Interactive Ray Tracing Client

Michal Radziszewski
AGH, Krakow, Poland
mradzisz@student.agh.edu.pl

Witold Alda
AGH, Krakow, Poland
alda@agh.edu.pl

Krzysztof Boryczko
AGH, Krakow, Poland
boryczko@agh.edu.pl

ABSTRACT

In this paper we present an interactive GPU-based, GUI client, working with rendering server employing ray tracing based
global illumination. The client is designed to guarantee interactivity (namely 1/60sec response time) no matter how slow
the rendering server is. The client dynamically adjusts image resolution to match the server performance and complexity of
the rendered scene. When the scene is modified, the image may appear out of focus and noisy, depending on the machine
computational power, but usually is readable. With no interrupt from the client, the image is progressively improved with new
data from the server. The system expliots hybrid programming model — CPU for the server and GPU for the client.

Keywords:
1 INTRODUCTION

Many contemporary approaches to ray tracing based
global illumination rely on computational power of
graphics hardware, eg. [25]. Unfortunately, true,
unrestricted, global illumination algorithms, which
solve the Rendering Equation [9], are not well suited
for GPU architecture. Such implementation is possible,
as has been shown numerous times, but is severely
restricted when compared with classic multi-core CPU
solutions, since GPUs cannot process irregular data
structures effectively [7].

Our renderer, based on significantly modified Bidi-
rectional Path Tracing [22] and Photon Mapping [8]
with quasi-Monte-Carlo (QMC) approach [12] is de-
signed for flexibility of CPUs. It allows rendering, in
full spectrum, of arbitrary scene primitives, arbitrary
materials, textures, and more. The only restriction is, in
fact, a computer memory size. Such, traditionally CPU
based, algorithms are rather difficult to port to GPUs.
When, despite all problems, they are ported eventually,
performance benefits of GPUs over multicore CPUs are
often questionable [7].

This paper presents a different approach to obtain in-
teractivity. Pure ray tracing algorithms are based on
point sampling scene primitives, not using scan line ras-
terization at all. This gives much freedom in the way
how samples are chosen, however QMC ray tracing al-
gorithms produce a huge number of samples, which do
not fit in raster RGB grid. Converting these data to
3x8bit integer based RGB image at interactive frame

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG 2010 Communication Papers

271

Real-time global illumination, quasi-Monte Carlo ray tracing, hybrid CPU and GPU programming.

rates may be impossible even for multi-core CPUs, es-
pecially when dynamic image resolution has to be ad-
justed to the server rendering speed and scene com-
plexity, with some non-trivial post-processing added.
As we will show, conversion of ray tracing output to
a displayable image and many post-processing effects
can be expressed purely by rasterization operations, in
which GPUs excel. The main idea behind the presented
approach is therefore the usage of the best suitable pro-
cessor for a given algorithm, instead of porting every-
thing to GPUs.

2 RELATED WORK

The concept of ray tracing is not new [27]. Because it
can produce much better image than hardware rasteri-
zation, for several years there has been a lot of research
dedicated to run it in real time, despite its high compu-
tational cost [15]. Ray tracing based global illumina-
tion is even more expensive. However, for some time
now real time global illumination algorithms are being
developed also [23].

Just after the appearance of first programmable Di-
rectX 9 class graphics processors there were first at-
tempts to use it for ray tracing [17]. Nowadays, vast
majority of contemporary real time global illumination
algorithms are based on computational power of mod-
ern GPUs, e.g. [11, 25]. Unfortunately, they still put re-
strictions, often quite severe, on scene content (limited
range of material and geometry representation), scene
size, and illumination phenomena which are possible to
capture.

However, this is not the only way to obtain interactiv-
ity — nowadays multi-CPU Intel workstations can per-
form interactive ray tracing [16], yet true global illu-
mination is still unachievable. Interactivity can also be
obtained using clusters of machines with CPU render-
ing [2].

On the other hand, approach presented here is sub-
stantially different from those above — placing abso-

lutely no restrictions on scene and illumination effects.
It uses GPU just to display and postprocess image made
from CPU ray traced point samples, in resolution dy-
namically adjusted for real time performance.

3 REQUIRED SERVER OUTPUT

In general the server may run any point sampling algo-
rithm, but in this project we rely on QMC ray tracing.
The visualization client assumes the specific format of
the server’s output. In the following subsections we de-
scribe in detail the conditions which should be fulfilled
to make the client work properly. We also show how to
convert Photon Mapping to meet these assumptions.

