
Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee. 

 
Fitting freeform multi-parameter shapes to 

3D data points – A case study 
 

J.S.M. Vergeest, Y.Song 

Delft University of Technology 
Landbergstraat 15, 
NL-2628 CE Delft 
The Netherlands 

j.s.m.vergeest@tudelft.nl  

 

 

ABSTRACT 
We present an approach of geometric fitting of freeform shapes to 3D data points, where the size of the fitting 
problem is relatively large. The shapes studied represent ship propeller blades of dimension up to 3m, with preci-
sion requirements of few mm. Moreover, the shapes are freeform and designed using a geometric model depend-
ent on hundreds of numerical parameters. For the ship industry it is crucial to optimally deal with the shape pa-
rameters in order to judge whether or not a particular manufactured part fits within the tolerances. We have de-
veloped a method to evaluate the shapes numerically and we report on the approach we took. The sensitivity of a 
deviation objective function with respect to critical design parameters could be acquired. Also some procedures 
for automated optimization were explored. 
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1. INTRODUCTION 
Fitting of geometric shapes to predefined data points 
can be regarded as a special case of function fitting, 
where the function specifies a surface of dimensional-
ity 2 in three-dimensional (3D) space. Shape fitting is 
a well developed technique applied in surface recon-
struction for reverse engineering, or as part of a shape 
feature recognition process, for example [Chivate 
1993, Bardinet 1998, Thompson 1999, Li 2000, Piegl 
2001]. In most applications, the shape is modeled as 
function of shape parameters, for example when the 
shape is represented by B-spline functions (then the 
parameters are the control point coordinates), or as a 
form feature. In the latter case the parameters are 
called design parameters, since the parameters reflect 
a quantity which is relevant to the particular applica-
tion or purpose of the shape.  

Although designing new shapes starting from 3D 
range data is getting technically feasible [Vergeest 

2003], the major purpose of 3D scanning and meas-
urement is, historically, the verification of manufac-
tured parts against design requirements. Reverse en-
gineering of shape is mostly done in order to calcu-
late and present spatial deviations between a physical 
object and a nominal geometric model of the object’s 
surface. 

In this paper we explore some ways to evaluate rela-
tively complex shapes of ship propeller blades. These 
shapes have large dimensions (up to 3 meter each) 
and should meet high requirements of surface 
smoothness and geometric precision. The formal re-
quirements of the shapes is evaluated according to 
quantities defined in ISO standard ISO 484 of manu-
facturing tolerances [ISO 1981]. To evaluate the 
shape of a propeller blade against the standard it is 
sufficient, in industry, to measure a relatively small 
number (about 100) of surface points. It is obvious 
that practicing the right methodology for shape 
evaluation is critical, since the rejection of a manu-
factured propeller would be extremely costly. In sec-
tion 2 we describe the nominal model of the shape 
and the definition of the design parameters, and the 
general process of shape evaluation. In section 3 we 
investigate the sensitivity of the geometric deviation 
function on critical shape parameters. In section 4 we 
propose a semi-automatic method to determine 
whether or not a shape conforms to the ISO require-
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ments. An outlook to application of the method to 
larger number of parameters is given in section 5. 

2. DESIGN AND MEASUREMENT OF 
THE GEOMETRIC SHAPES 
The purpose of a propeller is to deliver propulsion to 
a ship by pressing water backwards with its rotating 
blades. The shape of a blade is designed to move 
water particles into the direction of its axis of rota-
tion. The distance that a water particle would theo-
retically be moved during one full revolution of the 
propeller is called the pitch of the blade. Once the 
requirements of the propeller are determined by the 
customer, the designer creates the shapes. The actual 
production is achieved by filling molds with a copper 
alloy. The inner shape of the molds is not exactly 
equal to the shape of the blade, since there should be 
compensation for shrinkage of the metal after cooling 
down. In this paper we will only consider the nominal 
model of the shape, as designed, and the shape of a 
physical propeller blade after its manufacturing (Fig-
ure 1). 

Figure 1. Example of a propeller blade. The marks 
on the surface indicate the locations of the verifi-
cation measurements. 

The model of the shape B is constructed from m pro-
file curves G’1, ..., G’m, where G’ i defines the inter-
section of B with a cylinder of radius r i with axis 
equal to the rotation axis of the propeller. However, 
G’ i is specified by the designer as the development Gi 
of the closed curve onto the xy-plane. Profile Gi is 
specified by n points gij with coordinates (xij ,, yij  ), 
i=1, ... ,m, j=1, ..., n. Here we assume that n is the 
same for all profiles. To each profile Gi the following 
quantities are assigned, which will determine the 
mapping of Gi into �3: 

• r i is the radius of the cylinder onto which the 
points gij, j=1,...,n will be placed. 

