

A fast SAH-based construction of Octree

Xin Yang*, Duan-qing Xu, Lei Zhao

College of Computer Science, Zhejiang University

Hangzhou,China

*xinyang@zju.edu.cn

ABSTRACT
Recent GPU ray tracers can already achieve performance competitive to that of their CPU counterparts.
Nevertheless, these systems can not yet fully exploit the capabilities of modern GPUs and can only handle
medium-sized, static scenes.
We present an octree construction algorithm for the GPU that achieves real-time performance by heavily
exploiting the hardware, which has been observed to give superior performance in ray tracing compared to other
acceleration structures. We use streaming construction with the surface area heuristic (SAH) that significantly
increase the coherence of memory accesses during construction of the octree.

Keywords: Raytracing, Octree, GPU, SAH.

I. INTRODUCTION

Ray tracing is a technique for rendering pictures from
a three-dimensional model by following the paths of
simulated light rays through the scene. One of the
most serious problems of ray tracing is that it
requires a relatively large amount of computation
time. While CPU performance has increased
dramatically over the last few years, it is still
insufficient for many ray tracing applications.
Commodity computer graphics chips are probably
today’s most powerful computational hardware for
the dollar. As a result of continued demand for
programmability, modern graphics processing units
(GPUs) such as the NVIDIA GeForce 8 Series are
designed as programmable processors employing a
large number of processor cores [1].

Lately, ray tracing running on GPU have developed
to an excellent substitute to CPU-based ray tracers [2,
3]. However, even though optimized for the GPU
architecture, these implementations can still not

utilize the full power of modern GPUs. GĂźnther et
al.[4] point out that, two main problems need to be
addressed for gaining maximum performance from
the GPU, such as the NVIDIA GeForce 8. First, one
needs to keep only a small state per thread to allow
for enough active threads to run to keep the GPU
busy. The ray tracer of Popov et al. required too
many live registers which resulted in a poor GPU
utilization of below 33% [3]. Secondly, one needs to
assure the coherent execution of threads running in
parallel, due to the very wide SIMD architecture of
current GPUs (32–48 units execute the same
instructions [5]). Execution divergence (i.e.
incoherent branching) can limit performance of ray
tracing to around 40% of the graphics board’s
theoretical potential [2].

Because of accustomed acceleration structure only
with a relatively small number of nodes at the upper
levels, which makes parallelizing over nodes
inefficient and leaves the massive parallelism of
GPUs underexploited. So, we propose a new spatial
partitioning that allows construction of an improved
octree (subtrees) by threads independently. This
approach takes advantage of the parallelism present
by heavily exploiting the hardware for the GPU.
Specifically, Kun Zhou et al.[6] firstly implement
their parallel kd-tree algorithms in BFS (breadth-first
search) order to fully exploit the fine-grained
parallelism of modern GPUs at all stages of kd-tree
construction. Our algorithm also builds octree nodes

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2009 Communication Papers 81 ISBN 978-80-86943-94-7

in this way, which has been observed to give superior
performance in ray tracing compared to other
acceleration structures [7], when built using the
surface area heuristic (SAH) [8].

Section 2 presents previous work in this area, while
Section 3 introduces more formal definitions of our
octree construction. Section 4 discusses our system
implementation, analyzes the performance of our
implementation and compare it with current work.
Finally, in Section 5, we offer some thoughts on
future work.

II. PREVIOUS WORK

In this section we give a brief overview of prior work
on acceleration structures for ray tracing dynamic
scenes.
2.1 Ray Tracing On Parallel Architectures.

There has been a significant interest in studying ray
tracing on parallel architectures. Ray tracing on GPUs
has stimulated much interest recently. [9]
implemented ray-triangle intersection on the GPU.
[10] designed the first ray tracer that runs entirely on
the GPU, employing a uniform grid for acceleration.
[11] introduced two stackless kd-tree traversal
algorithms, which outperform the uniform grid
approach.[12] implemented a limited GPU ray tracer
for dynamic geometry based on bounding-volume
hierarchies and geometry images. None of the above
GPU ray tracers outperforms a well-optimized CPU
ray tracer. Recently, two techniques [2, 3] achieved
better performance than CPU ray tracers. Both
techniques use stackless kd-tree traversal and packet
tracing. Unfortunately these two techniques work for
static scenes only. For dynamic scenes, most existing
methods are CPU-based (e.g., [13, 14]). Kun Zhou et
al.[6] first implemented their parallel kd-tree
algorithms in BFS(breadth-first search) order to fully
exploit the fine-grained parallelism of modern GPUs
at all stages of kd-tree construction, achieves real-time
performance. Shevtsov et al. [15] presented a shared
memory architecture with many CPU-like cores,
including recent multi-core CPUs. The algorithm first
partitions the space into several balanced sub-regions
and then builds a sub-tree for each sub-region in
parallel and in DFS (depth-first search) order. The
algorithm cannot be mapped well to GPU architecture
because modern GPUs require 103 ∼ 104 threads for
optimal performance [5], orders of magnitude greater
than the possible thread number on multi-core CPUs
(e.g., four threads tested in the paper).

