which in some cases, results in unattractive
images for a general audience. Java3D and JOGL
cannot be pushed to render extremely difficult visual
scenes. For example, it is impossible with either
library to generate an impressive looking nebula, like
the Cat’s Eye Nebula shown in Figure 2. The authors
do not argue that an image like the Cat’s Eye Nebula
cannot be generated on a computer, but they argue
that Java3D or JOGL are not the right tools with
which to solve this problem.

Figure 2: Cat’s Eye Nebula. Courtesy of NASA
and the European Space Agency. Image generated
by the Hubble Space Telescope.

Pixar's PhotoRealistic RenderMan® has been widely
used in the computer graphics community for over
two decades to create stunning computer generated
imagery. RenderMan’s reputation has grown over the
years and it is still used today to render scenes in
many big-budget Hollywood films. Because of its
power, huge benefits can be gained by incorporating
RenderMan® into existing visualization systems.

3. DATA FLOW ARCHITECTURE
Most current visualization systems utilize a data flow
architecture [Bis09]. Components have
communication endpoints, which can be connected to
form a visualization program. When the program is
executed, data is passed from one component to
another. Each component performs specific
operations that contribute to the final result.

Figure 3: Example of a program created in
Spiegel that illustrates the data flow architecture.

Figure 3 shows an example of a program created in
Spiegel using its graphical interface. The node Stars
reads the file named sim.dat specified as an argument
and sends the data to the node Stars3D, and from
there the data is sent to the last node in the graph,
Camera3D. The Stars, Stars3D, and Camera3D
components are simply small programs, which
perform specific operations on the data.
Most visualization frameworks, like Iris Explorer, the
grandfather of all visualization systems [Fou95], do
not expose this functionality to the user. Vish
[Ben07] and Spiegel [Bis09] are frameworks that
expose this functionality to the user; consequently,
they are very easy to extend.
The Unix operating system [Rit74] allows one to
create a data flow architecture using pipes. This
allows for the connection of multiple simple
programs to create powerful systems. But more than
this, it fosters the reuse of existing components. This
increases the productivity of a developer. A Unix
program like:

sort file | uniq | sort –n head -5

will print out the 5 most often occurrences of the
same line in file.
Vish and Spiegel follow the same philosophy as
Unix. In the end, this allows for the use of any
tool/library that can convert data into an image.
The authors explored OpenGL, JOGL, and
PhotoRealistic RenderMan® within the Spiegel
visualization framework.

WSCG 2010 Communication Papers 244

4. RELATED WORK
Other options besides RenderMan® exist for
rendering realistic images. These include OpenGL
with GLSL shaders and DirectX. Because Spiegel
was designed to be platform independent, DirectX
was an impractical choice because it is not fully
supported on all platforms. Additionally, not every
extension in OpenGL is supported on all graphics
cards. These factors led us to consider RenderMan®.
Due to the intuitive shading language and film-
quality rendering, RenderMan® is superior to
OpenGL. Even though it takes more time to render
an image, the quality is significantly better and
appeals to a general audience. The RenderMan®
Interface is well documented and its reputation has
been proven in the field for over twenty years.
RenderMan® automatically performs many
calculations that need to be performed manually in
OpenGL. For example, with lighting enabled, the
normal and view vectors are automatically
calculated. Furthermore, setting up the camera and
the scene is easier compared to OpenGL. The
RenderMan® standard defines five types of shaders:
surface, light, volume, imager and displacement; on
the other hand, GLSL only supports vertex and
fragment shaders. RenderMan's shaders have a very
modular design; therefore, it is possible to edit
certain parts of the pipeline without affecting other
aspects. It is also possible to have multiple variations
of a base shader, which facilitates the evaluation of
the effects. Scene setup is also easier in
RenderMan® as parameters can be added to a RIB
(RenderMan® Interface Bytestream) file to guide
scene generation as opposed to explicitly defining the
scene in OpenGL.

5. RENDERMAN®
As stated previously, part of RenderMan’s appeal is
its modular design and multiple shader types. They
can also be layered together to create unique textures.
Once a shader is compiled, it can be used in any
RenderMan® Interface Bytestream (RIB) file. A
RIB file describes the environment and the various
objects within a scene. RIB files can reference other
RIB files in order to add existing objects to other
scenes.
In many cases, the data set requires much processing
time to produce a movie. The processing time
increases drastically when rendering high-quality,
photorealistic scenes. The Spiegel framework allows
for distribution over a cluster, as shown in Figure 1,
to generate the images in parallel, which reduces
execution time.
Spiegel splits the RenderMan® interface into several
components. These components include lighting,
shader extractor, RIB generator, and camera settings.
Because RenderMan® is very flexible, it is possible

to have multiple instances of most of the
components. As data flows through each component,
a RIB file depicting the scene is generated and
ultimately processed by the PhotoRealistic
RenderMan® renderer to produce the desired image.