• φi is the pitch angle designed for the profile. The 
pitch angle determines the pitch distance (de-
fined below). A pitch angle can be designed (im-

plemented) by rotating the profile in the xy-plane 
by that angle. 

• pi is the pitch distance, defined as the theoretical 
amount of shift due to a screw revolution of 360 
degrees, or pi=2πr i tg φi. and hence φi = atan 
pi/2π r i. 

• σi is the skew distance designed for the profile. It 
is implemented by a shift of the profile in the 
surface of the cylinder in a direction perpendicu-
lar to its axis. 

• ρi is the rake distance designed for the profile. It 
is implemented by a shift of the profile in the 
surface of the cylinder into a direction parallel to 
its axis. 

Examples of a profile curve is shown in figure 2. 

Example profile in 2D
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Figure 2. One of the profiles Gi of an example 
blade design. 

The profiles Gi are mapped into space by applying 
the transformation Ti to each of its points gij as fol-
lows: 

g' ij = Ti (gij) = Ti(xij, yij),  (1) 

such that 
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From the points g'ij the mapped profiles G'i can be 
derived for i=1,...,m and from these the nominal blade 
design B. Figure 3 shows the points g'ij of an example 
blade design with m=25. 

Equation (1) implies the coordinate system conven-
tion used, which differs from the one depicted in 
[ISO 1999]. 

From (1) we see that in 3D points g’ ij are located on 
cylinders with axes in the z-axis of the coordinate 
system. 
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Figure 3. Profile points positioned in 3D space 
using equation (1). 

In the simplest case, if rake, skew and pitch are van-
ishing, a profile point in the origin of the 2D plane is 
placed in 3D at the intersection of the y-axis with the 
cylinder. Points with positive x-values in the 2D 
plane will be positioned with negative x-coordinates 
in 3D, since fij is getting negative. Points with posi-
tive y in 2D will have lower z-coordinates in 3D. 
Now, if the pitch angle (or pitch distance) is set to a 
positive value, points in the profile having large x-
values in the 2D plane move up into positive z-
direction in 3D. In other words, due to increasing 
pitch the profile is rotated in 3D about the y-axis in 
the positive sense, i.e. counterclockwise, and thus 
influences the shape of the propeller. If the propeller 
is operated and be rotated clockwise about the z-axis, 
the profile would then be rotated clockwise about the 
z-axis and the water be pressed into the positive z-
direction and thus the ship be propelled into the nega-
tive z-direction. Then the water is pushed by the pres-
sure side, as it should for forward propulsion of the 
ship. The shape of the blade resulting from equation 
(1), see Fig. 4, should be interpreted in 3D relative to 
the ship as follows. The forward direction of the ship 
is in the negative z-direction, the y-direction is verti-
cally upward and the x-direction is horizontal to the 
right as seen from an observer on the ship looking 
forward. The blade is orientated such that the line 
from axis of rotation toward the tip of the blade is 
roughly into the positive y-direction. As seen from 
behind the ship the blade is pointing upward and its 
pressure surface is visible. Due to forward operation 
the tip of the blade has a speed into the positive x-
direction. The profile point located nearest to the 
origin of the 2D plane (as in Fig. 2) will in 3D have 
the largest x-value and will move into the positive x-
direction and therefore is a point on the so-called 
leading edge of the blade. The concave part of the 
profile (the lower part in Figure 2) is facing the posi-
tive z-direction in 3D and is hence in the pressure 

surface. A drop of water near the pressure surface of 
the blade will observe the surface moving toward it 
and receive a momentum into the positive z-direction. 

If the pitch would increase then the shape in Fig. 5 
would be further twisted about y. If the rake of a par-
ticular profile gets positive, then in 3D the profile 
shifts into the positive z-direction, according to equa-
tion (1). When its skew increases, the profile moves 
into the positive x-direction in 3D. Obviously, rake 
and skew have a smaller effect on the performance of 
the screw than has the pitch. 

 

 

Figure 4. Shape of B in 3D space after applying 
equation (1) to the profile points. 