2.2 Acceleration Structures

The relative performance of different acceleration
structures has been widely studied. Havran [16]
compares a large number of acceleration structures
across a variety of scenes and determines that the kd-
tree is the best general-purpose acceleration structure
for CPU raytracers. It would seem natural, therefore,
to try to use a kd-tree to accelerate GPU ray tracing.
Construction of high quality KD-tree is bandwidth
hungry and computationally expensive task. Attempts
to reduce time spent on kd-tree construction were
performed using hybrid data structure combining kd-
tree with bounding volumes [17]. Similar combining
of BVH and spatial partitioning for increasing overall
performance was made in [18]. However these
approaches still lack parallel implementation and
optimized traversal like MLRT [19] and thus
demonstrate modest overall performance.

Our algorithm relies on a modified work stealing
approach to ensure an high performance width-first
octree computation. We speed-up and optimize the
construction of (SAH based) octrees. It ensures all
processing units progress simultaneity to the bottom
of the octree, enabling to stop the algorithm at
anytime while ensuring a balanced Octree exploration
(it avoids to waste processing power in a deep
exploration of an octree branch, while an other
process stays several depth level behind). We build
our octree with all stages running in parallel with
minimal synchronization overhead allowing to exploit
as many threads as available to achieve fast octree re-
build from scratch every frame. So our method is an
excellent strategy for interactive ray tracing of
dynamic scenes, which does not require any prior
information about vertices motion.

III. CONSTRUCTION OF IMPROVED
OCTREE

Using high-quality acceleration structures is essential
for achieving interactive ray tracing performance. In
this section, we describe how to build our improved
Octrees for ray tracing.

3.1 Conventional Octree Construction

Typically an octree [20] is a hierarchical data
structure showing how objects are distributed in the
object space, which has been mainly used in image
processing or solid modeling areas, it was first used
for ray tracing by Glassner [21]. Conventional octree

WSCG 2009 Communication Papers 82 ISBN 978-80-86943-94-7

construction divides a three-dimensional space for
each axis using the spatial median, obtains eight
subspaces, which can be represented by an octree.
The root node of an octree represents the entire object
space. If the entire space contains more objects than a
given limit, the space is divided into eight sub-spaces
represented by eight children nodes. A subspace thus
created is defined as a voxel. These voxels are further
divided into eight voxels, and this process is repeated
until the voxels satisfy the given criteria. In general,
the criteria used to determine whether or not the given
octree should be divided further depend upon the
number of objects intersecting with a voxel and the
maximum depth of an octree allowed[22][23].
However, the octree contains cell boundaries that are
static and their location is independent of the objects.
This independence makes the more intersections. The
kd-tree, on the other hand, places the boundaries
around the objects, especially if the empty space is cut
off, thus it can result in much higher intersection
probability. Furthermore, conventional octree
construction uses uniform voxels to get spatial
partition, which leads to higher depth of the tree, and
generates much empty nodes which waste much
memory.

3.2 Improved Octree Construction

The kd-tree is the best general-purpose acceleration
structure, which uses the SAH [8] estimates the ray
tracing performance of a given acceleration structure.
But modern GPU architecture contains multiple
physical multi-processors and requires tens of
thousands of threads to make the best use of these
processors [5], while accustomed acceleration
structure only with a relatively small number of nodes
at the upper levels, which makes parallelizing over
nodes inefficient and leaves the massive parallelism
of GPUs underexploited. Therefore, we propose an
improved octree to exploit the hardware to the largest
possible degree.

