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ABSTRACT 
Recent GPU ray tracers can already achieve performance competitive to that of their CPU counterparts. 
Nevertheless, these systems can not yet fully exploit the capabilities of modern GPUs and can only handle 
medium-sized, static scenes. 
We present an octree construction algorithm for the GPU that achieves real-time performance by heavily 
exploiting the hardware, which has been observed to give superior performance in ray tracing compared to other 
acceleration structures. We use streaming construction with the surface area heuristic (SAH) that significantly 
increase the coherence of memory accesses during construction of the octree. 
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I. INTRODUCTION 
 
Ray tracing is a technique for rendering pictures from 
a three-dimensional model by following the paths of 
simulated light rays through the scene. One of the 
most serious problems of ray tracing is that it 
requires a relatively large amount of computation 
time. While CPU performance has increased 
dramatically over the last few years, it is still 
insufficient for many ray tracing applications. 
Commodity computer graphics chips are probably 
today’s most powerful computational hardware for 
the dollar. As a result of continued demand for 
programmability, modern graphics processing units 
(GPUs) such as the NVIDIA GeForce 8 Series are 
designed as programmable processors employing a 
large number of processor cores [1]. 
 
Lately, ray tracing running on GPU have developed 
to an excellent substitute to CPU-based ray tracers [2, 
3]. However, even though optimized for the GPU 
architecture, these implementations can still not 

utilize the full power of modern GPUs. GĂźnther et 
al.[4] point out that, two main problems need to be 
addressed for gaining maximum performance from 
the GPU, such as the NVIDIA GeForce 8. First, one 
needs to keep only a small state per thread to allow 
for enough active threads to run to keep the GPU 
busy. The ray tracer of Popov et al. required too 
many live registers which resulted in a poor GPU 
utilization of below 33% [3]. Secondly, one needs to 
assure the coherent execution of threads running in 
parallel, due to the very wide SIMD architecture of 
current GPUs (32–48 units execute the same 
instructions [5]). Execution divergence (i.e. 
incoherent branching) can limit performance of ray 
tracing to around 40% of the graphics board’s 
theoretical potential [2]. 
 
Because of accustomed acceleration structure only 
with a relatively small number of nodes at the upper 
levels, which makes parallelizing over nodes 
inefficient and leaves the massive parallelism of 
GPUs underexploited. So, we propose a new spatial 
partitioning that allows construction of an improved 
octree (subtrees) by threads independently. This 
approach takes advantage of the parallelism present 
by heavily exploiting the hardware for the GPU. 
Specifically, Kun Zhou et al.[6] firstly implement 
their parallel kd-tree algorithms in BFS (breadth-first 
search) order to fully exploit the fine-grained 
parallelism of modern GPUs at all stages of kd-tree 
construction. Our algorithm also builds octree nodes 
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in this way, which has been observed to give superior 
performance in ray tracing compared to other 
acceleration structures [7], when built using the 
surface area heuristic (SAH) [8]. 
 
Section 2 presents previous work in this area, while 
Section 3 introduces more formal definitions of our 
octree construction. Section 4 discusses our system 
implementation, analyzes the performance of our 
implementation and compare it with current work. 
Finally, in Section 5, we offer some thoughts on 
future work. 
 

II. PREVIOUS WORK 
 
In this section we give a brief overview of prior work 
on acceleration structures for ray tracing dynamic 
scenes. 
2.1    Ray Tracing On Parallel Architectures. 
 