The model depicted in Fig. 4 includes the foot of the 
blade, which was not represented by the profile 
points. We show this picture to provide a clear im-
pression of the positioning of the blade relative to the 
propeller and the ship. However, from this point on, 
we will refer to a simpler shape design directly ob-
tained from the profile points, see Fig. 5. This shape 
is used for the computation of distances between 
measured points on a surface and the designed sur-
face later. The shape consists of two B-spline sur-
faces, one representing ∂Bp (the pressure surface as 
designed) and the other ∂Bs (the suction surface) . 
The pressure surface in Fig. 5 was obtained from the 
designed profile points g’ ij as follows. The profile 
points form two networks of m×n = 25×19 points 
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each, one for the pressure surface, one for the suction 
surface. Using a tensor-product B-spline approxima-
tion method [VNI 2006] we determined the B-spline 
surface of polynomial degree 3 in both directions, 
having 15 control points in each direction approxi-
mating the profile point network of the pressure sur-
face in a least-squares sense. The suction surface ∂Bs 
was obtained similarly. 

 

Figure 5. Shape of B consisting of two B-spline 
surfaces fitted to the profile points in 3D. 

Once a blade B has been manufactured it is inspected 
as to verify whether its shape fits within the toler-
ances supplied by the customer. The current proce-
dure at the Wärtsilä company includes the digitization 
of the shape of physical part B. Typically, about 100 
data points are acquired of each of the two surfaces, 
∂Bp and ∂Bs. Let us denote these two point sets by pi 
and si, where pi, si ∈ �3 and i is an index from 1 to 
the number of points in the set. The locations of the 
measured points pi and si relative to the designed 
shapes are shown in Fig. 6 for the example model. 
Suppose that the data points pi are all in front of the 
designed surface ∂Bp when viewed from an angle as 
in the upper picture of Fig. 6. Then, in case the devia-
tion would exceed a tolerance it could be resolved by 
machining or polishing material away from the pres-
sure side of B. However, when the data point would 
be behind the designed surface, there is a risk that B 
is too thin, and there were no correction possible by 
machining. It is therefore the general policy to pro-
duce B for which piz < p’ iz for all i, where piz is the z-
coordinate of pi and p’ iz is the z-coordinate of p’ i , the 
point in ∂Bp closest to pi. Similarly, siz > s’iz for all si 
and s’i is the point in ∂Bs nearest to si. In the particu-
lar example shown in Fig. 6 the z-residuals have all 
have that property.  

 

 

Figure 6. B-spline surface representing the pres-
sure surface and points measured on it (top); same 
picture of the suction surface (bottom). 

In Fig. 7 the distribution z-differences Dz, calculated 
as  piz − p’ iz and siz − s’iz ,have been plotted. The Dz 
against the radius of the data points, i.e. their distance 
from the z-axis, are shown in Figure 8. The data 
points appear in a vertical linear pattern, due to the 
fact that the surface was measured at about 5 posi-
tions on a profile of a particular cylindrical radius r. 

3. SENSITIVITY ANALYSIS OF 
SHAPE PARAMETERS 
Instead of correcting physical part B itself we can (at 
least theoretically) also modify the design B as to 
fulfill the measurement conditions piz − p’ iz > 0 and siz 
− s’iz. < 0 (if necessary) and/or to decrease the mean 
error of the physical part against the modified nomi-
nal design model. 
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Figure 7. Distribution of signed Z-residuals of the 

measured data points to the nominal surface of 
the blade. 

 

In doing so, the negotiation between customer and 
supplier is made in terms of design parameters, rather 
than in terms of spatial deviations of measured points 
from the nominal shape. We wish to gain understand-
ing of the effect on the shape due to modification of 
shape parameters. The parameters which are the least 
critical to the performance of a propeller are the rake 
parameters ρi. Suppose that the design fulfills all re-
quirements is still not optimal. Then modification of 
rake could improve the shape while remaining meet-
ing the requirements. This offers an opportunity to 
optimize a manufacturing condition 
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Figure 8. Z-residuals of the measured data points 
versus their radius. 

 From equation (1) it follows that if the rake ρi  of 
some profile(s) Gi is increased by a positive amount a 
then the values p’ iz and s’iz will increase by an amount 
between 0 and a, depending on the location of the 
surface point relative to the changed profiles. In 
terms of the two plots in Fig. 8 it means that points in 
both plots will move down when a is increased and 
will move up when decreased From Fig. 8 it can be 
reasoned that at r near 3500mm the rake should not 
be increased since it would make some of the Dzi for 
the suction side negative and thus bring some data 
points inside the blade’s volume. A decrease of the 
rake would be admitted. The largest deviation be-
tween data points and suction surface occurs at r ≈ 
3000mm, so an increase of rake in that region might 
improve the shape fit in a least-squares sense. 