6. ARCHITECTURE
A modeling application is used to create and compile
the RIB file. During compilation, the modeling
application will parse each line of the RIB file and
call the corresponding RenderMan® Interface (RI)
routine. Once all of the information is gathered,
RenderMan® will then bound and split each
primitive. Figure 4 illustrates all the phases involved
in the architecture.
During the bound and split phase, each primitive is
checked whether or not it is within the bounding box.
The bounding box is the viewing area in which the
scene will be depicted. It is based on the current
location of the camera and the size of the screen. If
an entire primitive is not within the bounding box,
then it is discarded; however, if a primitive is
partially in the bounding box, then it is split. When a
primitive is split this means that it is made into
smaller polygons until a single one can fit into the
bounding area. This can be seen in Figure 5 when a
sphere is split into smaller polygons that create the
whole sphere. Once the smaller polygons of the
primitive fit into the bounding box, the polygons that
are still not within the bounding box are discarded.
Once each primitive is bound and split, they are
diced into a grid of micro-polygons. These micro-
polygons will be small enough to approximately
represent a pixel on the screen. As seen in Figure 5,
these grids will allow for the shaders to manipulate
the primitives. The first shader applied, if one is
specified, is the displacement shader. These shaders
need to be applied first because they manipulate the
vertices' data, such as the position or normals, and
this information is a basis for other shaders. Once
the displacement shader is applied, the surface
shaders are used next to manipulate the surface of the
primitive. In order to apply the surface shaders, the
lighting also needs to be taken into account to
produce appropriate shadows. The location of the
lights also needs to be considered, because if a light
is directed towards a primitive, then the surface
shader needs to adjust the color according to the type
of surface and make that area brighter than the rest of
the object's surface. Last, the atmosphere shader is
applied in order to make changes to the primitive's
color along with its opacity. After the objects are
bounded and split, diced, and shaded, the image is
rendered and displayed onto the screen.

WSCG 2010 Communication Papers 245

Figure 4: The stages involved in the RenderMan®
architecture.

7. RENDERMAN® PROGRAM
Consider the example of trying to render stars in a
galaxy. The following snippet of code shows part of
the RIB file that is generated:

...
TransformBegin
 Translate -0.1 0.6 -0.3
 Scale 0.1 0.1 0.1
 Color [0.46 0.46 0.4]
 Surface "glow"
"attenuation" "2"
 Sphere 1 -1 1 360
TransformEnd
TransformBegin
 Translate 0.1 -0.3 0.4
 Scale 0.2 0.2 0.2
 Color [0.0, 0.0, 0.0]
 Sphere 1 -1 1 360
TransformEnd
...

Figure 5: Illustration of a sphere being split,
diced, and shaded. Image adapted from
renderman.pixar.com [Pix09].

The first piece of information, between the first
TransformBegin/End, describes the characteristics of
one star within the image. The surface of a star is
described by using a shader called “glow”; this can
be seen on the “Surface” line. The second piece of
information is for a black hole. The scale of a black
hole is slightly larger than the stars and the color is
black.

8. SHADERS
The key to generating realistic images from
RenderMan® is shaders. A shader is a function
written in the RenderMan® shading language that
calculates the color and position of a point on the
surface of the object. The RenderMan® plug-in for
Spiegel allows the user to select the shader from a
file. The program will parse the header of the shader
file to determine the parameters it takes. It will then
dynamically add an input to Spiegel’s shader module
for each of these parameters. This module contains
the name of the shader and a list of variables with
their values. The camera module generates the main
RIB file. It imports the previously generated RIB file
that contains the models. After generating the RIB
file, the RenderMan® renderer (prman) is invoked to
produce an image. This process is illustrated in

WSCG 2010 Communication Papers 246

Figure 6. The module gets the camera position,
image size, and the render quality in as parameters.
It also has parameters for information about the
interpolation and the motion blur. To create an
interpolated movie, the program reads each time step
until it has four time steps, it will then render all of
the frames that should go in between these four time
steps.

Figure 6: Illustration of how the main RIB file is
built and used.

There are several Spiegel modules for RenderMan®
lighting. These modules add support for ambient,
distant, spot, and point lights. To add a light, connect
the light module to the RenderMan® camera module.
The “lights” input supports the connection of
multiple lights at the same time. The parameters of
the lights can be changed via Spiegel's interface.
These parameters include light intensity and color
along with others depending on the type of light. It is
important to note that some shaders, do not use
lighting to determine how to render the objects. This
means that, when using these shaders, adding lights
will have no effect on the final image.

9. RESULTS
The Spiegel framework was used to create video
clips of black hole mergers for the show “The
Universe: Cosmic Holes” which aired on the History
Channel in 2008. The videos were rendered using
OpenGL and depicted black holes as simple Gouraud
shaded spheres against a static texture mapped
background. Figure 7 (left) shows a single frame of a
three black hole merger that was rendered using the
old Spiegel/OpenGL approach. Figure 7 (right)
shows an image that was rendered using the new
Spiegel/RenderMan framework. In this case, the
individual stars surrounding the central black hole are
rendered using a shader which gives a more realistic
glowing effect.
We generated images based on a simulation of a
three-galaxy merger. Figure 8 shows one frame of the
merger viewed from the side and Figure 9 shows the
merger viewed from the top. For these images, a
different shader which emphasizes the appearance of
the back holes was used.