There has been a significant interest in studying ray 
tracing on parallel architectures. Ray tracing on GPUs 
has stimulated much interest recently. [9] 
implemented ray-triangle intersection on the GPU. 
[10] designed the first ray tracer that runs entirely on 
the GPU, employing a uniform grid for acceleration. 
[11] introduced two stackless kd-tree traversal 
algorithms, which outperform the uniform grid 
approach.[12] implemented a limited GPU ray tracer 
for dynamic geometry based on bounding-volume 
hierarchies and geometry images. None of the above 
GPU ray tracers outperforms a well-optimized CPU 
ray tracer. Recently, two techniques [2, 3] achieved 
better performance than CPU ray tracers. Both 
techniques use stackless kd-tree traversal and packet 
tracing. Unfortunately these two techniques work for 
static scenes only. For dynamic scenes, most existing 
methods are CPU-based (e.g., [13, 14]). Kun Zhou et 
al.[6] first implemented their parallel kd-tree 
algorithms in BFS(breadth-first search) order to fully 
exploit the fine-grained parallelism of modern GPUs 
at all stages of kd-tree construction, achieves real-time 
performance. Shevtsov et al. [15] presented a shared 
memory architecture with many CPU-like cores, 
including recent multi-core CPUs. The algorithm first 
partitions the space into several balanced sub-regions 
and then builds a sub-tree for each sub-region in 
parallel and in DFS (depth-first search) order. The 
algorithm cannot be mapped well to GPU architecture 
because modern GPUs require 103 ∼ 104 threads for 
optimal performance [5], orders of magnitude greater 
than the possible thread number on multi-core CPUs 
(e.g., four threads tested in the paper).  
 

2.2    Acceleration Structures 
 
The relative performance of different acceleration 
structures has been widely studied. Havran [16] 
compares a large number of acceleration structures 
across a variety of scenes and determines that the kd-
tree is the best general-purpose acceleration structure 
for CPU raytracers. It would seem natural, therefore, 
to try to use a kd-tree to accelerate GPU ray tracing. 
Construction of high quality KD-tree is bandwidth 
hungry and computationally expensive task. Attempts 
to reduce time spent on kd-tree construction were 
performed using hybrid data structure combining kd-
tree with bounding volumes [17]. Similar combining 
of BVH and spatial partitioning for increasing overall 
performance was made in [18]. However these 
approaches still lack parallel implementation and 
optimized traversal like MLRT [19] and thus 
demonstrate modest overall performance. 
 
Our algorithm relies on a modified work stealing 
approach to ensure an high performance width-first 
octree computation. We speed-up and optimize the 
construction of (SAH based) octrees. It ensures all 
processing units progress simultaneity to the bottom 
of the octree, enabling to stop the algorithm at 
anytime while ensuring a balanced Octree exploration 
(it avoids to waste processing power in a deep 
exploration of an octree branch, while an other 
process stays several depth level behind). We build 
our octree with all stages running in parallel with 
minimal synchronization overhead allowing to exploit 
as many threads as available to achieve fast octree re-
build from scratch every frame. So our method is an 
excellent strategy for interactive ray tracing of 
dynamic scenes, which does not require any prior 
information about vertices motion. 
 

III. CONSTRUCTION OF IMPROVED 
OCTREE 

 
Using high-quality acceleration structures is essential 
for achieving interactive ray tracing performance. In 
this section, we describe how to build our improved 
Octrees for ray tracing. 
 
3.1   Conventional Octree Construction  
 
Typically an octree [20] is a hierarchical data 
structure showing how objects are distributed in the 
object space, which has been mainly used in image 
processing or solid modeling areas, it was first used 
for ray tracing by Glassner [21]. Conventional octree 
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construction divides a three-dimensional space for 
each axis using the spatial median, obtains eight 
subspaces, which can be represented by an octree. 
The root node of an octree represents the entire object 
space. If the entire space contains more objects than a 
given limit, the space is divided into eight sub-spaces 
represented by eight children nodes. A subspace thus 
created is defined as a voxel. These voxels are further 
divided into eight voxels, and this process is repeated 
until the voxels satisfy the given criteria. In general, 
the criteria used to determine whether or not the given 
octree should be divided further depend upon the 
number of objects intersecting with a voxel and the 
maximum depth of an octree allowed[22][23]. 
However, the octree contains cell boundaries that are 
static and their location is independent of the objects. 
This independence makes the more intersections. The 
kd-tree, on the other hand, places the boundaries 
around the objects, especially if the empty space is cut 
off, thus it can result in much higher intersection 
probability. Furthermore, conventional octree 
construction uses uniform voxels to get spatial 
partition, which leads to higher depth of the tree, and 
generates much empty nodes which waste much 
memory. 
 
