
Multi-Threaded Real-Time Video Grabber
Zdeněk Trávníček

DCGI, FEE
Czech Technical University in Prague

Czech Republic
zdenek.travnicek@fel.cvut.cz

Roman Berka
Institute of Intermedia, FEE

Czech Technical University in Prague
Czech Republic
berka@iim.cz

ABSTRACT

Communication in general incorporates technologies with increasing number of communication modes. Special applications
are developed in the area of virtual reality, multimedia communications and others where combinations of audio, video, 3D data
are sent between two (or more) distant users which can commonly interact with these data. A form of so exchanged information
usually requires, among others, special forms of presentation. Thus stereoscopic and virtual reality visualization devices are
used to present intricately structured information in multi-modal form.
There are situations where the presented information is to be rendered in real-time and transmitted to the remote user in form
of a video-stream. In this case, the content is presented on a local visualization device (e.g. CAVE) being simultaneously sent
to a remote device. Thus a method how to obtain rendered data from graphics hardware in real-time is necessary.
The problem is, how to obtain the rendered data for transmission with minimal impact on the rendering and visualization
process. In this paper, we present a method how to retrieve video stream from an arbitrary running OpenGL application,
capturing every frame with minimal impact on performance.

Keywords: OpenGL, real-time video grabber, streaming video, streamcast

1 INTRODUCTION

With the rise of 3D digital media, stereoscopic movies
and upcoming 3D television, the need for a new sources
of stereoscopic signal emerges. The usual sources of
such a signal are cameras in stereoscopic setups or pre-
rendered video sequences. There are many applications
rendering 3D images, some of them even stereoscopic
ones. Those could be great source for such a stream,
but they usually does not support producing an video
that could be directly used as a source of video signal
for stream nor support saving video to a file.
In order to use such an application we need to be able

to retrieve output of the running application in real-time
(see fig. 1). From other point of view, we may simply
want to record output of running application and store
it locally for later, offline use. In order to get those, we
could alter the application itself to produce such a video
stream or file. We can also use some screen grabbing
application (streamcast) or have a hardware solution.
As the graphics hardware and software technologies

changes over the time, the problem is still actual and
new approaches appear. The main problem is related to
the cost of the grabbing process because the data source
(typically a graphical subsystem) produces content in

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or
distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

real time. Thus the grabber should obtain pictures with
minimal impact on the rendering process.
We first describe known methods of the video grab-

bing which appeared during a period of the last decade.
These methods are evaluated according to our criteria
based on modification that needs to be done to the
application itself, impact on performance of the appli-
cation and possibility of grabbing stereoscopic images
from quad buffer. We evaluate the performance loss
formulti-core/multi-CPU systems. Next, our own asyn-
chronous wrapper is described and compared with the
already implemented solutions. Finally, some applica-
tions of the described wrapper are presented.

2 STATE OF THE ART

There exist several approaches to the solution of how to
acquire a stream of graphical data from an application
running on the system. These approaches are then of-
ten implemented for various purposes. We can classify
them into four basic groups:

• alteration of the application which is the source of
the data

• screen grabbing

• combination of previous two methods

• capturing output of the graphics hardware

These methods are know explained and compared in
the next paragraphs.

WSCG 2010 Communication Papers 259

Figure 1: A general scheme of grabber.

2.1 Altering an Application
The method of altering an existing application has an
obvious drawback in a need to have source codes for
the application and also alteration of every application
we use. This basically limits the usability of it to ap-
plications where we have source code (typically open-
source). The solution is also complicated when we use
many different applications.
Aside from that, this method has an advantage in

knowing everything about the application to have full
control over the grabbing process. Thus it can grab the
images synchronously with the rendering speed. Also,
for an application rendering stereoscopic images into
quad-buffer, this method can grab images for both eyes.
The implementation is specific to every application as
well as the performance loss. This solution can be
therefore seen in special applications (e.g., applications
working as real-time video content generators for net-
work projects or art performances).

2.2 Screen Grabber
The screen grabbing represent a next approach where
the graphical information is obtained independently on
the application code. Using a standalone screen grabber
does not require any alteration of the application, but
on many systems it has problems on accelerated win-
dows. It won’t be synchronized with the speed of an
application as it does not have any information about
architecture of the application. Asynchronous grabbing
can introduce image distortions when the frame buffer
is changed during read, it can miss frames when the
application renders faster than the grabber grabs and
can unnecessarily grab the same image multiple times,
when the application stalls or is just slower than the
grabber. Furthermore, this method would fail for quad-
buffer stereo.
As an example of such an approach, there are appli-

cations like scrot and xsnap realized in GNU/Linux en-
vironment. The code of the grabber runs outside the

context of the application, so the impact on the render-
ing speed should be quite small.

2.3 Combined Solution
Another solution would be combination of above men-
tioned two methods. Here, a separate grabber without
modifying the application is used. This can be done us-
ing an wrapper to rendering library, i.e. OpenGL,which
would inject some code to proper place of the render-
ing process and execute it there. Provided our code
could get enough information about rendering window,
we can grab the exact window, adjust the area being
grabbed when the application window changes and we
can start the grabbing exactly once per frame.
There is an opensource project captury using this so-

lution. In this project, the code is executed in context of
rendering thread of the application, effectively slowing
down the rendering of every frame by grabbing, com-
pressing and saving every frame, before it the buffers
gets swapped.