We performed a numerical sampling of rake values 
ρ’ i around the design values ρi by setting: 

ρ’ i = ρi + A1  for  1 ≤ i < 5 

ρ’ i = ρi + A2  for  5 ≤ i < 9           (2) 

ρ’ i = ρi + A1  for  9 ≤ i < 13, 

where we used step sizes of 5mm for A1, A2 and A3.  
The index i=1 corresponds to the data points on the 
profile with largest radius, r1 = 3650mm, and the 
highest, i = m = 25, for this particular blade design, 
the radius is r25 = 730mm. The A-parameters influ-
ence the rake values and thus the position of the de-
sign points g' ij as follows. A1 affects points in the 
region of approximately 3600mm < r < 3650mm, A2 
in the region 3100mm < r < 3600 and A3 in the region 
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Table 1. Deviation of data points from the shape for three configurations. 

Measure Initial design A1,2,3 = (-20, -5, +5)  Free ρρρρ0 ... ρρρρ11 

Dist. sq. P (mm2) 15609.3 13644.7 16059.2 

Dist. sq. z P (mm2) 13103.8 10991.3 13565.8 

Av. dist. P. (mm) 12.5 11.9 12.9 

Max. dist. P (mm) 26.9 21.1 27.2 

Dist. sq. S (mm2) 18442.2 19684.8 15885.3 

Dist. sq. z S (mm2) 12391.2 13897.0 11223.5 

Av. dist. S (mm) 13.8 14.5 12.7 

Max. dist. S (mm) 27.4 27.0 25.9 

Dist. sq. P and S (mm2) 34051.4 33329.5 31944.5 

  

2370mm < r < 3100mm. The best fit by sampling was 
obtained for A1 = −20mm, A2 = −5mm and A3 = 
+5mm. We also performed a shape fit with ρ0 ... ρ11 
as independent free parameters. The results of the 
analysis are shown in the second data column of Ta-
ble 1. 
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Figure 9. Z-residuals of improved shape design, 
for optimal A1, A2 and A3. 

 

 

The sums of the distances squared from the meas-
urements of the pressure surface (P) and suction sur-
face (S) are presented, as well as the average and 
maximum distances. 

We performed a 12-parameter fit where the objective 
function was the sum of the two sums of distances 
squared, displayed in the lower row of Table 1. The 
result from the 12-parameter fit, listed in the right-
most column of Table 1, is not realistic, since the 
rake values deviate strongly (between 10 and 
1000mm) from the original design, leading to a dis-
torted shape of the blade (not shown). So, although 
the fitting criterion is well satisfied, the shape would 
be unacceptable. The method of stepwise varying sets 
of 3 adjacent rake values, as in equation (2) provides 
a more reliable result. The individual data points for 
this configurations are shown in Figure 9, and can be 
compared to Figure 8. One improvement of the de-
sign in Figure 9 is the reduction of the error at the 
pressure surface around r = 2900mm. It goes at the 
cost of a slightly larger sum of squared distances at 
the suction surface, but the total error, of both sur-
faces together reduces from 34051.4mm2 to 
33329.5mm2. 

We study the effect of changing rake more closely by 
varying A3 around its best value A3 = 5mm found 
during the rough stepwise sampling. The quantities 
defined for Table 1 are plotted as a function of A3 in 
Figure 10.  
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Figure 10.  Deviation of shape from data points a 
function of deviation of rake with indices 7 to 11. 

The sum of distances squared of the data points 
measured on the pressure surface (labeled “to P” in 
Figure 10) is minimal for A3 ≈ 19mm, compared to A3 
≈ −14mm for the suction side. The total sun of dis-
tances squared in the z-direction are shown as well. 
The total sum reaches its minimum at A3 ≈ 3mm. 

4. POSSIBLE FITTING STRATEGY 
The minimal total sum (as used for Figure 10) is a 
criterion for goodness of shape, since it implies that 
material should be removed from both sides of the 
physical part in order to achieve zero-error. However, 
care should be taken that the modified shape design 
never touches or encloses data points. 

As mentioned, leaving each rake value as a free pa-
rameter in a fit does not work properly. The main 
reason for this is the instability of shape generation 
from the design points g' ij. This problem does not 
occur during the regular design process, where the 
overall smoothness of the shape is controlled. For the 
purpose of the numerical experiments, however, we 
used a simpler, faster shape generation method as to 
keep the objective function efficient. In this simpli-
fied method it can occur that the shape becomes wavy 
when subsequent rakes are changed very unevenly. 
To avoid those fluctuations, we varied the rake values 
in sets, as in equation (2). The result of such a fit is 
shown in Table 2. Indeed the total sum of squared 
distances is reduced compared to the estimated values 
in the middle data column of Table 1, however at the 
cost of a larger distance at the pressure side of the 
blade. 