The server should provide stream of color values
scattered uniformly at random locations in the screen
space. The uniformity of sampling ensures acceptable
image quality even at low sampling rates, which is typ-
ical due to high computational cost of ray tracing.

Additionally, the output stream should be generated
roughly uniformly in time. Otherwise the client might
fail to maintain interactive refresh rates.

3.1 Bidirectional Algorithms

Some most advanced ray tracing algorithms trace rays
in both directions — from the camera towards lights
(camera rays), and in the opposite one (light rays). Such
approaches produce two kind of samples, which must
be processed differently in order to produce displayable
images [22].

The client accepts two input streams. The format of
samples is identical in both streams: ([u,v], [x,y,z,w]),
where [u,v] are screen space coordinates, in [0,1]?
range, or, perhaps, with slight overscan to avoid post-
process filtering edge artifacts, x,y,z is sample color
value in CIE standard [6], and w is sample weight.

The two streams differ only in interpretation of sam-
ple density. The pixels of image from camera rays are
evaluated by averaging local samples using any suitable
filter — sum of weighted samples is divided by sum of
weights. On the other hand, pixels of light image are
formed using a suitable density estimation technique —
samples are filtered and summed, but not divided by
sum of weights. Therefore, a sample density affects
only quality of camera image, while it affects both qual-
ity and brightness of light image. The final, displayable,
image is a sum of both camera and light images, the lat-
ter divided by a number of traced paths.

Obviously, not all ray tracing algorithms need both
— camera and light — output streams. For example,
Path Tracing [9] and Photon Mapping [8] produce cam-
era samples only, while Particle Tracing [1] needs only
light image. Therefore, the visualization client em-
ploys an obvious optimization — it skips processing of a
stream given that no samples were generated into it.

WSCG 2010 Communication Papers 272

3.2 Coherent vs. Non-Coherent Rays

For some time now it is often claimed that it is benefical
to trace camera rays in a coherent way, because it can
significantly accelerate rendering [24, 2]. This is true,
but only for primary rays (sent directly from camera or
light source). Unfortunately, rays, which are scattered
through the scene, do not follow any coherent pattern
and caching does not help much. Since true global il-
lumination algorithms typically trace paths of several
rays, these algorithms do not benefit much from coher-
ent ray tracing.

What is more, coherent ray tracing tends to provide
new image data in tiles, which make progressive im-
provement of image quality difficult. On the other hand,
we have chosen to spread even primary rays as evenly
as possible, using carefully designed Niederreiter-Xing
QMC sequence [13] as the source of pseudorandom
numbers. Therefore, it can be expected that very few
traced rays provide reasonable estimate of colour of the
entire image, and subsequently traced rays improve im-
age quality evenly.

3.3 Full Spectral Rendering

Having in mind further processing, it may be useful
to output full spectral images [5, 18]. However, full
spectral representation requires huge amount of mem-
ory. For example, full HD spectral image in 16bit
floating precision and with 3nm wavelength sampling
from 400nm to 700nm needs as much as 1920 x 1080 x
100 x 2B ~ 400MB, while RGB one requires 1920 x
1080 x 3 X 2B =~ 12MB.

The standard CIE XYZ space seems to be the best
option instead, since an RGB space, which depends on
a particular display hardware, is not a plausible choice.
For this reason our client accepts CIE XYZ color sam-
ples. The presented server natively generates full spec-
tral data and converts it internally from full spectrum to
the three component color space.

3.4 One-pass Photon Mapping

Original Photon Mapping [8] is a two pass technique.
This obviously violates the requirement of steady sam-
ple stream — during photon tracing there are no samples
generated, causing high latency before image starts to
appear. We have found that Photon Mapping actually
can be done in one pass, with only minor loses in effi-
ciency compared to the original approach. The new al-
gorithm uses a linear function of number of image sam-
ples (n) to estimate minimal necessary photon count in
photon map to obtain image with quality determined by
n. Therefore, the photon map is no more static structure
— new photons are added while new image samples are
rendered.

Immediately two issues have to be solved — synchro-
nization of read and write accesses to the photon map

structure in parallel photon mapping and balancing kd-
tree. Synchronization can be performed with simple
read-write locks (classic readers-writers problem).