3.2   Improved Octree Construction 
 
The kd-tree is the best general-purpose acceleration 
structure, which uses the SAH [8] estimates the ray 
tracing performance of a given acceleration structure. 
But modern GPU architecture contains multiple 
physical multi-processors and requires tens of 
thousands of threads to make the best use of these 
processors [5], while accustomed acceleration 
structure only with a relatively small number of nodes 
at the upper levels, which makes parallelizing over 
nodes inefficient and leaves the massive parallelism 
of GPUs underexploited. Therefore, we propose an 
improved octree to exploit the hardware to the largest 
possible degree. 
 
Conventional SAH kd-tree evaluates the SAH costs 
for all splitting plane candidates, then pick the optimal 
candidate with the lowest cost and split the node into 
two child nodes. Unlike this method, we extensively 
work on all three dimensions at once during SAH 
evaluation, and build eight sub-nodes at one time. 
Furthermore, we record the optimal candidate with 
the lowest cost at X dimension, Y dimension and Z 
dimension. Then, the three candidates divide a node 
into eight sub-nodes, as shown in Figure 1.  
 
For each potential partition we need to compute Eq. 
(1), hence we need to know the primitive counts and 

the surface areas of children. To compute these counts 
efficiently, Wald et al. [13, 24] proposed to sort the 
primitives. However, a much more efficient method 
was recently published, which avoids sorting and 
which additionally features memory friendly access 
patterns [25, 26]. For our octree builder, we adapt the 
binning method of [25], which was originally 
proposed for building kd-trees. We iterate over the 
primitives on all three dimensions at one time to bin  

 
Figure 1: improved octree construction with SAH 
 
them by means of their theory, and by doing so, to 
accumulate their count and extend in several bins. The 
gathered information in the bins is then used to 
reconstruct the primitive counts and the surface areas 
on both sides of each border between bins, and thus to 
compute the SAH cost function at each border plane. 
We can use SIMD operations to compute the SAH 
cost function on the three dimensions together that 
exploit the parallel performance. As Popov et al. [25], 
we minimize memory bandwidth by performing the 
binning in all three dimensions during the split of the 
parent node.  

CP = KT+ [nlSA(Nl)+nrSA(Nr)]，    (1) 
where nl and nr are the number of contained 
primitives in the respective child nodes. We take that 
partition that has minimal local cost CP, or terminate 
if creating a leaf, which has cost KI·n, is cheaper, with 
n = nl +nr being the number of primitives in the 
current node. 
 
We give some details of our implementation 
concerning efficiency and robustness. Our octree is 
completely built on the GPU. We store an AABB and 
a counter in a bin. The primitives are represented by 
the centroid and the extent of their AABBs. For each 
primitive we compute the indices of the bins of all 
three dimensions from its centroid in SIMD. Then, the 
counters of all three bins are incremented, and their 

WSCG 2009 Communication Papers 83 ISBN 978-80-86943-94-7



AABBs are enlarged with the primitive’s AABB 
using SIMD min/max operations. After all the 
calculations of a node are executed at three 
dimensions, we should record the counters and the 
surface areas, which will be used in the calculation of 
its children. The cost function needs to be sampled 
along all three dimensions.  
 
The value of the cost function at a sampling position 
depends solely on the count of AABBs that intersect 
the left and right sub-volumes for the latter location. 
The algorithm collects this data in two phases. In the 
first phase, the algorithm sweeps the array of AABBs 
and stores at each sample the count of AABBs that 
end between this and the previous sample. The 
algorithm also stores the number of AABBs that start 
between the sample and the next one. In the second 
phase, the algorithm uses the collected information to 
incrementally reconstruct the AABBs counts at the 
sample locations using the formula 

nl
i+1 = nl

i+Si, 
nr

i+1 = nr
i−Ei, 

where ni
l|r describes the number of AABBs to the 

left/right of the sample i, and the number of AABBs 
that start and end between samples i and i+1 is 
denoted by Si and Ei, respectively. The algorithm 
evaluates the cost function at the sample locations and 
than distributes the AABBs to the left and right 
subtrees as described above. 
------------------------------------------------------------ 
Algorithm 1: Improved Octree Construction 
Procedure BIN( AABB, sample) 