Conventional SAH kd-tree evaluates the SAH costs
for all splitting plane candidates, then pick the optimal
candidate with the lowest cost and split the node into
two child nodes. Unlike this method, we extensively
work on all three dimensions at once during SAH
evaluation, and build eight sub-nodes at one time.
Furthermore, we record the optimal candidate with
the lowest cost at X dimension, Y dimension and Z
dimension. Then, the three candidates divide a node
into eight sub-nodes, as shown in Figure 1.

For each potential partition we need to compute Eq.
(1), hence we need to know the primitive counts and

the surface areas of children. To compute these counts
efficiently, Wald et al. [13, 24] proposed to sort the
primitives. However, a much more efficient method
was recently published, which avoids sorting and
which additionally features memory friendly access
patterns [25, 26]. For our octree builder, we adapt the
binning method of [25], which was originally
proposed for building kd-trees. We iterate over the
primitives on all three dimensions at one time to bin

Figure 1: improved octree construction with SAH

them by means of their theory, and by doing so, to
accumulate their count and extend in several bins. The
gathered information in the bins is then used to
reconstruct the primitive counts and the surface areas
on both sides of each border between bins, and thus to
compute the SAH cost function at each border plane.
We can use SIMD operations to compute the SAH
cost function on the three dimensions together that
exploit the parallel performance. As Popov et al. [25],
we minimize memory bandwidth by performing the
binning in all three dimensions during the split of the
parent node.

CP = KT+ [nlSA(Nl)+nrSA(Nr)]， (1)
where nl and nr are the number of contained
primitives in the respective child nodes. We take that
partition that has minimal local cost CP, or terminate
if creating a leaf, which has cost KI·n, is cheaper, with
n = nl +nr being the number of primitives in the
current node.

We give some details of our implementation
concerning efficiency and robustness. Our octree is
completely built on the GPU. We store an AABB and
a counter in a bin. The primitives are represented by
the centroid and the extent of their AABBs. For each
primitive we compute the indices of the bins of all
three dimensions from its centroid in SIMD. Then, the
counters of all three bins are incremented, and their

WSCG 2009 Communication Papers 83 ISBN 978-80-86943-94-7

AABBs are enlarged with the primitive’s AABB
using SIMD min/max operations. After all the
calculations of a node are executed at three
dimensions, we should record the counters and the
surface areas, which will be used in the calculation of
its children. The cost function needs to be sampled
along all three dimensions.

The value of the cost function at a sampling position
depends solely on the count of AABBs that intersect
the left and right sub-volumes for the latter location.
The algorithm collects this data in two phases. In the
first phase, the algorithm sweeps the array of AABBs
and stores at each sample the count of AABBs that
end between this and the previous sample. The
algorithm also stores the number of AABBs that start
between the sample and the next one. In the second
phase, the algorithm uses the collected information to
incrementally reconstruct the AABBs counts at the
sample locations using the formula

nl
i+1 = nl

i+Si,
nr

i+1 = nr
i−Ei,

where ni
l|r describes the number of AABBs to the

left/right of the sample i, and the number of AABBs
that start and end between samples i and i+1 is
denoted by Si and Ei, respectively. The algorithm
evaluates the cost function at the sample locations and
than distributes the AABBs to the left and right
subtrees as described above.
--
Algorithm 1: Improved Octree Construction
Procedure BIN(AABB, sample)

Dxyz  samples of min point of AABB
Uxyz  samples of max point of AABB
For all dim ∈{x,y,z} do
 Increase sample.obj_S[U[dim]]
 Increase sample.obj_E[D[dim]]

End for
End procedure
Function Found(head,dim)

Head[dim].Left[0]0
 Head[dim].Right[0]NumObj
For each sample point at the dim

Head[dim].Left[i]Head[dim].Left[i-
1]+Head[dim].obj_S[i]
Head[dim].Right[i]Head[dim].Right[i-
1]+Head[dim].obj_E[i]

 End for
Evaluates the cost function at the sample locations at
each dim

Return the best found split
End function
For each input triangle t in parallel

Compute AABB for triangle t, add into AABBset
End for
Head0
BIN(all aabb ∈AABBset,0)

For all dim ∈{x,y,z} do In parallel
If NumObj<threshold then
 Run conventional kd-tree routine for subtree

End if
Found(head,dim)

End for
Calculate the counters and the surface areas
Repeat

IV. IMPLEMENTATION AND
RESULTS

In this section, we describe our implementation and
the performance comparison. The described algorithm
has been tested on an Intel Xeon 3.7GHz CPU with
an NVIDIA GeForce 8800 ULTRA (768MB)
graphics card.