On the other hand, kd-tree balancing requires signif-
icant algorithm modification. We have chosen to bal-
ance the scene space instead of photons. The origi-
nal algorithm starts with bounding box of all photons
(unknown in our approach) and in each iteration places
splitting plane at a position such that half of the photons
remains on the one side of the plane. Otherwise, our al-
gorithm starts with bounding box of the entire scene,
and in each iteration it splits it in half across dimension
in which the box is the longest. Splitting stops when all
nodes contain less photons than a certain threshold (5-6
seems to be optimal) or a maximum recursion depth is
reached. Adding new photons require just splitting of
some of the nodes, where there happens to be too many
photons.

The idea is somehow similar to Irradiance Caching
algorithm [26]. Similarly as in this method, our ap-
proach starts with empty structure and fills it through
rendering. However, Irradiance Caching calculates ir-
radiance samples when they are needed by camera rays,
while our modified Photon Mapping traces photons in
a view independent manner.

Strictly speaking, the new approach does not generate
batches of samples in roughly uniform time. Due to kd-
tree lookup computational complexity as well as linear
dependence between number of photons in kd-tree and
number of samples computed, the average time to cal-
culate nth sample is the order of &'(logn), where n is the
sample number. Logarithm, however, changes slowly,
and the client is designed to adjust to slow changes of
rendering speed by modifying size of batch of samples.

4 CLIENT AND SERVER ALGO-
RITHMS

Finally, a GPU task is to convert point samples into
a raster image. The conversion is done with resolu-
tion dynamically adjusted to the number and variance
of point samples. In the image, a color conversion from
XYZ to RGB space of current monitor, together with
gamut mapping, tone mapping, gamma correction and
other post-processing effects are performed.

As a target platform we have chosen a GPU compat-
ible with OpenGL 3.x [19] and GLSL 1.5 [10]. Ma-
jor part of algorithm is coded as a GLSL shader, which
suits our needs very well. Recent technologies, such as
Nvidia CUDA, ATI Stream, or currently being devel-
oped OpenCL are not necessary for this kind of algo-
rithm.

The rendering task is split into two processes (or
threads in one process, if a single application is used as
a client and server) running in parallel: a server wrap-
per process and visualization process. The rendering

WSCG 2010 Communication Papers 273

process may be further split into independent threads,
if multicore CPUs or multiple CPU machines are used.

4.1 Server Wrapper Process

Ray tracing can produce virtually unlimited number of
samples, being limited only theoretically by machine
numerical precision (our implementation can generate
as many as 2% samples before sample locations even-
tually start overlap). Therefore, ray tracing process is
reset only immediately after user input, which modifies
the scene. Otherwise, it runs indefinitely, progressively
improving image quality.

The server wrapper runs on a separate thread, pro-
cessing commands. The wrapper recognizes three com-
mands: term, abort, and render. The term command
causes wrapper to exit its command loop, and is used
to terminate the application. The abort commad aborts
current rendering, and is used to reset server to the new
user input (for example, camera position change).

The render command orders server to perform ren-
dering. The rendering is aborted when either abort or
term command is issued. Maximum time to abort ren-
dering is a time necessary to generate just one sample.
Any algorithm capable of generating the specified out-
put (see Section 3) can be used. In our server imple-
mentation, rendering is performed in parallel on multi-
core CPUs.

The wrapper allows registering asynchronous finish
event. This event is generated when rendering is fin-
ished (either a prespecified number of samples was gen-
erated or abort was issued). The event can be used
to synchronize client with server. Apart from send-
ing asynchronous messages, the wrapper can be queried
synchronically for already rendered samples. Since this
query just copies the data to the provided buffer, server
blocking due to synchronization takes little time.

4.2 Client Process

Client is responsible for visualizing samples generated
by server, and additionally it processes GUI window
system messages. Client stores its internal data in the
four screen-aligned textures, in the IEEE 32bit float-
ing point format. A 4-channel [X,Y,Z, W] texture and a
single component variance [Var] texture are stored for
camera and light input streams. Therefore, client stores
40 bytes of data per screen pixel, apart from standard in-
teger front and back buffers. The details of client main
loop are presented in Figure 1.

