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ABSTRACT 
This contribution describes recent development in ongoing work focused on point cloud rendering algorithm 

implementation usable in environments containing programmable or custom hardware. The approach described 

in this paper is based on the idea that direct point cloud rendering, which is in the principle not too complicated, 

can be efficiently implemented in programmable or custom hardware. Such implementation can be useful not 

only for its performance but especially for the possibility to include it into solutions that require 3D graphics 

output in non PC environments and in embedded solutions with low power consumption, etc. This contribution 

describes the overall approach and the current results. 
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1. INTRODUCTION 
3D point-clouds [Rusi01][Gros02] represent a 

modern trend in computer graphics. They can be used 

for an alternative representation of graphics scenes 

instead of traditional entities, such as planar polygons 

or triangles, surface patches, etc. Geometrically, 

point-clouds are “internally unorganized” sets of 

points and as such they are very easy to handle during 

various graphics operations. On the other hand, point-

clouds require large amount of memory to represent 

common objects and that is the reason why they have 

not been widely used historically. In recent few years, 

the situation changed. Not only the recent computer 

systems, including embedded and DSP systems, can 

be are equipped with cheap and large memory, but 

also the today affordable 3D scanning devices can 

create object models based on point clouds directly. 

To visualize these point clouds, however, methods to 

convert them into surface patches are still often used 

and/or GPUs are mostly used to render these 

structures although for direct point cloud rendering, 

the GPUs are often inefficient. The proposed 

approach offers an alternative based on a simple 

engine for direct point cloud rendering based on 

custom hardware circuits in the form of 

programmable hardware or custom chip. This 

alternative will most probably not be of wide use in 

contemporary PCs whose graphics performance, 

thanks to the modern GPUs, is very high and at the 

same time the PCs are relatively cheap. However, the 

approach, if successful, can serve as a model for 

future high performance implementation, e.g. as a 

module in some future piece of hardware or it can be 

used in embedded systems where exploitation of 

GPUs is not feasible at all and also in systems with 

limited power consumption, where exploitation of 

GPUs is also very problematic. 

The recent development in programmable hardware, 

specifically Field Programmable Gate Arrays 

(FPGAs) [Curd07][Hite05] offers a good platform for 

power efficient, cost efficient, and also high 

performance implementation of point cloud 

rendering, which is not quite supported by the 

traditional computer graphics manufacturers  

The proposed solution is characterized by using low 

amount hardware resources (system logic and fast 

memory) – offering possibility to embed numerous 

rendering engines on a chip, low power consumption, 

low heat emission and other features important for 

non-desktop applications. 

The solution describer in this paper is an extension to 

previous work on FPGA accelerated point cloud 

rendering and adds higher performance due to both 
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technology and solution itself, parallelism, and 

extended color model [Zemc03][Zemc04]. 

2. POINT ELEMENT 
The point cloud rendering algorithms described in 

this paper relies on rendering of the single oriented 

points forming the point cloud. 

Point Element Shape 
One of the feasible geometrical representations of the 

scene element – oriented point – is an oriented circle 

whose projection is a general ellipsis. See Figure 1.  

 

Figure 1: Point element projection 

 

The rendering algorithm can be subdivided into 

several principal parts [Zemc04][Hero05] 

[Tisn02][Mars08]: 

1. Projection of the elements’ positions into 2D 

screen and Z space and computation of the 

corresponding elements’ projected normal and radius. 

2. Evaluation of the elements’ color (lightness) based 

on the projected normal vector, element local lighting 

model (material), and the light sources’ and 

observer’s parameters.  

3. Rendering of the elements (ellipses) into the image 

frame buffer (visibility solved using Z-buffer).  

In the proposed approach, all the part 1 is performed 

through the host processor (DSP), part 2 is performed 

partially in the DSP through access to the pre-

calculated reflection and diffusion tables and the final 

color evaluation is done in the FPGA, and the part 3 

is performed in the FPGA. 

Representation of Shapes 
The point shapes are pre-calculated. The idea of pre-

calculation is based on the fact that the normal vector 

can be converted into two dimensions according to 

the below equation and quantized and thanks to the 

fact that radius can be quantized as well. 

 

(1) ( ) ( ) nknnknnnn yxzyx
′=′′==
rr

1,,,,  

The shapes of ellipses (circle projections) can then be 

stored in tables, indexed by quantized point size and 

normal vector, the size of the table is 17x64
2
 ( yx nn ′′ ,  

are quantized as 64 values, the particle size as 17). 

An efficient method is used to compress the point 

bitmaps is used, which uses namely the fact that the 

point shape is convex and symmetrical. Based on 

experiments on practical data and hardware 

implementation issues, the bitmap size is defined to 

be 8×8 pixels. For small points (whose shape can fit 

into the 8×8 raster), symmetry is exploited to 

minimize the representation size. Experiments show 

that majority of points rendered by the system meets 

the extent of small points and their processing is thus 

efficient. However, even larger point shapes appear 

in the rendered set, whose encoding takes larger 

number (inherently not limited, but practically 2×2) 

of fractional bitmaps. See Figure 2 and Figure 3 for 

examples of small and large point shapes. 

 

 

Figure 2: Small point shape evaluation 

 

 

Figure 3: Large point shape evaluation 

 

Representation of Colors 
As for the color model, the proposed solution allows 

for Phong model with diffuse and specular parts but 

limited to a single level of specular reflection and 

single color of light sources presumably white. 

