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ABSTRACT 
Crowd simulation has received increasing attention for two decades because potential applications of crowd 
simulators can be found in various societal domains. The continuum crowd model puts all information related to 
the decision-making process in a single equation, which can then be solved by a Fast Marching Method 
approach. In this paper we propose several improvements to the continuum crowd model: a new governing 
equation, a new collision avoidance method, and, our major contribution, we add vision capabilities to the 
characters, thus making them able to collect new information about their surrounding environment and to 
reconsider path planning according to up-to-date data. 
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1. INTRODUCTION 
Crowd simulation has received increasing attention 
for two decades because potential applications of 
crowd simulators can be found in various societal 
domains: architecture, robotics, building evacuation, 
training systems, video games, etc. The problem has 
been addressed from various viewpoints, depending 
on the original background of people tackling it: 
architecture, physics, psychology, computer graphics, 
etc. Thus various issues require attention, although 
rarely all of them are addressed at the same time, ie 
in a single system: virtual human generation, 
character/rigid body animation, crowd simulation, 
virtual crowd rendering, and even interacting with 
virtual crowds. Rather than listing more or less 
exhaustive reference list, the reader may start with a 
recent dedicated book [Tha07]. A number of crowd 
simulators are now available, both commercial 
solutions and academic ones. Basically they can be 
divided into two categories: behavior versus 
rendering oriented. The first category of systems try 
to generate realistic behavior of crowds, generally for 
specific environments and simulations, such as 
building evacuation, the objective being to assess 
emergency procedures in realistic emergency 
conditions, that is with people in panic and so. The 
second category is mainly devoted to the games 
industry and systems must be able to simulate large 
crowds wit drastic frame rate constraints. Here 
rendering quality is more important than realistic 
behavior. 
Several crowd models can be found in the literature, 
the most popular ones being rule-based systems, 

Reynolds’s social forces [Rey87], and recently 
continuum crowd [Tre06]. More sophisticated 
models propose a layered architecture so as to 
consider different information abstractions and hence 
different behavior modeling levels, such as reactive 
versus cognitive [Bra03][Pel07]. Basically crowd 
simulation models can be divided as either discrete or 
continuous. In a discrete model, a number of 
parameters are evaluated at each time step and a 
decision is taken, for instance move forward or turn 
on the right or stay here. A small change of a single 
parameter can lead to a radically different decision. 
Typical such models are rule-based ones in which 
each possible action is predicated by a condition, all 
possible actions being tested in a given order until a 
valid one had been found. In a continuous model, a 
moving direction is computed as a – continuous - 
function of  all the parameters. Thus a slight change 
of a parameter leads to a slight change of the moving 
direction. The continuum crowd method is probably 
the more elaborated such model [Tre06]. This paper 
extends this model by adding vision capabilities to 
the crowd. 
The remaining of this paper is organized as follow. 
Section 2  recalls the main elements of the continuum 
crowd model, together with some improvements. 
Section 3 presents our solution to add vision skills to 
crowd characters. Some results and a brief discussion 
on the limits of our solution are presented in section 
4 and section 5 is our conclusion. 

2. CONTINUUM CROWD REVISITED 
The basic issue any crowd simulation system has to 
address at each time step of a simulation is to 
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compute the next displacement of each character, that 
is the moving vector (direction and distance). 
Various data can be integrated in the decision-
making process at this time but specific data are 
considered in any crowd simulator: physical 
environment, that is geometry (height, obstacles), and 
positions of other characters. The continuum crowd 
model considers 3 kinds of information: terrain slope, 
crowd density, and discomfort. All of them are 
continuous functions of ℜ2, i.e. the 2.5D simulation 
space. The discomfort field is a flexible way to 
design how comfortable is an individual at a given 
location. Thus it is possible to make characters that 
will more likely walk in pedestrian areas rather than 
on car drives. Obstacles are not explicitly defined but 
they can be easily described their impact on the 
discomfort field, typically by assigning high 
discomfort values to obstacles locations. 