When all GUI messages are processed, client raster-
izes new samples, generated by the server, into its in-
ternal textures. This task is performed by the render-
to-texture feature of Framebuffer Object (FBO). The
client sets an empty vertex program, which only passes
through data, and a geometry program which is equiva-
lent to rendering textured point sprites fixed function-
ality. The input is a stream of two elements — two

—> process input —

rasterize samples
repaint back buffer

swap buffers with vsync

get new samples
'

Figure 1: Main loop of visualization client process.

component screen position (u,v) and four component
color (x,y,z,w). Input is placed in Vertex Buffer Object
(VBO), and is then rendered with GL ’render points’
command. Points are rendered in blending mode set to
perform addition, ensuring that all samples add up in-
stead of overwriting previous texture content.

Additional input is a monochromatic HDR filter tex-
ture, used to draw point sprites. The texture is normal-
ized (all the texel values add up to one) and the texture
border value is set to zero. The filter texture is applied
without rescaling and with bilinear filtering, thus pre-
serving filter normalization, which is crucial for algo-
rithm correctness. We have found that 5x5 texel win-
dowed Gaussian blur gives good results.

The rendering is performed in two passes. First,
color textures are updated. In the second pass, us-
ing already up-to-date color textures, variance textures
are updated. In both passes, the same samples are
rendered. The variance is updated using the formula
Vi =V,_1+Y;(Yi—Y;)? for jth batch of i samples.
The formula does not give the best theoretically pos-
sible results, since the mean Y is approximated using
only already evaluated samples. The alternative for-
mula V; = ¥2; ~ ¥}, Y2; = Y2;_; + ¥, Y7, which re-
quires storing sum of squares (¥Y2) instead of variance,
should be avoided due to poor numerical stability (even
negative variance results are possible). In both formulas
the division by n — 1 factor, where 7 is the total number
of samples in a given stream, is omitted. This division is
performed when variance data is read from its texture.

The sample rasterization algorithm works as follows:

1. The content of client sample buffer (pairs
[u,v], [x,y,z,w]) is loaded into VBO, interpreted as
2D point coordinates and 4D color. There is one
buffer for both streams. Samples which come from
light stream are encoded with negative weights.

WSCG 2010 Communication Papers

Stream separation is performed further in the
fragment program.

2. Monochromatic float texture with filter image is se-
lected and point draw command is issued. The tex-
ture is used as a texture sprite for emulated point
sprites. Fragment program performs multiplication
of "color’ attribute by the texture value [X,Y,Z, |W|].
The output is saved to the color texture of camera
stream if W > 0 or light stream otherwise.

3. After rasterization, textures are detached from FBO,
GPU MIP-map build command is issued.

4. Texture LoDs (used by ’repaint back buffer’ pro-
cessing) for both streams are evaluated as LoD; =
log,(P/S;)), where P is number of pixels on the
screen and S; is the number of samples from ith
stream computed so forth.

5. Second draw is issued, with variance textures as out-
put this time. The variance is evaluated only for
luminance (Y) component, since three component
variance typically do not help much and substan-
tially complicates algorithm. Variance output for
each stream is (Ya, —Y)2, where Yave is read from
previously generated color texture, and Y is lumi-
nance of currently processed sample, multiplied by
filter texture.

6. Similarly to color textures, variance textures are de-
tached from FBO, GPU MIP-map build command is
issued.

In order to repaint back buffer, client draws a screen-
sized quad, using the four textures as an input. The
screen is filled with custom fragment program. The
program accepts following control parameters: level of
detail (LoD) for both streams, light image weight (Lw),
image brightness (B), contrast (C), gamma (G), color
profile matrix (P), and variance masking strength (Vm).
Level of detail (LoD) is already evaluated during ras-
terization. Now, the LoD values are used by fragment
program to blur texture data if not enough samples are
computed. Light image weight is got from the server
along with samples, and its value is equal to the num-
ber of paths traced from light sources. This parameter
is used to scale light image texture appropriately, such
that the texture can be summed with camera image tex-
ture.

Image brightness, contrast, gamma and color profile
are set by the user, and their values adjust the image ap-
pearance. Additionally, the visualization client is able
to add a glare effect as an additional post-process, im-
plemented as a convolution with a HDR glare texture,
generated according to [20]. However, sufficiently large
glare filters are far beyond computational power of con-
temporary GPUs for real-time screen refresh rate. Since

these parameters are defined only for client, and do not
affect server rendering at all, their values can be mod-
ified freely without resetting the server rendering pro-
cess.