The fitting result in Table 2 was obtained by setting 
the starting values for A1, A2 and A3 to -20, -5 and 5. 
When choosing different starting values, the fit typi-
cally appear to be worse. 

 

 

 

 

Table 2. Fit of shape to data points with free pa-
rameters A1, A2 and A3. 

Measure A1,2,3= (−−−−20.0, −−−−5.2, 3.5) 

Dist. sq. P (mm2) 15228.2 

Dist. sq. z P (mm2) 12345.6 

Av. dist. P. (mm) 12.7 

Max. dist. P (mm) 23.0 

Dist. sq. S (mm2) 17640.9 

Dist. sq. z S (mm2) 12381.9 

Av. dist. S (mm) 13.7 

Max. dist. S (mm) 26.2 

Dist. sq. P and S (mm2) 32869.1 

 

The fitting strategy could be composed as follows: 

1. Import the data points from measurements of the 
pressure side and the suction side of the propeller 
blade(s). 

2. Calculate the deviation of the data points from 
the nominal design of the blade surface. 

3. If any of the data points is contained in the vol-
ume of the nominal model or if any data point is 
too far off from the nominal design, issue a mes-
sage. 

4. Starting form the nominal design parameters, 
minimize the total of the sums of squared dis-
tances of data points to the shape, where a subset 
of the shape parameters are free in the fitting 
procedure.  

5. Perform some sampling of the free parameters 
and conduct the action as described in step 4. If 
any shape is found better fitting the data points, 
then save these parameter values. 

6. Verify whether this shape is conform the specifi-
cations of the customer. If not reiterate step 5. 

7. Use the resulting shape to generate a milling or 
grinding process to achieve a physical part 
matching a design. 

 

 

 

WSCG 2009 Communication Papers 15 ISBN 978-80-86943-94-7



5. DISCUSSION 
We have shown for a particular case that instead of 
the shape of the nominal design, an improved shape 
can be found to control the final machining process of 
the physical part. The new shape can provide a better 
balanced machining result because the shape is “posi-
tioned” halfway the data points of the pressure sur-
face and those of the suction surface. Then the 
amounts of material to be removed from the two sides 
are approximately equal, making the machining proc-
ess more efficient. 

Using the simplified surface construction method, the 
objective function of the fitting procedure is suffi-
ciently efficient as to generate new shape proposal in 
about 100s or less. However, as mentioned, there is a 
small deviation between the shape constructed using 
the company’s high-end CAD system and the shape 
we obtained by a straightforward least-squares cubic 
B-spline surface fitting against the design points g' ij 
of equation (1). In this B-spline fit, there are multiple 
options for the B-spline knot vector and the polyno-
mial degree of the B-spline functions [VNI 2006]. 
There is also an issue in the computation of the dis-
tance between a data point to the B-spline surface. 
Finding the point in the B-spline surface closest to a 
given data points depends on a Quasi-Newton fit with 
the u- and v- parameters of the B-spline surface as 
free parameters. In some cases this fit produces a 
wrong local minimum, and thus fails to find the clos-
est point. We could solve this issue by choosing 16 
points evenly dispersed in the  uw-space, and per-
forming the distance computation with each of these 
16 points as starting values. 

As mentioned, the fitting procedure for shape against 
data points can produce unreliable results. The Quasi-
Newton algorithm typically outputs a local optimum 
near the starting values supplied. Even if the number 
of parameters is kept as low as three (as we did with 
the Ai fits), finding the global optimum requires pre-
sampling of the parameter space. Whereas this 
proved feasible for three parameters, it would become 
impractical for 10 or more parameters. A more so-
phisticated search algorithm, dedicated to the specific 
geometric characteristics of propeller blades should 
be developed. It is unlikely that such an algorithm 
would work on the data consisting of as few as about 
a hundred points on each side of the blade. A medium 
dense point set, of about 5000 points on each surface 
side is required. 

As mentioned, the pitch is a more critical parameter 
than the skew and rake are. Still, very small changes 
to the pitch of the nominal design model based on 
measurements of the produced part, could improve 
the final machining process as we showed for 
changes of rake, that is better balanced removal of 

material. However, if the measurements would reveal 
that the pitch values are not as designed (and maybe 
even exceed the tolerances) then it can be attempted 
to create a new design model with improved pitch 
values, but still contained within the volume of the 
manufactured part. 
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