Dxyz  samples of min point of AABB 
Uxyz  samples of max point of AABB 
For all dim ∈{x,y,z} do 
 Increase sample.obj_S[U[dim]] 
 Increase sample.obj_E[D[dim]] 

End for 
End procedure 
Function Found(head,dim) 

Head[dim].Left[0]0 
 Head[dim].Right[0]NumObj 
For each sample point at the dim 

Head[dim].Left[i]Head[dim].Left[i-
1]+Head[dim].obj_S[i] 
Head[dim].Right[i]Head[dim].Right[i-
1]+Head[dim].obj_E[i] 

   End for 
Evaluates the cost function at the sample locations at 
each dim 

Return the best found split 
End function 
For each input triangle t in parallel 

Compute AABB for triangle t, add into AABBset 
End for 
Head0 
BIN(all aabb ∈AABBset,0) 

For all dim ∈{x,y,z} do In parallel 
If NumObj<threshold then 
 Run conventional kd-tree routine for subtree 

End if 
Found(head,dim) 

End for 
Calculate the counters and the surface areas  
Repeat 
------------------------------------------------------------- 

IV. IMPLEMENTATION AND 
RESULTS 

 
In this section, we describe our implementation and 
the performance comparison. The described algorithm 
has been tested on an Intel Xeon 3.7GHz CPU with 
an NVIDIA GeForce 8800 ULTRA (768MB) 
graphics card. 
 
4.1    Implementation 
 
We implemented the above octree builder using 
NVIDIA’s CUDA framework [5]. Previous GPU 
programming systems limit the size and complexity 
of GPU code due to their underlying graphics API 
based implementations. CUDA supports kernels with 
much larger code sizes with a new hardware interface 
and instruction caching. The GeForce 8800 allows for 
general addressing of memory via a unified processor 
model, which enables CUDA to perform unrestricted 
scatter-gather operations.  
 
The GeForce 8800 consists of 16 streaming 
multiprocessors (SMs), each containing eight 
streaming processors (SPs), or processor cores, 
running at 1.35GHz. Each core executes a single 
thread’s instruction in SIMD (single-instruction, 
multiple-data) fashion, with the instruction unit 
broadcasting the current instruction to the cores. Each 
core has one 32-bit, single-precision floating-point, 
multiply-add arithmetic unit that can also perform 32-
bit integer arithmetic. 
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GĂźnther [4] point out that the number of bins is a 
crucial parameter controlling the construction speed 
and accuracy. The more bins there are, the more 
accurate is the sampling of the SAH cost function, but 
the more work has to be done during calculation of 
the SAH function from the binned data (the binning 
steps are independent from the number of the bins). 
Additionally, binning becomes inefficient if the 
number of bins is close to the number of to-be-binned 
primitives. Therefore the number of bins k per 
dimension should be adaptively chosen linearly 
depending on number of primitives n and bin-ratio r: 
k = n/r and clamp it to [kmin, kmax]. Just as what 
GĂźnther said on [4], we experimented with different 
parameter sets representing a trade-off between speed 
and accuracy. The default settings are kmax = 128, 
kmin = 8, and r = 6. The fast settings are kmax = 32, 
kmin = 4, and r = 16. 
 
We need to specify the number of thread blocks and 
threads per block for the parallel primitives and the 
code fragments marked by in parallel. In our current 
implementation, we use 256 threads for each block. 
The block number is computed by dividing the total 
number of parallel threads by the number of threads 
per block. During octree construction, we store all 
data in linear device memory allocated via CUDA. 
For structures with many fields such as nodes and 
triangles, we use structure of arrays (SoA) instead of 
array of structures (AoS) for optimal GPU cache 
performance. As the level of the tree increases, the 
data that needs to be processed per thread in order to 
construct the next child node decreases, so the 
numbers of the threads in a block executed in parallel 
at one time can be increased significantly. 
Furthermore, because of the small sets of data, the 
amount of SAH calculation is decreased significantly, 
and shorten the time for dividing. Besides, our octree 
construction has lower levels, which makes ray 
tracing traversal faster. Considering that conventional 
kd-tree can be more efficient on small sets of data, so 
if the algorithm encounters a partition with size 
bellow some threshold, it switches to a conventional 
kd-tree construction at the point. 
 