New equation 
The principle of any path search method consists in 
minimizing a travelling cost C, which computation 
can involve various parameters: 

Min[ ∫PCds) ]                             (1) 
where P is the path and ds means that integration is 
taken with respect to path length. 
This requires to be able to evaluate the cost function 
at any point for all possible directions, which yields 
to a function of two variables: location and direction 
of movement. The original continuum crowd cost 
function is as follow [Tre06]: 

C(x,θ) = (αf + β + γg) / f           (2) 
Where x and θ are the location and direction of 
movement, respectively, f is the speed at location x, g 
is the discomfort at position x+θ, and α, β, and γ are 
weights (values in the range [0,1] and verifying 
condition α + β + γ = 1) for individual terms, which 
can be used to define the relative influence of each 
term on the final cost. 
This equation raises some problems though, because 
it is not linear in the weights, which makes it difficult 
when an accurate control of the displacement times is 
required, for instance for the purpose of building 
evacuation certification. Another issue arises for very 
small values of f, for instance in congestion 
situations. 
For this reason we will use a slightly different 
function: 
   C(x,θ) = α + 

    β (1 − [(f(x,θ) − fmin) / (fmax – fmin)]) + 

    γ g(x+θ)                         (3) 
This yields to expected results at limit conditions. For 
instance if we neglect speed (β=0) and discomfort 
(γ=0), the unit cost is 1, which yields to the shortest 

path. If  distance (α=0) and discomfort are neglected, 
we minimize travelling time. Fmin and Fmax are the 
minimal and maximal speeds, which correspond to 
extreme situations, typically in congestion and free 
run at maximum negative slope, respectively. An 
interesting property of this function is that it 
generates values in the range [0,1]. 
Because equation 1 cannot be solved analytically, a 
discrete version is used, which allows us to compute 
an approximation of the optimal path. Thus the 
simulation space is discretized as a regular grid and 
each field (height, speed, discomfort, cost) is 
evaluated at each cell center for isotropic fields 
(height, discomfort) or using a MAC-style 
arrangement [Fed01] for anisotropic ones. 

Collision avoidance versus minimum 
distance enforcement 
The continuous continuum crowd model can prevent 
collisions, assuming density threshold is properly set. 
However, approximation solutions of equations 1 in 
discrete space lead to numerical errors, a typical 
consequence being that collisions actually occur. 
Treuille et al. propose a minimum distance 
enforcement mechanism to address this issue. It 
consists in explicitly checking all pairs of individuals 
in the vicinity of a character before moving it. The 
overhead involved by these tests can be important, 
especially in congestion situations. 
We adopt a different strategy. Once theoretical 
displacements have been computed by the simulator, 
an advector is in charge of actually moving the 
individuals. Several specialization classes have been 
design, which all inherit from a generic advector 
class and implements different advecting strategies, 
the most basic one consisting in just advecting the 
crowd. But more sophisticated advectors have been 
developed, which allows us to evaluate different 
collision avoidance strategies. 
One of them implements the following algorithm: 
AdvectCrowd(list<character> L) 
{ 
  While L is not empty Do 
    Extract a character from the list randomly 
    Vector v = theoretical displacement vector 
    Position p = character position + v 
    Integer #tries = 3 
    While #tries > 0 And there is a collision Do 
      v = v / 2 
      p = p – v 
      #tries = #tries – 1 
    If #tries > 0 Then 
      Move character to its new position 
} 
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Changing the order of advection from a time step to 
the next is important because it contributes to keep 
crowd compactness and it avoids strong slow downs. 
This can arise for instance in a tight corridor in which 
overtaking is impossible. In such a situation, if it 
turns out that the individual at the head of the queue 
is advected in last position, all other characters will 
be blocked, their advections being impossible 
because there is no space in front of them. Note that 
except in such special situations, this kind of problem 
is properly addressed by the simulation phase, the 
high density in front of an individual will make it try 
to overtake by the right or by the left. 
This algorithm offers a good trade-off between 
advection quality and computation complexity. 
Quality of advection can be measured as the distance 
between positions of the crowd using the theoretical 
advection, that is displacement vectors computed by 
the simulator, and actual positions, i.e. collision free 
positions. 

3. VISION AWARENESS 
Here we detail how individual characters of our 
continuum crowd model get vision capabilities and 
thus are able to react to changes in their visual 
environment. 

Problem statement 
In the original continuum crowd model [Tre06], 
every individual has a complete knowledge of the 
whole environment and is able to determine an 
optimal path toward his own group target. Obviously 
this model is not realistic in many common real 
world situations. A trivial case is a discovery process, 
in which someone is trying to find his/her way in a 
partially unknown environment. Another common 
situation is a dynamic environment, for instance a 
city in which a street becomes suddenly no longer 
available for some reason: people far from this place 
are typically not aware of this event and hence should 
not reconsider their path. 
A realistic model should take individual knowledge 
into account, rather than collectivity knowledge. 
Moreover this knowledge should be subject to 
changes, as a function of the various events 
encountered by each individual, typically events 
occurring in his/her vision space. This implies for a 
simulator to include the following mechanisms: 
- manage individual knowledge, that is each 
individual has his own knowledge base, 
- handle knowledge evolution over time. 