4.1 Implementation

We implemented the above octree builder using
NVIDIA’s CUDA framework [5]. Previous GPU
programming systems limit the size and complexity
of GPU code due to their underlying graphics API
based implementations. CUDA supports kernels with
much larger code sizes with a new hardware interface
and instruction caching. The GeForce 8800 allows for
general addressing of memory via a unified processor
model, which enables CUDA to perform unrestricted
scatter-gather operations.

The GeForce 8800 consists of 16 streaming
multiprocessors (SMs), each containing eight
streaming processors (SPs), or processor cores,
running at 1.35GHz. Each core executes a single
thread’s instruction in SIMD (single-instruction,
multiple-data) fashion, with the instruction unit
broadcasting the current instruction to the cores. Each
core has one 32-bit, single-precision floating-point,
multiply-add arithmetic unit that can also perform 32-
bit integer arithmetic.

WSCG 2009 Communication Papers 84 ISBN 978-80-86943-94-7

GĂźnther [4] point out that the number of bins is a
crucial parameter controlling the construction speed
and accuracy. The more bins there are, the more
accurate is the sampling of the SAH cost function, but
the more work has to be done during calculation of
the SAH function from the binned data (the binning
steps are independent from the number of the bins).
Additionally, binning becomes inefficient if the
number of bins is close to the number of to-be-binned
primitives. Therefore the number of bins k per
dimension should be adaptively chosen linearly
depending on number of primitives n and bin-ratio r:
k = n/r and clamp it to [kmin, kmax]. Just as what
GĂźnther said on [4], we experimented with different
parameter sets representing a trade-off between speed
and accuracy. The default settings are kmax = 128,
kmin = 8, and r = 6. The fast settings are kmax = 32,
kmin = 4, and r = 16.

We need to specify the number of thread blocks and
threads per block for the parallel primitives and the
code fragments marked by in parallel. In our current
implementation, we use 256 threads for each block.
The block number is computed by dividing the total
number of parallel threads by the number of threads
per block. During octree construction, we store all
data in linear device memory allocated via CUDA.
For structures with many fields such as nodes and
triangles, we use structure of arrays (SoA) instead of
array of structures (AoS) for optimal GPU cache
performance. As the level of the tree increases, the
data that needs to be processed per thread in order to
construct the next child node decreases, so the
numbers of the threads in a block executed in parallel
at one time can be increased significantly.
Furthermore, because of the small sets of data, the
amount of SAH calculation is decreased significantly,
and shorten the time for dividing. Besides, our octree
construction has lower levels, which makes ray
tracing traversal faster. Considering that conventional
kd-tree can be more efficient on small sets of data, so
if the algorithm encounters a partition with size
bellow some threshold, it switches to a conventional
kd-tree construction at the point.

4.2 Performance Comparison

In this section we present the results of our
experimental work. The quality of the trees is
assessed in two ways. Firstly, we compute the
construction time. Secondly, we evaluate the practical
effect of tree quality on render time by using the
constructed trees in a ray tracer. The results are
presented as a table. To evaluate the performance of
our construction algorithm, we compared it to the
conventional construction algorithm by measuring the

time needed to build a SAH kd-tree using a variety of
scenes, ranging from simple to reasonably complex,
namely BUNNY, FAIRYFOREST, and
CONFERENCE. The scenes and the viewpoints for
the tests can be seen on Figure 2. Table 1 summarizes
the comparison results for several publicly available
scenes as shown in Fig.2. As shown, our octree
construction algorithm is 8 ∼ 12 times faster for these
scenes. Although our technique is capable of
constructing high quality octrees in real-time, it has its
limitations. For small scenes with less than 5K
triangles, CUDA’s API overhead becomes a major
bottleneck. In this case, it is more efficient to switch
to a complete CPU method.

Our octree construction algorithm also scales well
with the number of GPU processors. The running
time contains a scalable portion and a small non-
scalable portion due to the overhead of CUDA API
and driver. Theoretically, the running time is linear
with respect to the reciprocal of the number of
processors. As shown in Fig.3, we ran the algorithm
on a GeForce 8800 ULTRA graphics card with 16, 32,
48, 64, 80, 96, 112, and 128 processors
respectively.As shown in the table, our algorithm
always offer better rendering performance. For
dynamic scenes, our ray tracer can build an octree
from scratch through our fast and efficient
construction method without prior knowledge about
geometry motion, which is a competitive alternative
to a state-of-the-art ray tracer. Note that here we do
not claim that our GPU ray tracer is faster than all
CPU ray tracers. Indeed, implementing the fastest
CPU ray tracer is like chasing a moving target
because various optimizations could be used for
higher performance and some optimizations are
hardware dependent, and better performance can be
achieved by adding more CPU cores.

