

Point Cloud Rendering in FPGA

Pavel Zemčík

Faculty of Information Technology
Brno University of Technology

Božetěchova 2
 Czech Republic, 612 66, Brno

zemcik@fit.vutbr.cz

Lukáš Maršík

Faculty of Information Technology
Brno University of Technology

Božetěchova 2
 Czech Republic, 612 66, Brno

xmarsi03@stud.fit.vutbr.cz

Adam Herout

Faculty of Information Technology
Brno University of Technology

Božetěchova 2
 Czech Republic, 612 66, Brno

herout@stud.fit.vutbr.cz

ABSTRACT
This contribution describes recent development in ongoing work focused on point cloud rendering algorithm

implementation usable in environments containing programmable or custom hardware. The approach described

in this paper is based on the idea that direct point cloud rendering, which is in the principle not too complicated,

can be efficiently implemented in programmable or custom hardware. Such implementation can be useful not

only for its performance but especially for the possibility to include it into solutions that require 3D graphics

output in non PC environments and in embedded solutions with low power consumption, etc. This contribution

describes the overall approach and the current results.

Keywords
Point cloud, programmable hardware, FPGA, hardware rendering.

1. INTRODUCTION
3D point-clouds [Rusi01][Gros02] represent a

modern trend in computer graphics. They can be used

for an alternative representation of graphics scenes

instead of traditional entities, such as planar polygons

or triangles, surface patches, etc. Geometrically,

point-clouds are “internally unorganized” sets of

points and as such they are very easy to handle during

various graphics operations. On the other hand, point-

clouds require large amount of memory to represent

common objects and that is the reason why they have

not been widely used historically. In recent few years,

the situation changed. Not only the recent computer

systems, including embedded and DSP systems, can

be are equipped with cheap and large memory, but

also the today affordable 3D scanning devices can

create object models based on point clouds directly.

To visualize these point clouds, however, methods to

convert them into surface patches are still often used

and/or GPUs are mostly used to render these

structures although for direct point cloud rendering,

the GPUs are often inefficient. The proposed

approach offers an alternative based on a simple

engine for direct point cloud rendering based on

custom hardware circuits in the form of

programmable hardware or custom chip. This

alternative will most probably not be of wide use in

contemporary PCs whose graphics performance,

thanks to the modern GPUs, is very high and at the

same time the PCs are relatively cheap. However, the

approach, if successful, can serve as a model for

future high performance implementation, e.g. as a

module in some future piece of hardware or it can be

used in embedded systems where exploitation of

GPUs is not feasible at all and also in systems with

limited power consumption, where exploitation of

GPUs is also very problematic.

The recent development in programmable hardware,

specifically Field Programmable Gate Arrays

(FPGAs) [Curd07][Hite05] offers a good platform for

power efficient, cost efficient, and also high

performance implementation of point cloud

rendering, which is not quite supported by the

traditional computer graphics manufacturers

The proposed solution is characterized by using low

amount hardware resources (system logic and fast

memory) – offering possibility to embed numerous

rendering engines on a chip, low power consumption,

low heat emission and other features important for

non-desktop applications.

The solution describer in this paper is an extension to

previous work on FPGA accelerated point cloud

rendering and adds higher performance due to both

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2009 Communication Papers 63 ISBN 978-80-86943-94-7

technology and solution itself, parallelism, and

extended color model [Zemc03][Zemc04].

2. POINT ELEMENT
The point cloud rendering algorithms described in

this paper relies on rendering of the single oriented

points forming the point cloud.

Point Element Shape
One of the feasible geometrical representations of the

scene element – oriented point – is an oriented circle

whose projection is a general ellipsis. See Figure 1.

Figure 1: Point element projection

The rendering algorithm can be subdivided into

several principal parts [Zemc04][Hero05]

[Tisn02][Mars08]:

1. Projection of the elements’ positions into 2D

screen and Z space and computation of the

corresponding elements’ projected normal and radius.

2. Evaluation of the elements’ color (lightness) based

on the projected normal vector, element local lighting

model (material), and the light sources’ and

observer’s parameters.

3. Rendering of the elements (ellipses) into the image

frame buffer (visibility solved using Z-buffer).

In the proposed approach, all the part 1 is performed

through the host processor (DSP), part 2 is performed

partially in the DSP through access to the pre-

calculated reflection and diffusion tables and the final

color evaluation is done in the FPGA, and the part 3

is performed in the FPGA.