Individual knowledge representation 
The original continuum crowd model does not 
consider the large variety of information that can be 
available in an environment, such as buildings, roads, 
trees, lakes, fire, hard-to-walk-in places such as 

dense forests or marsh, etc, but rather considers 
discomfort as a way to take any kind of information 
into account. A nice property is that equation 2 only 
involves three data fields: height, people density, and 
discomfort. Up to the end user to design any function 
to map the various information data to discomfort. 
In order to have each individual reasoning with 
his/her own knowledge base, it is necessary to 
duplicate these three fields for every character. This 
is obviously memory consuming, especially for large 
crowds, which are indeed the main target of the 
original continuum crowd model. We decrease this 
memory overhead by storing only the cost field 
C(x,θ) instead (see equation 3). 

Dynamic individual knowledge 
reconstruction 
Now we describe how each individual knowledge 
base is updated at each time step of the simulation. 
At the beginning, people in a single group share a 
common knowledge base. Then at each time step, 
each individual updates his/her knowledge base 
according to his/her percepts of the environment. 
Percepts can be simply visual or they may include 
information gathered by any source, such as voice 
diffusion – a fire alert for instance – or mobile phone 
communications. For each kind of percept, a specific 
information acquisition mechanism, called percept 
processing unit, is set up, which affects some cells of 
the simulation grid. Terrain slope being likely not to 
change over time, only the crowd density and 
discomfort fields are affected by the percepts 
processing unit. Then C(x,θ) is updated only for the 
cells affected by the percepts. Last, the Fast 
Marching Method is run in order to produce a new 
potential field, which will give the moving direction 
for the avatar. 

Vision percept computation 
Even if various perception channels can be used to 
improve individual knowledge, we concentrate here 
on the visual acquisition of information. This implies 
to be able to determine which part of the scene is 
visible by a given character at any time. The data that 
can be perceived are stored in the simulation grid: 
people positions, moving obstacles such as cars, 
smoke, etc. Hence determining which information is 
directly visible by a character consists in determining 
the list of grid cells that are directly visible from the 
character’s position. A trivial way to solve this 
problem consists in processing every obstacle in 
order to determine the shortest visible distance in 
each possible direction. For geometric obstacles, this 
can be typically implemented with a Z-buffer 
algorithm. But such an approach is not appropriate in 
the case of the our continuum crowd scene for the 
following reasons: 
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- there is no longer geometric obstacles but 
rather they have contributed to determine 
discomfort values (typically walls 
correspond to infinite discomfort values), 

- we need the visibility region as a list of cells 
and thus we would have to compute this list 
from the Z-buffer values, which would had a 
computation overhead, 

- the process could be time consuming for a 
large number of obstacles, while only a few 
of them is generally visible from a given 
location. 

Instead we formulate the visibility condition as the 
solution of two separate Eikonal equations [Set99a]: 
 |∇Tno-obstacles| = 1 |∇Tobstacles| = f(x,y) 
with f(x,y)=∞ where g(x,y)=∞ and f(x,y)=1 anywhere 
else. 
Remember that the discomfort field g(x,y) is 
everywhere positive and equal to ∞ for cells that fall 
inside an obstacle, typically a wall. Solving this 
equations system consists in solving each equation 
separately and then comparing results cell by cell. 
For a given cell, two strictly equal results means that 
the cell center is visible from the character position, 
otherwise the cell center is not visible. To understand 
this, remember that solving the Eikonal equation 
amounts to computing the optimal path from the 
source to the target.  Visual rays use the straight line, 
which means that solution of the left equation 
corresponds to the straight line. Solution to the right 
equation computes the optimal path by treating f(x,y) 
as a cost function, the time necessary to travel 
through a given cell being inversely proportional to 
the cost associated to that cell. Hence the only case 
for which both equations lead to the same value if 
when all cells on the straight line have the minimum 
cost of 1. 
The implementation of this algorithm is not trivial, so 
we skip it here, the reader will find all details on the 
Fast Marching Methods implementation in [Set99b]. 
Now we suppose that there exists a function called 
ComputeVisibilityList(c0 :<cell>), which computes 
the visibility cell list for a given character position 
c0. 
What we need actually to update each character’s 
knowledge base is the list of cells whose information 
has changed since the last time they have been 
processed by this character. So we withdraw from the 
visibility list the cells that were already in the 
visibility list at the previous time step and whose 
attached values have not changed at the current time 
step. 
The algorithm for updating individual knowledge 
bases is as follows: 