Variance of samples is estimated only for luminance
(CIE Y channel), using the standard variance estima-
tor (V ~ v L (E(Y)—Y;), where N is the number
of samples, Y; are luminance values, and E(Y) is the
luminance value estimated from samples computed so
far. The client is able to increase blurriness according to
the local changes in estimated variance, hence slightly
masking noise produced by stochastic ray tracing. The
noise to blurriness ratio can be controlled by Vm pa-
rameter.

The blurriness is created by low pass filter or bilat-
eral filtering [14] guided by variance estimation, which
potentially can be much better in preserving image fea-
tures than a simple low pass filter. However, bilateral
filtering works correctly only if noise is less intense
than image features. When image is heavily undersam-
pled, this assumption may not be satisfied, and a low
pass filter remains the only viable option. For exam-
ple, in Figure 3, the two leftmost images cannot be en-
chanced by bilateral filtering. On the other hand, this
technique does a good job improving the quality of mid-
dle image from Figure 5.

Unfortunately, the noise masking feature can hide
only the random error which is the result of variance.
It cannot hide (in fact, it cannot even detect) other kind
of error resulting from bias. The variance is the only
source of error in Bidirectional Path Tracing, while
Photon Mapping error is dominated by bias.

The algorithm processes its input as follows:

1. The program reads data from both variance
maps, using requested LoDs through hardware
MIP-mapping.

2. LoDs for both streams are evaluated according to
initial LoDs, the variance and Vm, for ith stream:
LoD < LoD;+ Vmlog,([Var]).

3. [X,Y,Z,W] textures of both streams are sampled,
this time using just evaluated LoD’ and custom fil-
tering technique (hardware MIP-mapping produces
very poor results, see section 4.3 for more detailed
discussion).

4. Texture samples for both streams are normalized,
ie. [X,Y,Z,W]— [X/W,Y/W,Z/W,1] (if W =0,
then sample is considered to be [0,0,0,1]). Then,
light texture sample, divided by Lw, is added to cam-
era texture sample, producing single result for fur-
ther processing.

5. Optionally, glare effect is applied here. Our glare
texture is generated to be applied in XYZ color
space instead of RGB one.

WSCG 2010 Communication Papers

275

6. Tone mapping of luminance (Y) is performed, us-
ing very simple yet effective procedure: Y’ + 1 —
exp(—(B*Y)C), while X and Z components are
scaled by Y /Y’ ratio. If ¥ = 0 it means that image is
black at that point and X'Y'Z" + (0,0,0) is used.

7. Resulting X'Y’Z" is multiplied by matrix P, and a
basic gamut mapping is performed. We do not use
elaborated algorithms here — simple desaturation of
out-of-gamut colors, just to keep mapped luminance
unmodified, works reasonably well. Now output is
in RGB format, normalized to [0, 1] range.

8. Finally, gamma correction using G is performed.

Next, client swaps front and back buffers, in syn-
chronization with screen refresh period. This guaran-
tees constant frame rate (typically 60Hz for common
LCDs).! Finally, client reads new samples from the
server. The reading is performed with synchronization,
blocking the server for a moment. However, client does
not display samples immediately, blocking server just
for copying this portion of data to its internal buffer for
later processing.

4.3 MIP-mapping Issues

Images produced by rasterizing ray traced samples are
created as screen-sized textures. Should enough sam-
ples be generated, these images could be used imme-
diately without any resampling. Unfortunately, con-
temporary CPUs are far too slow to generate at least
#screen_pixels of such samples in, say, 1,/30sec, which
is required for real time performance. Therefore, some
kind of blurring texture data, according to fraction of
necessary samples generated and the local sample vari-
ance, have to be performed.

While MIP-mapping is reasonably good in filtering
out texture details which would otherwise cause alias-
ing, it cannot be used reliably to blur the texture im-
age. Blurring by using LoD bias parameter of texture
sampling function produces extremely conspicuous and
distracting square pattern, with severe bilinear filtering
artifacts (see Figure 2 for details). This is not surpris-
ing, since a GPU uses box filter to generate MIP-maps
and linear interpolation between texels to evaluate tex-
ture value at sampled point. Moreover, MIP-mapping
with polynomial reconstruction instead of linear one
fails as well. We have used custom texture sampling
with Catmull-Rom spline interpolation for this purpose.