Representation of Shapes
The point shapes are pre-calculated. The idea of pre-

calculation is based on the fact that the normal vector

can be converted into two dimensions according to

the below equation and quantized and thanks to the

fact that radius can be quantized as well.

(1) () () nknnknnnn yxzyx
′=′′==
rr

1,,,,

The shapes of ellipses (circle projections) can then be

stored in tables, indexed by quantized point size and

normal vector, the size of the table is 17x64
2
 (yx nn ′′ ,

are quantized as 64 values, the particle size as 17).

An efficient method is used to compress the point

bitmaps is used, which uses namely the fact that the

point shape is convex and symmetrical. Based on

experiments on practical data and hardware

implementation issues, the bitmap size is defined to

be 8×8 pixels. For small points (whose shape can fit

into the 8×8 raster), symmetry is exploited to

minimize the representation size. Experiments show

that majority of points rendered by the system meets

the extent of small points and their processing is thus

efficient. However, even larger point shapes appear

in the rendered set, whose encoding takes larger

number (inherently not limited, but practically 2×2)

of fractional bitmaps. See Figure 2 and Figure 3 for

examples of small and large point shapes.

Figure 2: Small point shape evaluation

Figure 3: Large point shape evaluation

Representation of Colors
As for the color model, the proposed solution allows

for Phong model with diffuse and specular parts but

limited to a single level of specular reflection and

single color of light sources presumably white.

(2) SpecularMaterialsDiffuseMateriald IkIkII ,,0
ˆˆˆˆ ++=

where Diffuse, Specular, and Material are parameters

sent to the rendering engine for every element while

color 0Î and both dk̂ and sk̂ color tables are stored in

the rendering engine.

Centre x0, y0, z0

Radius r
Normal (nx, ny, nz)

WSCG 2009 Communication Papers 64 ISBN 978-80-86943-94-7

The elements’ properties, as evaluated by steps 1. and

2. described above through the pre-calculated table,

form a code-word of 64 bits which enters the

rendering Engine. See Figure 4 for the code-word’s

structure. Note, please, that the y co-ordinate is

missing from the code word as the engine generates it

implicitly. Detailed description of the rendering

machine is in the following section of the paper.

Figure 4: Point code word

3. SYSTEM ARCHITECTURE
The rendering engine is experimentally implemented

on a PCI board placed in a host PC.

System board
The board (UNI1P-VUT manufactured by CAMEA,

Brno) contains PCI controller, DRAM memory, and

programmable hardware including FPGAs to control

the data flow. The board is capable of carrying up to

four DSP/FPGA computational engines (DX64), each

with a DSP (TI C6416), FPGA (Xilinx VIrtex II),

and DRAM (128MB). Block diagram is shown in the

Figure 6.

Each of the DSP/FPGA boards implements single

rendering engine.

Figure 6: System architecture block diagram

Rendering engine
Each of the point elements could be rendered very

quickly, just through interpreting the key word that is

simple and the interpretation can easily be done in

parallel except for the natural bottleneck lying in the

number of pixels affected by each point element that

can be up to 64 (8x8 blocks).

In our approach, however, this bottleneck is

overcome through subdividing of the raster image

memory and Z-buffer memory, used for rendering

output, into 8 parts so that all the lines of the element

image (8x8 pixels) can be rendered in parallel. As the

shape of the element is encoded in very simple way

(see above), the rendering lies merely in updating the

Z-buffer and conditional writing of a color value into

the output raster. As the Z-buffer and raster memory

have 4 pixels per word (oriented horizontally),

8 pixels can be updated within 3 accesses in the

memory as the data is not always word aligned.

Because the size of the raster and Z-buffer memory in

the FPGA is limited, our implementation slides a

narrow window (e.g. 16 pixels high and as wide as

the image) across the output image line by line so that

only that narrow window of raster and Z-buffer are

present in the on-chip memory in the FPGA. The

already processed part of the image is flushed out of

the rendering engine. This approach allows for

evaluating only those elements whose y co-ordinate is

in the centre of the sliding window. This fact enforces

sorting of the elements according to the y co-ordinate

and sending them into the rendering engine in the y

order. While the sorting operation seem to cause high

computational complexity, the fact is that the y range

is limited and as the co-ordinates are anyway integer,

the sorting can be seen as merely subdividing the

point cloud (set) into several subsets with linear

complexity.