 

(2) SpecularMaterialsDiffuseMateriald IkIkII ,,0
ˆˆˆˆ ++=  

where Diffuse, Specular, and Material are parameters 

sent to the rendering engine for every element while 

color 0Î and both dk̂ and sk̂ color tables are stored in 

the rendering engine. 

Centre x0, y0, z0 

Radius r 
Normal (nx, ny, nz) 
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The elements’ properties, as evaluated by steps 1. and 

2. described above through the pre-calculated table, 

form a code-word of 64 bits which enters the 

rendering Engine. See Figure 4 for the code-word’s 

structure. Note, please, that the y co-ordinate is 

missing from the code word as the engine generates it 

implicitly. Detailed description of the rendering 

machine is in the following section of the paper. 

 

Figure 4: Point code word 

 

3. SYSTEM ARCHITECTURE 
The rendering engine is experimentally implemented 

on a PCI board placed in a host PC. 

System board 
The board (UNI1P-VUT manufactured by CAMEA, 

Brno) contains PCI controller, DRAM memory, and 

programmable hardware including FPGAs to control 

the data flow. The board is capable of carrying up to 

four DSP/FPGA computational engines (DX64), each 

with a DSP (TI C6416), FPGA (Xilinx VIrtex II), 

and DRAM (128MB). Block diagram is shown in the 

Figure 6. 

Each of the DSP/FPGA boards implements single 

rendering engine. 

 

Figure 6: System architecture block diagram 

Rendering engine 
Each of the point elements could be rendered very 

quickly, just through interpreting the key word that is 

simple and the interpretation can easily be done in 

parallel except for the natural bottleneck lying in the 

number of pixels affected by each point element that 

can be up to 64 (8x8 blocks). 

In our approach, however, this bottleneck is 

overcome through subdividing of the raster image 

memory and Z-buffer memory, used for rendering 

output, into 8 parts so that all the lines of the element 

image (8x8 pixels) can be rendered in parallel. As the 

shape of the element is encoded in very simple way 

(see above), the rendering lies merely in updating the 

Z-buffer and conditional writing of a color value into 

the output raster. As the Z-buffer and raster memory 

have 4 pixels per word (oriented horizontally), 

8 pixels can be updated within 3 accesses in the 

memory as the data is not always word aligned. 

Because the size of the raster and Z-buffer memory in 

the FPGA is limited, our implementation slides a 

narrow window (e.g. 16 pixels high and as wide as 

the image) across the output image line by line so that 

only that narrow window of raster and Z-buffer are 

present in the on-chip memory in the FPGA. The 

already processed part of the image is flushed out of 

the rendering engine. This approach allows for 

evaluating only those elements whose y co-ordinate is 

in the centre of the sliding window. This fact enforces 

sorting of the elements according to the y co-ordinate 

and sending them into the rendering engine in the y 

order. While the sorting operation seem to cause high 

computational complexity, the fact is that the y range 

is limited and as the co-ordinates are anyway integer, 

the sorting can be seen as merely subdividing the 

point cloud (set) into several subsets with linear 

complexity. 

See Figure 7 for the illustration of sliding window. 

Note, please, that 8 pixels high window would be 

sufficient for rendering but the extra lines are suitable 

for buffered flushing of the output and buffered 

loading of the input (initialized raster and Z-buffer). 

 

 

 

Figure 7: Sliding window over the raster 

 

Rendering chain 
The above described approach is well parallelizable. 

As the rendering engine is capable of uploading of 

the initialized image and Z-buffer and flushing the 

processed output with relatively low delay 

(processing of 16 lines of the window), it is possible 

to chain the rendering engines as shown in Figure 8 

and when randomly data distributed among the 

engines lead into nearly linear speedup. 
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Figure 8: Processing chain block diagram and the rendering output 

 

The block diagram of the engine itself is shown 

below. Note, please, that the “writer block” contains 

the raster and Z-buffer on-chip memory. 

 

Figure 9: Single engine block diagram 

4. PERFORMANCE 
The performance of the approach can be evaluated in 

terms of the point elements rendering speed and in 

terms of the resource consumption. 

Resource consumption 
The consumption of FPGA resources on the Virtex II 

chip is shown in Table 1 below. Overall, the design 

consumes approximately 60 percent of the small 

Virtex II-250 chip. 

 

Table 1: Consumption of the FPGA chip resources 

Rendering speed 
The achievable rendering speed is affected by the 

clock speed of the FPGA structure. Currently, the 

achieved clock speed is 100 MHz and 4 clock cycles 

are needed to evaluate single element. At the same 

time, 4 rendering engines run in parallel so the raw 

rendering speed of 100 million (10
8
) elements per 

second. The useful rendering speed is affected by the 

idle times. If e.g. video is generated, the worst idle 

time is 0.02 s. The rendering speed for N elements is: 

(3) ( ) ( )8

Im 10/,02.0max Nst age =  

5. CONCLUSIONS 
It has been demonstrated that the direct point cloud 

rendering engine in FPGA and DSP is feasible and 

that it can be built using relatively simple resources in 

programmable hardware. While the raw speed of the 

single engine does not reach extremely high figures, 

the approach is easily scalable and parallelizable and 

can be also used in embedded environments. 
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