GPU class must be properly selected for a monitor resolution. If GPU
is too poor, interactivity is not obtained. We found that best contem-
porary single processor GPU (Nvidia GTX 285, at the time of testing)
is enough for refresh rate of 30Hz in full HD. Such issue, however,
does not slow down the server — the same number of samples is still
rendered in the same amount of time, they are just displayed more
rarely, in larger batches.

Visually good results can be obtained by using Gaus-
sian blur:

XY Tigij(u,v)
I(M,V) - Zingij(u7V)

The 1 is texture sample, u,v is the sample position, T'
are texel values, and g;; = exp(—Gdl-z]») is the filter ker-
nel, with ¢ controlling blurriness, and d;; is the dis-
tance between the u,v position and texel 7;;. Unfortu-
nately, direct implementation of Gaussian blur requires
sampling an entire texture for evaluation of any texture
sample, which is far beyond computational capabilities
of contemporary GPUs. The weight of Gaussian filter,
however, quickly drops to zero with increasing distance
from evaluated sample. Truncating the filter to a fixed
size window containing limited number of samples is a
commonly used practice.

The simple truncation is not always optimal, since
quality of truncated Gaussian filter depends strongly on
the o parameter — to obtain similar quality with dif-
ferent sigmas, an ¢(c~!) number of texels have to be
summed. That is, if a Gaussian filter is truncated too
much, it starts to resemble a box filter. In our case, o
varies substantially, and therefore more advanced tech-
nique should be used. We may notice that decreasing a
resolution of the original image twice, and increasing &
four times, approximates the original filter on the orig-
inal image. Eventually, the following algorithm is em-
ployed: initial MIP-map level is set to zero, and while
o is smaller than a threshold ¢, the ¢ is multiplied by
four, and MIP-map level is increased by one.

The threshold ¢ and number of summed texels have
been adjusted empirically to balance the blur quality
and computational cost. First we have found that trun-
cation range R of roughly 2.5 is a maximum value
which ensures reasonable performance. For such trun-
cation, setting t ~ 1 is reasonable. Additionally, it is
better to use a product of g and smooth windowing
function w instead of original g if truncation is used.
The w = 1 — smoothstep(0,R,d)E, where E controls
how quickly w drops to zero with distance, works quite
well. The value E = 8 yields good results.

What is more, the transition between MIP-map levels
is noticeable and decreases image quality. This is espe-
cially distracting if ¢ varies across the image, which is
the case because blur is adjusted to the locally estimated
variance. Therefore, similarly as in trilinear filtering,
the Gaussian blur is performed on two most appropri-
ate MIP-map levels, and the results are linearly inter-
polated, avoiding sudden pops when MIP-map level
changes. Therefore, truncation to range 2.5 cause blur-
ring to use 2[(2-2.5)?] = 50 texture fetches on average,
which is costly, yet acceptable on contemporary GPUs.

The sophisticated filtering scheme is used only for
[X,Y,Z, W] textures. Variance [Var] textures, not being
displayed directly, do not have to be sampled with any-

WSCG 2010 Communication Papers

thing more complicated that basic MIP-mapping. This
saves some computational power of a GPU, yet does
not produce noticeable visual artifacts.

S RESULTS

The quality of rendered images obviously mostly de-
pends on the rendering algorithm used. We have tested
the visualization client in cooperation with Path Trac-
ing (Figure 3) and Photon Mapping (Figure 4). Both
figures present initial image rendered after 1/30sec and
show the speed of image quality improvement. All the
tests were performed on Intel Core i7 CPU and Nvidia
9800 GT GPU, in 512x512 resolution.

The client is responsible merely for visualization and
postprocessing, assuming that it is provided with stream
of point samples, scattered roughly evenly through en-
tire image. The only algorithm for image quality im-
provement is noise reduction based on variance analy-
sis. The error due to variance (seen as high frequency
noise) is much more prominent in results of Path Trac-
ing than in Photon Mapping, so the noise reduction has
been tested on the first algorithm. The results are pre-
sented in Figure 5.