Figure 2: The scenes used for testing, from left to
right: 1)“BUNNY” 2)“CONFERENCE”
3)“FAIRYFOREST”

Highly
optimized kd-

trees

Our routine Scene and
#triangles

const
r.

time

FPS. constr
. time

FPS

WSCG 2009 Communication Papers 85 ISBN 978-80-86943-94-7

“BUNNY ”,69
K

0.62s 4.9 0.08s 9.3

“CONFEREN
CE ”,282K

1.41s 2.7 0.11s 5.27

“FAIRYFORE
ST ”,180K

1.15s 2.5 0.15s 4.17

Table 1: Construction time and FPS performance for
1024x1024 resolution ， including shading with
shadow. We include the time needed to read back the
result from CUDA and draw them through OpenGL
in our results.

Figure 3: The tree construction time decreases quickly
with the increase in the number of GPU processors

V.CONCLUSIONS AND FUTURE
WORK

In this paper, we present an octree construction
algorithm for the GPU that achieves real-time
performance by heavily exploiting the hardware. This
technique has four important features. Firstly, it builds
octrees in real-time by exploiting the fine-grained
parallelism on the GPU. Secondly, As the level of the
tree increases, the data that needs to be processed per
thread in order to construct the next child node
decreases, so the count of SAH calculation is
decreased significantly, and shorten the time for
dividing. Thirdly, our octree construction has lower
levels, which makes ray tracing traversal faster.
Fourthly, because of using streaming construction,
our octree consume less memory.

In future we plan investigation in the following
directions. We plan to incorporate packets [13] into
the GPU ray tracer for further performance
enhancements. We also intend to amend the algorithm
to add more secondary rays to render. Thirdly, we
consider offloading some of the octree construction

steps to a CPU. Vectorization using SIMD
instructions will increase performance of the
construction algorithm.

ACKNOWLEDGEMENTS

The first author would like to thank the anonymous
reviewers for their insight and helpful comments，
and Wen-qiao Zhu for his enthusiastic discussion
during the early stage of this work. Ren C. has
provided his help in implementation, and
experimentation. This research work has been
partially supported by National Key Technology
R&D Program in the 11th Five year Plan of
China(2007BAH11B05).

REFERENCES

[1] J. Owens. Streaming architectures and technology
trends. GPU Gems 2, pages 457–470, March 2005.
[2] HORN D. R., SUGERMAN J., HOUSTON M.,
HANRAHAN P.: Interactive k-D Tree GPU
Raytracing. In I3D ’07: Proceedings of the 2007
symposium on Interactive 3D graphics and games
(2007), ACM Press, pp. 167–174.
[3]POPOV S., GĂźnther J., SEIDEL H.-P.,
SLUSALLEK P.: Stackless KD-Tree Traversal for
High Performance GPU Ray Tracing. Computer
Graphics Forum 26, 3 (Sept. 2007). (Proceedings of
Eurographics)
[4] GĂźnther et al. Realtime Ray Tracing on GPU
with BVH-based Packet Traversal the
IEEE/Eurographics Symposium on Interactive Ray
Tracing 2007
[5] NVIDIA: The CUDA Homepage.
http://developer.nvidia.com/cuda. 1, 2, 3
[6] Kun Zhou et al. Real-Time KD-Tree Construction
on Graphics Hardware, SIGGRAPH Asia 2008
[7] V. Havran. Heuristic Ray Shooting Algorithms.
PhD thesis, Faculty of Electrical Engineering, Czech
Technical University in Prague, 2001.
[8] J. D. MacDonald and K. S. Booth. Heuristics for
ray tracing using space subdivision. In Graphics
Interface Proceedings 1989, pages 152–163.
[9] CARR, N. A., HALL, J. D., AND HART, J. C.
2002. The ray engine. In Proceedings of Graphics
Hardware, 37–46.
[10] PURCELL, T. J., BUCK, I., MARK, W. R.,
AND HANRAHAN, P. 2002. Ray tracing on
programmable graphics hardware. ACM Trans. Gr.
21, 3, 703–712.