10. FUTURE WORK
RenderMan has been successfully incorporated into
the Spiegel visualization framework and has been
used to create visualizations of galactic events such
as black hole mergers. The new framework allows
for distribution over a cluster. This was successfully
verified for a small cluster. In the future, we will
have access to Blue Waters [NCS09]. Blue Waters
will consist of 100,000 nodes and the peak
performance will be in the Peta-flop range. The
Spiegel framework will be ported to this cluster and
its scalability will be analyzed.
Sonification [Her05], the art of representing data by
using sound, is a rapidly evolving area of research.
We plan to explore various approaches for using
sonification models to further enhance our
visualizations.
Many visualization algorithms are designed to
visualize a very specialized problem. Unfortunately
these algorithms cannot be used outside the tool in
which they are implemented. A language named
Sprache is used to describe a visualization program
in Spiegel [Bis05]. However, it is not well suited for
working with data that is distributed over multiple
servers. We plan to redesign this language to handle
distributed data and distributed rendering for the new
Spiegel/RenderMan framework.
Finally, one of the major limitations of our project
was the time it took to render images. The use of a
cluster to render individual frames in parallel helps to
reduce the overall rendering time for a video
sequence, however each individual frame could
potentially take a long time. Although PhotoRealistic

WSCG 2010 Communication Papers 247

RenderMan is an efficient software renderer, it is still
subject to long processing times for complex scenes.
We plan to explore the use of multi-core GPUs to
speed up the rendering time.

11. ACKNOWLEDGEMENTS
This material is based upon work supported by the
National Science Foundation under Award No. CCF-
0851743. Any opinions, findings, and conclusions or
recommendations expressed in this material are those
of the authors and not necessarily reflect the views of
the National Science Foundation.
The authors would also like to thank to Manuela
Campanelli, Carlos Lousto and Yosef Zlowocher
from the Center for Computational Relativity and
Gravitation for their help and fruitful discussions.
This team provided the data used and the
interpretation of the visual representation.

12. REFERENCES
[Ant00] A. A., & Larry, G. (2000). Basic Geometric

Pipeline. In Advanced RenderMan: creating CGI
for motion pictures (pp. 136-143). San Diego,
CA: Academic Press.

[Ben07] Werner Benger and Georg Ritter and René
Heinzl, The Concepts of VISH, 4th High-End
Visualization Workshop, Obergurgl, Tyrol,
Austria, June 18-21, 2007, 978-3-86541-216-4.

[Bis05] Hans-Peter Bischof, Jonathan Coles: A
Movie Is Worth More Than a Million Data
Points, Lecture Notes in Computer Science

Publisher: Springer-Verlag GmbH, ISSN: 0302-
9743 Subject: Computer Science Volume
3514/2005, Title: Computational Science ICCS
2005: 5th International Conference, Atlanta, GA,
USA, May 22-25, 2005

[Bis09] Hans-Peter Bischof, Swathi Annamala: The
KISS Principle Applied to Dataflow Languages
Paradigms for Visualization Frameworks,
Proceedings of the 2009 Conference on Modeling
Simulations and Visualization Methods, p. 48-55,
ISBN: 1-601320-120-1.

[Fou95] David Foulser. Iris explorer: a framework
for investigation. SIGGRAPH Computer
Graphic, 29(2):13{16, 1995.

[Her05] Thomas Hermann, Andy Hunt, "Guest
Editors' Introduction: An Introduction to
Interactive Sonification," IEEE MultiMedia, vol.
12, no. 2, pp. 20-24, Apr. 2005,
doi:10.1109/MMUL.2005.26.

[NCS09] Blue Waters Announcement. Retrieved
October 20, 2009, from NCSA’s website
http://www.ncsa.illinois.edu/BlueWaters.

[Pix09] Pixar’s RenderMan Performance. (2009).
Retrieved November 30, 2009, from Pixar
website:
https://renderman.pixar.com/products/whats_rend
erman/2.html

[Rit74] D. M. Ritchie and K. Thompson. The Unix
time-sharing system. Communications of the
ACM, 17:365-375, 1974.

Figure 7: Image rendered using old Spiegel/OpenGL framework (left). Image rendered using new

Spiegel/RenderMan® framework using shaders.

WSCG 2010 Communication Papers 248

Figure 8: One frame from a three-galaxy merger viewed from the side. Image created by the Spiegel

Visualization System using RenderMan®.

Figure 9: One frame from a three-galaxy merger viewed from the top. Image created by the Spiegel

Visualization System using RenderMan®.

WSCG 2010 Communication Papers 249

WSCG 2010 Communication Papers 250

	!_Short-papers.pdf
	F05-full.pdf