When multiple processors are used in the same ap-
plication, good load balancing is important. While it
is well known how to load balance ray tracing work be-
tween multiple CPUs, in our application it is impossible
to balance loads between visualization client and ray
tracing server. The subtasks performed by CPUs and
GPU are substantially different and suited for different
architectures of these two processors, so work cannot
be moved to the less busy unit as needed. In fact, on
contemporary machines rendering server is always at
full load, and GPU can be not fully utilized, especially
when low resolution images are displayed. However, it
is good to have some reserve in GPU power to ensure
real time client response.

6 CONCLUSION

We have presented an interactive GUI visualization
client for displaying ray traced images online, written
mainly in GLSL. Apart from visualization, the client
can hide noise of input data by means of variance anal-
ysis. Additionally, the client can apply glare effect as
a postprocessing technique, which is performed quite
efficiently on GPU.

The client is able to obtain interactivity regardless
of the ray tracing speed. However, the price to pay is
blurriness of images rendered at interactive rate. Nev-
ertheless, the image quality improves quickly with time
whenever rendered scene is not changed.

Our approach scales well with increasing number of
CPU cores for ray-tracing, as well as with increas-
ing number of shader processors on a GPU. Moreover,
the program never reads results from the GPU, so it
does not cause synchronization bottlenecks, and should

Figure 2: Comparison of MIP-mapping and custom filtering based blur quality. From left: reference image,
hardware mipmapping, custom reconstruction based on Catmull-Rom polynomials, windowed Gaussian blur.

Figure 3: Results of Path Tracing (from left: after 1/30sec, 1/3sec, 3sec, 30sec). The Path Tracing error appears as
noise, blur in the first two images is caused by undersampling (far less than 1 sample per pixel were evaluated).

Figure 4: Results of Photon Mapping (from left: after 1/30sec, 1/3sec, 3sec, 30sec). Photon Mapping does not
produce much noise, but due to overhead caused by photon tracing and final gathering, less image samples than
with Path Tracing were computed, which cause some blurriness.

be friendly with multi-GPU technologies like SLI or
Crossfire.

Additionally, we have modified the Photon Mapping
algorithm to be a one-pass technique, with the pho-
ton map being updated interactively during the whole
rendering process. This enables using Photon Map-
ping with the presented visualization client, which then
could ensure progressive image quality improvement,
without any latencies resulting from construction of
photon map structure.

Our visualization client has a lot of potential for fu-
ture upgrades. The adaptive filtering technique [21]
seems to be good approach to significantly reduce im-
age noise on the side of the visualization client. More-
over the client can be extended to support frameless
rendering [3, 4]. This very interesting and promising
technique can improve image quality substantially us-

WSCG 2010 Communication Papers 277

ing samples from previous frames, provided that subse-
quent images do not differ too much.

In future we plan to introduce to our client stereo ca-
pability, using OpenGL quad-buffered stereo technol-
ogy. Ray tracing algorithms can easily be converted
to render images from two cameras at once, and a lot
of them can do this even more efficiently than render-
ing two images sequentially (for example, Photon Map-
ping can employ one photon map for both cameras, and
similarly, Bidirectional Path Tracing can generate one
light subpath for two camera subpaths). Unfortunately,
stereo rendering doubles the load on the GPU shaders,
as well as on the GPU memory. However, it seems that
interactive stereo can be obtained by slight decrease of
custom texture filtering quality.

Figure 5: Noise reduction based on variance analysis of Path Tracing image (from left: no noise reduction, with
noise reduction, variance image). The difference is noticeable especially in shadowed area beneath the sphere and
on the indirectly illuminated ceiling.

ACKNOWLEDGEMENTS

Support of this

work by AGH Grant number

11.11.120.865 is kindly acknowledged.

REFERENCES

(1]

[2]

[3]

[4]

(3]

(6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

James Arvo and David Kirk. Particle Transport and Image Syn-
thesis. In SIGGRAPH 1990 Proceedings, pages 63—66, New
York, NY, USA, 1990.

Carsten Benthin. Realtime Ray Tracing on Current CPU Ar-
chitectures. PhD thesis, Saarland University, Saarbriicken, Ger-
many, 2006.

Gary Bishop, Henry Fuchs, Leonard McMillan, and Ellen Scher
Zagier. Frameless rendering: Double buffering considered
harmful. In SIGGRAPH 1994 Proceedings, volume 28, pages
175-176, New York, NY, USA, 1994.

Abhinav Dayal, Cliff Woolley, Benjamin Watson, and David
Luebke. Adaptive Frameless Rendering. In Rendering Tech-
niques 2005, pages 265-275, 2005.