WSCG 2009 Communication Papers 86 ISBN 978-80-86943-94-7

[11] FOLEY, T., AND SUGERMAN, J. 2005. Kd-
tree acceleration structures for a GPU raytracer. In
Graphics Hardware’05.
[12] CARR, N. A., HOBEROCK, J., CRANE, K.,
AND HART, J. C. 2006. Fast GPU ray tracing of
dynamic meshes using geometry images. In
Proceedings of Graphics Interface, 203–209.
[13] WALD I., HAVRAN V.: On building fast kd-
trees for Ray Tracing, and on doing that in O(N log
N). In Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing (Sept.2006), pp. 61–70. 4
[14] YOON, S.-E., CURTIS, S., AND MANOCHA,
D. 2007. Ray tracing dynamic scenes using selective
restructuring. In Eurographics Symposium on
Rendering.
[15] SHEVTSOV, M., SOUPIKOV, A., AND
KAPUSTIN, A. 2007. Highly parallel fast kd-tree
construction for interactive ray tracing of dynamic
scenes. In Eurographics’07, 395–404.
[16] HAVRAN V.: Heuristic Ray Shooting
Algorithms. Ph.D. thesis, Department of Computer
Science and Engineering, Faculty of Electrical
Engineering, Czech Technical University in Prague,
November 2000. 1, 2
[17] HAVRAN V., HERZOG W., SEIDEL H.-P.: On
the Fast Construction of Spatial Hierarchies for Ray
Tracing. In Proceedings of the 2006 IEEE
Symposium on Interactive Ray Tracing (2006), IEEE
Computer Society, pp. 71–80.
[18] WÄCHTER C., KELLER A.: Instant ray tracing:
The bounding interval hierarchy. In Proceedings of
the Eurographics Symposium on Rendering (2006)

[19] RESHETOV A., SOUPIKOV A., HURLEY J.:
Multi-level ray tracing algorithm. ACM Trans. Graph.
24, 3 (2005)
[20] Kyu-Young Whang, et al. Octree-R: An
Adaptive Octree for Efficient Ray Tracing IEEE
TRANSACTIONS ON VISUALIZATION AND
COMPUTER GRAPHICS, VOL. 1, NO. 4,
DECEMBER 1995
[21] AS. Glassner, “Space subdivision for fast ray
tracing,” IEEE Computer Graphics and Applications,
vol. 4, no. 10, pp. 15-22, Oct. 1984.
[22] GOLDSMITH J., SALMON J.: Automatic
Creation of Object Hierarchies for Ray Tracing. IEEE
Computer Graphics and Applications 7, 5 (May 1987),
14–20. 3
[23] MACDONALD J. D., BOOTH K. S.: Heuristics
for Ray Tracing using Space Subdivision. In Graphics
Interface Proceedings 1989 (June 1989), A.K. Peters,
Ltd, pp. 152–163. 1, 3
[24] WALD I., BOULOS S., SHIRLEY P.: Ray
Tracing Deformable Scenes using Dynamic Bounding
Volume Hierarchies. ACM Transactions on Graphics
26, 1 (Jan. 2007), 6. 1, 3, 4, 5, 6
[25] POPOV S., G¨U NTHER J., SEIDEL H.-P.,
SLUSALLEK P.: Experiences with Streaming
Construction of SAH KD-Trees. In Proceedings of the
2006 IEEE Symposium on Interactive Ray Tracing
(Sept. 2006), pp. 89–94. 1, 3, 4, 6
[26] HUNT W., STOLL G., MARK W.: Fast kd-tree
Construction with an Adaptive Error-Bounded
Heuristic. In Proceedings of the 2006 IEEE
Symposium on Interactive Ray Tracing (Sept. 2006),
pp. 81–88. 4, 6

WSCG 2009 Communication Papers 87 ISBN 978-80-86943-94-7

WSCG 2009 Communication Papers 88 ISBN 978-80-86943-94-7

	!_WSCG2009_SHORT_final_NUMBERED.pdf
	C61-full
	D89-full
	ABSTRACT
	Keywords: Raytracing, Octree, GPU, SAH.
	I. INTRODUCTION
	II. PREVIOUS WORK
	III. CONSTRUCTION OF IMPROVED OCTREE
	IV. IMPLEMENTATION AND RESULTS
	V.CONCLUSIONS AND FUTURE WORK