<list  of  cells>  DetermineListOfCellsToUpdate(c0  : 
<cell>) 
{ 
  Vt : visibility list at time step t 
  It(c) : information stored in cell c at time step t 
  c : <cell> 
  Vtemp, Vchange : <lists of cells> 
  Vtemp = Vt 
  While Vtemp is not empty Do 
    c << Vtemp 
    If It(c)≠  I t+θ (c) Then 
      Vchange << c 
  V t+θ  = ComputeVisibilityList(c0) 
  Vθ = Vt+θ ­ Vt + Vchange 
  Return Vθ 
} 
 
Once cells which cost changed at the last time step 
have been identified, we update the potential field by 
running the Fast Marching Method on the updated 
cost field C. 

4. RESULTS 
Figure 1 shows a simulation of two avatars moving in 
a building. Since we are just concerned by their 
trajectories, a basic 2D rendering is used here. The 
blue avatar implements the original continuum crowd 
algorithm whereas the magenta one is managed by 
our vision aware method. Both characters start from 
the same location at the same time (frame #0). 
Suddenly (frame #34), a fire arises at a place hidden 
from the characters’ positions. The fire is modeled by 
increasing discomfort at the corresponding location. 
More precisely a discomfort footprint with a 
Gaussian shape is added to the discomfort field so as 
to not only prevent people from crossing the fire but 
also to simulate the heat effect, which should ideally 
make people passing at a reasonable distance from 
the fire spot. We can observe (frame #38) that, as 
soon as the fire starts, the blue character changes his 
trajectory and finds a more appropriate path, though 
not viewing the fire, as if he would be immediately 
aware of this event. The magenta character, who has 
visual capabilities, continues on the same path (frame 
#88). As soon as he is able to watch the fire (frame 
#100), he changes his path accordingly, which in this 
case yields to going back in the corridor (frame #108) 
and follow an alternative path (frames #180 and 
#280). 
Our simulator can also provide a realistic 3D 
rendering with 3D characters, which are animated 
with the Cal3D library [Cal3D]. 
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Figure 1: Original continuum crowd model (blue) 
versus vision aware model (magenta). 
 

Limits 
One of the nice properties of the original continuum 
crowd formulation is its scalability with the number 
of avatars. The memory and computational 
complexity is linear with the number of avatar 
groups, rather than the number of avatars. In large 

crowds of people having common objectives and 
common discomfort fields, computation is 
particularly efficient. Introducing variety in the 
discomfort as a function of information gathered 
along each individual path leads to having as many 
copies of the discomfort field as the number of 
avatars. This leads to both memory and 
computational overheads. But people starting at 
about the same location toward a common goal leads 
to a flocking phenomenon [Rey87]. As a 
consequence, they tend to observe the same 
phenomena at the same time. Such set of people 
might be grouped together as sub-groups, so as not to 
duplicate their discomfort fields. An error metrics 
could be defined in order to evaluate the correlation 
degree of individual knowledge within each sub-
group, together with conditions for sub-group 
cutting. 
Simulating heat effects of the fire is one of the 
properties that a Gaussian footprint can provide but 
of course this is not a reliable approach to model heat 
transfer: after a certain amount of time, heat should 
be felt at a distance that is not directly related to 
visibility. But another nice property is to avoid a 
geometric description of the fire, which would 
probably lead to people passing exactly at the limit of 
the fire zone, thus describing unrealistic perfectly 
circular trajectories. 

5. CONCLUSION 
Continuum crowds is an elegant model for crowd 
simulation, providing a mathematical and hence 
robust environment for various crowd behavior 
modeling. Our current work consists in evaluating 
the potential of this model for various crowd 
behaviors, which are typically modeled through a 
discrete formulation. Among them, vision awareness 
is an important issue since all entities that may be 
candidates for simulation do have vision capabilities: 
pedestrians, cars with their drivers, animals, even 
robots. Our solution is successful in enabling 
individuals to perceive their visual environment but 
adds an important computation overhead. Further 
investigations are required to find ways to decrease 
this cost, grouping individuals with similar 
viewpoints being a possible solution. 
A further step in the direction of realistic crowd 
modeling needs to consider individual diversity in the 
way this information is processed in each brain and 
to model the underneath cognitive mechanisms. 
Coupling a cognitive reasoning module with a 
continuum crowd model in a hybrid architecture is 
one of our challenges now. One of the main issues is 
the continuous versus discrete models, cognitive 
models, such as those found in the Multi-Agent 
Systems literature, being generally discrete. 
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