2.4 Hardware Solution
A hardware solution means plugging some device into
output of graphics card and process it on other com-
puter or in the device itself. This solution needs sepa-
rate hardware, it is quite expensive, and is not synchro-
nized with the application’s speed. The output signal
needs to be cropped when rendering only into an win-
dow. In addition, the captured signal has given param-
eters, like resolution, which are not easily controllable
during the grabbing process. On the other hand, it has
absolutely no impact on the application itself, as there’s
no processing on the rendering machine.
As the acquisition of the video from graphics hard-

ware in real-time is an interesting problem new so-
lutions implemented directly in the graphics boards
rises. In August 2009, nVIDIA released solution to
record/output SDI uncompressed video directly to/from
Quadro GPU’s memory. As this information is too

WSCG 2010 Communication Papers 260

much new, we had no chance to test it before submis-
sion of this paper.

3 MULTI-THREADED REAL-TIME
VIDEO GRABBER

The solution we propose is a modifie approach to
wrapping rendering library’s calls and injecting our
code there.
The key is in using a wrapper, that “hooks” onto few

library calls in order to retrieve information about ap-
plication’s window and to grab the window in a right
time.
The grabbing itself is done in the context of the ren-

dering thread using standard methods to retrieve the
content of framebuffer. This directly implies that, when
rendering in quad-buffer mode for active stereoscopy,
we can easily get both images as we can control the
flow of the code. After getting the frame we send it to
an other thread to next process. This ensures that the
impact will be as small as possible, provided the ma-
chine has multi-core CPU or multiple CPUs. The pro-
cessing itself can be done in multiple threads also, to
use more available cores more effectively. In the pro-
cessing threads, we can save the video to the local stor-
age or stream it over network and optionally compress
it.
The implementation we present was done under

GNU/Linux environment, using an OpenGL applica-
tions and nVIDIA QUADRO FX cards to render active
stereoscopic images in quad-buffered mode.

3.1 Wrapping

Thewrapping is done by utilizing linux dynamic loader,
which takes care of loading libraries and resolving sym-
bols. Using LD_PRELOAD environmental variable rec-
ognized by the loader, we tell it to preload a shared ob-
ject before an application and use it for symbol resolv-
ing with higher priority. In the shared object we pro-
vide hooks on few function that inject our code before
the real call to the library function.
Namely we “hook” onto glViewport in order to

get information about the window size and it’s changes.
We also use this as a point to initialize the processing
threads. We also hook onto framework specific func-
tions in order to swap buffers (glxSwapBuffers,
SDL_GL_SwapBuffers). When the application
calls swap buffers, it signalizes it has finished rendering
the frame, so it’s the right place for us to grab it and
send it to the next process. It is also the place where we
can drop frames if the application is rendering too fast.
Our implementation also wraps dlsym call to catch
symbol resolving done in real-time and not by dynamic
loader.

3.2 Grabbing

During a rendering process the rendered images are
stored in two (or four in case of stereoscopic output)
frame buffers which are periodically swapped. On prin-
ciple, there are two types of frame buffer reading:

• asynchronous – based on so called Pixel Buffer Ob-
jects [Biermann et al., 2004]

• synchronous – direct buffer reading

First, retrieving the image is the done by calling
glReadPixel with correctly set read buffer in
OpenGL context, optionally on initialized Pixel Buffer
Object (PBO). PBO approach moves the reading into
background so it does not block the rendering thread.
But it introduces a delay of 1 frame, because we get the
data on the next buffer swap.
The direct approach introduces delay into the render-

ing thread, which means a slowdown of the application,
but we get the data sooner. We support both methods.
By changing actual buffer and repeating the read, we
can retrieve data for the other eye, if we have quad-
buffer stereo.

3.3 Processing

The processing threads are doing color space conver-
sions and re-sampling. Other threads can take care of
possible video compression and others can stream it
or save it locally. Processing of stereoscopic signals
is done by pairs of threads to improve multi-threaded
performance.

3.4 Summary

A scheme of the process is shown on figure 2. Original
application is wrapped in it’s call to Swap Buffers (usu-
ally glxSwapBuffers) is intercepted and instead of
it, our code is executed. Content of the framebuffer
is then grabbed as described in 3.2 and sent for pro-
cessing to other threads. Then original SwapBuffers
method is called and control is returned to the applica-
tion. Meanwhile the data from framebuffer are being
processed in other threads and eventually streamed out
(or recorded).
The whole grabbing process is done in the context

of the rendering thread, but the rest of the processing
is done in other threads, not directly affecting the ap-
plication’s performance. So the impact to application
is mostly defined by the slowdown that takes place in
the grabbing functions. Of course, in case the applica-
tion would do some CPU intensive operation the video
(i.e. compression), it may place load to the CPU and
indirectly slowing down the application.