Kate Devlin, Alan Chalmers, Alexander Wilkie, and Werner
Purgathofer. Tone reproduction and physically based spectral
rendering. In State of the Art Reports, Eurographics 2002,
pages 101-123, September 2002.

Bruce Fraser, Chris Murphy, and Fred Bunting. Real World
Color Management, second edition. Peachpit Press, Berkeley,
CA, USA, 2005.

Anwar Ghuloum. The Problem(s) with GPGPU. http://blogs.
intel.com/research/2007/10/the_problem_with_gpgpu.php,
2007.

Henrik Wann Jensen. Realistic image synthesis using photon
mapping. A. K. Peters, Ltd., Natick, MA, USA, 2001.

James T. Kajiya. The rendering equation. In SIGGRAPH 1986
Proceedings, pages 143-150, New York, NY, USA, 1986.

John Kessenich, Dave Baldwin, and Randi Rost. The OpenGL
Shading Language, version 1.50, 2009.

Morgan McGuire and David Luebke. Hardware-accelerated
global illumination by image space photon mapping. In Pro-
ceedings of the 2009 ACM SIGGRAPH/EuroGraphics confer-
ence on High Perf. Graphics, New York, NY, USA, 2009.

Harald Niederreiter. Random Number Generation and Quasi-
Monte Carlo Methods. Society for Industrial and Applied Math-
ematics, Philadelphia, USA, 1992.

Harald Niederreiter and Chaoping Xing. Low-discrepancy se-
quences and global function fields with many rational places.
Finite Fields and Their Applications, 2(3):241-273, jul 1996.

WSCG 2010 Communication Papers

[14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Sylvain Paris, Pierre Kornprobst, Jack Tumblin, and Frédo Du-
rand. A gentle introduction to bilateral filtering and its applica-
tions. Siggraph 2008 course notes, 2008.

Steven Parker, William Martin, Peter-Pike Sloan, Peter Shirley,
Brian Smits, and Charles Hansen. Interactive Ray Tracing. In
Symposium on Interactive 3D Graphics, pages 119-126, 1999.

Daniel Pohl. Light It Up! Quake Wars Gets Ray Traced. Intel
Visual Adrenaline, 2:34-39, 2009.

Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Han-
rahan. Ray tracing on programmable graphics hardware. ACM
Transactions on Graphics, 21(3):703-712, 2002.

Michal Radziszewski, Krzysztof Boryczko, and Witold Alda.
An Improved Technique for Full Spectral Rendering. Journal
of WSCG, 17(1):9-16, 2009.

Mark Segal and Kurt Akeley. The OpenGL Graphics System: A
Specification, version 3.2, 2009.

Greg Spencer, Peter Shirley, Kurt Zimmerman, and Donald P.
Greenberg. Physically-based glare effects for digital images. In
SIGGRAPH 1995 Proceedings, pages 325-334, New York, NY,
USA, 1995. ACM.

Frank Suykens and Yves D. Willems. Adaptive Filtering for
Progressive Monte Carlo Image Rendering. In Proceedings of
the 8th International Conference in Central Europe on Com-
puter Graphics, Visualization and Interactive Digital Media
(WSCG) 2000, pages 220-227, 2000.

Eric Veach. Robust Monte Carlo Methods for Light Transport
Simulation. PhD thesis, Stanford University, Stanford, CA,
USA, 1997.

Ingo Wald, Carsten Benthin, and Philipp Slusallek. Interactive
Global Illumination Using Fast Ray Tracing. In Proceedings of
the 13th Eurographics Workshop on Rendering, pages 15-24,
June 2002.

Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus
Wagner. Interactive rendering with coherent ray tracing. In
Computer Graphics Forum, pages 153-164, 2001.

Rui Wang, Rui Wang, Kun Zhou, Minghao Pan, and Hujun Bao.
An efficient gpu-based approach for interactive global illumina-
tion. ACM Transactions on Graphics, 28(3):1-8, 2009.
Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear.
A ray tracing solution for diffuse interreflection. In SSIGGRAPH
1988 Proceedings, pages 85-92, New York, NY, USA, 1988.
Turner Whitted. An Improved Illumination Model for Shaded
Display. Communications of the ACM, 23(6):343-349, 1980.

	!_Short-papers.pdf
	F97-full.pdf