See Figure 7 for the illustration of sliding window.

Note, please, that 8 pixels high window would be

sufficient for rendering but the extra lines are suitable

for buffered flushing of the output and buffered

loading of the input (initialized raster and Z-buffer).

Figure 7: Sliding window over the raster

Rendering chain
The above described approach is well parallelizable.

As the rendering engine is capable of uploading of

the initialized image and Z-buffer and flushing the

processed output with relatively low delay

(processing of 16 lines of the window), it is possible

to chain the rendering engines as shown in Figure 8

and when randomly data distributed among the

engines lead into nearly linear speedup.

WSCG 2009 Communication Papers 65 ISBN 978-80-86943-94-7

Figure 8: Processing chain block diagram and the rendering output

The block diagram of the engine itself is shown

below. Note, please, that the “writer block” contains

the raster and Z-buffer on-chip memory.

Figure 9: Single engine block diagram

4. PERFORMANCE
The performance of the approach can be evaluated in

terms of the point elements rendering speed and in

terms of the resource consumption.

Resource consumption
The consumption of FPGA resources on the Virtex II

chip is shown in Table 1 below. Overall, the design

consumes approximately 60 percent of the small

Virtex II-250 chip.

Table 1: Consumption of the FPGA chip resources

Rendering speed
The achievable rendering speed is affected by the

clock speed of the FPGA structure. Currently, the

achieved clock speed is 100 MHz and 4 clock cycles

are needed to evaluate single element. At the same

time, 4 rendering engines run in parallel so the raw

rendering speed of 100 million (10
8
) elements per

second. The useful rendering speed is affected by the

idle times. If e.g. video is generated, the worst idle

time is 0.02 s. The rendering speed for N elements is:

(3) () ()8

Im 10/,02.0max Nst age =

5. CONCLUSIONS
It has been demonstrated that the direct point cloud

rendering engine in FPGA and DSP is feasible and

that it can be built using relatively simple resources in

programmable hardware. While the raw speed of the

single engine does not reach extremely high figures,

the approach is easily scalable and parallelizable and

can be also used in embedded environments.

6. ACKNOWLEDGMENTS
This work has is supported by the Ministry of

Education, Youth and Sports of the Czech Republic

under the research program LC-06008 (Center for

Computer Graphics), and by the research project

Security-Oriented Research in Information

Technology, MSM0021630528.

7. REFERENCES
[Curd07] Curd, D.: Power Consumption in 65 nm FPGAs, White

Paper: Virtex-5 FPGAs, February 1, 2007, XILINX, San Jose,

CA, USA

[Gros02] Gross, M.: Point Based Computer Graphics,

Proceedings of SCCG 2002, Budmerice, Slovakia, 2002

[Hero05] Herout, A., Zemčík, P.: Hardware Pipeline for

Rendering Clouds of Circular Points, In: Proceedings of

WSCG 2005, Plzeň, Czech Republic, 2005

[Hite05] Hitesh, P.: Synthesis and Implementation Strategies to

Accelerate Design Performance , White Paper: Virtex-4 and

Spartan-3 Families, July 6, 2005, XILINX, San Jose, CA,

USA

[Mars08] Maršík, L.: Image processing in FPGA, Bc. Thesis,

Brno University of Technology, Brno, Czech Republic, 2008

(in Czech)

[Rusi01] Rusinkiewicz, S.: Surface splatting, Proceedings of

SIGGRAPH 2001, USA, 2001

[Tisn02] Herout, A., Tišnovský, P.: Vector Field Calculations on a

Special Hardware Architecture, In: East-West-Vision 2002

Proceedings, Graz, TUV, Austria, 2002

 [Zemc03] Zemčík, P., Tišnovský, P., Herout, A.: Particle

Rendering Pipeline, Proceedings of SCCG 2003, Budmerice,

Slovakia, 2003

[Zemc04] Zemčík, P., Herout, A., Crha, L. Tupec, P. Fučík, O.:

Particle rendering pipeline in DSP and FPGA, In:

Proceedings of Engineering of Computer-Based Systems, Los

Alamitos, USA, IEEE CS, 2004

WSCG 2009 Communication Papers 66 ISBN 978-80-86943-94-7

	!_WSCG2009_SHORT_final_NUMBERED.pdf
	C61-full
	C83-full