4.2    Performance  Comparison 
 
In this section we present the results of our 
experimental work. The quality of the trees is 
assessed in two ways. Firstly, we compute the 
construction time. Secondly, we evaluate the practical 
effect of tree quality on render time by using the 
constructed trees in a ray tracer. The results are 
presented as a table. To evaluate the performance of 
our construction algorithm, we compared it to the 
conventional construction algorithm by measuring the 

time needed to build a SAH kd-tree using a variety of 
scenes, ranging from simple to reasonably complex, 
namely BUNNY, FAIRYFOREST, and 
CONFERENCE. The scenes and the viewpoints for 
the tests can be seen on Figure 2. Table 1 summarizes 
the comparison results for several publicly available 
scenes as shown in Fig.2. As shown, our octree 
construction algorithm is 8 ∼ 12 times faster for these 
scenes.  Although our technique is capable of 
constructing high quality octrees in real-time, it has its 
limitations. For small scenes with less than 5K 
triangles, CUDA’s API overhead becomes a major 
bottleneck. In this case, it is more efficient to switch 
to a complete CPU method. 
 
Our octree construction algorithm also scales well 
with the number of GPU processors. The running 
time contains a scalable portion and a small non-
scalable portion due to the overhead of CUDA API 
and driver. Theoretically, the running time is linear 
with respect to the reciprocal of the number of 
processors. As shown in Fig.3, we ran the algorithm 
on a GeForce 8800 ULTRA graphics card with 16, 32, 
48, 64, 80, 96, 112, and 128 processors 
respectively.As shown in the table, our algorithm 
always offer better rendering performance. For 
dynamic scenes, our ray tracer can build an octree 
from scratch through our fast and efficient 
construction method without prior knowledge about 
geometry motion, which is a competitive alternative 
to a state-of-the-art ray tracer. Note that here we do 
not claim that our GPU ray tracer is faster than all 
CPU ray tracers. Indeed, implementing the fastest 
CPU ray tracer is like chasing a moving target 
because various optimizations could be used for 
higher performance and some optimizations are 
hardware dependent, and better performance can be 
achieved by adding more CPU cores. 
 

        
Figure 2:  The scenes used for testing, from left to 
right: 1)“BUNNY” 2)“CONFERENCE”   
3)“FAIRYFOREST” 
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optimized kd-
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Our routine Scene and  
#triangles 
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“BUNNY ”,69
K 

0.62s 4.9 0.08s 9.3 

“CONFEREN
CE ”,282K 

1.41s 2.7 0.11s 5.27 

“FAIRYFORE
ST ”,180K 

1.15s 2.5 0.15s 4.17 

Table 1: Construction time and FPS performance for 
1024x1024 resolution ， including shading with 
shadow. We include the time needed to read back the 
result from CUDA and draw them through OpenGL 
in our results. 
 

 
 

Figure 3: The tree construction time decreases quickly 
with the increase in the number of GPU processors 
 

V.CONCLUSIONS AND FUTURE 
WORK 

 
In this paper, we present an octree construction 
algorithm for the GPU that achieves real-time 
performance by heavily exploiting the hardware. This 
technique has four important features. Firstly, it builds 
octrees in real-time by exploiting the fine-grained 
parallelism on the GPU. Secondly, As the level of the 
tree increases, the data that needs to be processed per 
thread in order to construct the next child node 
decreases, so the count of SAH calculation is 
decreased significantly, and shorten the time for 
dividing. Thirdly, our octree construction has lower 
levels, which makes ray tracing traversal faster. 
Fourthly, because of using streaming construction, 
our octree consume less memory.   
 
In future we plan investigation in the following 
directions. We plan to incorporate packets [13] into 
the GPU ray tracer for further performance 
enhancements. We also intend to amend the algorithm 
to add more secondary rays to render. Thirdly, we 
consider offloading some of the octree construction 

steps to a CPU. Vectorization using SIMD 
instructions will increase performance of the 
construction algorithm. 
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