WSCG 2010 Communication Papers 261

Figure 2: Scheme of the wrapped grabber

4 APPLICATIONS
The possibility to capture rendered video in real-time
has lot of applications in wide area. As the problem
described in this paper is part of another project, we
can mention some applications which already use our
grabber.

4.1 Project C2C
Described method is successfully used in project
Cave2Cave (C2C) [Berka et al., 2009] to stream a
stereoscopic video signal from applications running
in CAVE-like system [Cruz-Neira et al., 1992] and to
present it on remote site (see fig 3).
We use the the multi-threaded grabber to get

video of the application, scale it, optionally com-
press it and stream it using standard protocol RTP
[Schulzrinne et al., 1996]. The grabber also creates
RTSP [Schulzrinne et al., 1998] server to provide SDP
descriptions [Arkko et al., 2006] of the streams. This
way we can (and we do) present applications from our
CAVE system to distant viewers. The use of standard
streaming protocols allows us to partially preserve
possibility of receiving data by standard players used
by remote user.

4.2 Prerendering
Another use of the method is to allow prerenderingwith
applications that does not support it natively. For ex-
ample, application rendering complex model which can
not be rendered in real-time could be used to render it
as fast as it could while having it’s whole run recorded.
Then we simply playback the recorded video at the

requested speed. This allows us to present output of
any application even in cases, when the application it-
self can not do it in real-time. We successfully used
this method for presenting walks through very complex
VRML models to public.

4.3 Industrial Applications
As the grabber can wrap theoretically any OpenGL ap-
plication (it depend on correctness of application imple-
mentation in relation to OpenGL library), it offers itself
in such situations where some industrial product (like
an architectural model or model of a car) is to be, prob-
ably interactively, presented to a remote user without
necessity to send these data to his/her computer. It is
important when there is not possible to move real data
or software, e.g. due to license limitations. Using sys-
tems like CAVE, running our grabber on each wall, as
a source of content, an application then allows to me-
diate immersive environment remotely using standards
described in already referenced RFC documents.

5 CONCLUSION
The proposed method allows real-time retrieval of ren-
dered stereoscopic images from arbitrary OpenGL ap-
plication without a need to modify the application itself.
It can be used as base for a system to record an output
of an application to local storage for offline use or to
stream the content over network in real-time.
The solution has potentially lot of applications in

wide area of remote visualizations also on immersive
devices or in the area of collaborative environments.
As it has been already mentioned above the problem

WSCG 2010 Communication Papers 262

Figure 3: Scheme of the multi-projection screen based configuration. A scene rendered in the resource device with
3 projection walls is grabbed and the resulting video is transmitted to the remote device where it is presented on
remote projection wall.

with grabbing methods is in continuous development
and follows possibilities of contemporary technologies.
For know, we can expect that the support of hardware
solutions will be probably accessible for wider area of
applications.

6 ACKNOWLEDGMENTS
This work has been partially supported by:

CESNET, association of legal entities,
Prague, Czech Republic
under the research programMSM 6383917201

Czech Technical University in Prague
Institute of Intermedia

Center for Computer Graphics
under the research program LC-06008

REFERENCES
[Arkko et al., 2006] Arkko, J., Lindholm, F., Naslund,

M., Norrman, K., and Carrara, E. (2006). Key Man-
agement Extensions for Session Description Pro-
tocol (SDP) and Real Time Streaming Protocol
(RTSP). RFC 4567 (Proposed Standard).

[Berka et al., 2009] Berka, R., Trávníček, Z., Havran,
V., Bittner, J., Žára, J., Slavík, P., and Navrátil, J.
(2009). Networking studies III, Selected Technical
Reports, chapter CAVE to CAVE: Communication

in a Distributed Virtual Environment, pages 161–
174. CESNET, 1ts edition. ISBN: 978-80-904173-
4-2.

[Biermann et al., 2004] Biermann, R., Carter, N., Cor-
nish, D., Craighead, M., Kilgard, M., Kirkland, D.,
Leech, J., Paul, B., Roell, T., Romanick, I., and
Sandmel, J. (2004). ARB_pixel_buffer_object spec-
ificatio
http://www.opengl.org/registry/specs/arb/pixel_bu
ffer_object.txt. Web page. Downloaded in October
2009.

[Cruz-Neira et al., 1992] Cruz-Neira, C., Sandin, D.,
Defanti, T., Kenyon, R., and Hart, J. (1992). The
cave: Audio Visual Experience Automatic Vir-
tual Environment. Communications of the ACM,
35(6):65–72.

[Schulzrinne et al., 1996] Schulzrinne, H., Casner, S.,
Frederick, R., and Jacobson, V. (1996). RTP:
A Transport Protocol for Real-Time Applications.
RFC 1889 (Proposed Standard). Obsoleted by RFC
3550.

[Schulzrinne et al., 1998] Schulzrinne, H., Rao, A.,
and Lanphier, R. (1998). Real Time Streaming Pro-
tocol (RTSP). RFC 2326 (Proposed Standard).

WSCG 2010 Communication Papers 263

WSCG 2010 Communication Papers 264

	!_Short-papers.pdf
	F43-full.pdf

