

Vision Aware Continuum Crowds

 Wilfrid Lefer

University of Pau
 64 013 Pau, France

lefer@univ-pau.fr

ABSTRACT
Crowd simulation has received increasing attention for two decades because potential applications of crowd
simulators can be found in various societal domains. The continuum crowd model puts all information related to
the decision-making process in a single equation, which can then be solved by a Fast Marching Method
approach. In this paper we propose several improvements to the continuum crowd model: a new governing
equation, a new collision avoidance method, and, our major contribution, we add vision capabilities to the
characters, thus making them able to collect new information about their surrounding environment and to
reconsider path planning according to up-to-date data.

Keywords
Computer animation, crowd simulation, continuous models.

1. INTRODUCTION
Crowd simulation has received increasing attention
for two decades because potential applications of
crowd simulators can be found in various societal
domains: architecture, robotics, building evacuation,
training systems, video games, etc. The problem has
been addressed from various viewpoints, depending
on the original background of people tackling it:
architecture, physics, psychology, computer graphics,
etc. Thus various issues require attention, although
rarely all of them are addressed at the same time, ie
in a single system: virtual human generation,
character/rigid body animation, crowd simulation,
virtual crowd rendering, and even interacting with
virtual crowds. Rather than listing more or less
exhaustive reference list, the reader may start with a
recent dedicated book [Tha07]. A number of crowd
simulators are now available, both commercial
solutions and academic ones. Basically they can be
divided into two categories: behavior versus
rendering oriented. The first category of systems try
to generate realistic behavior of crowds, generally for
specific environments and simulations, such as
building evacuation, the objective being to assess
emergency procedures in realistic emergency
conditions, that is with people in panic and so. The
second category is mainly devoted to the games
industry and systems must be able to simulate large
crowds wit drastic frame rate constraints. Here
rendering quality is more important than realistic
behavior.
Several crowd models can be found in the literature,
the most popular ones being rule-based systems,

Reynolds’s social forces [Rey87], and recently
continuum crowd [Tre06]. More sophisticated
models propose a layered architecture so as to
consider different information abstractions and hence
different behavior modeling levels, such as reactive
versus cognitive [Bra03][Pel07]. Basically crowd
simulation models can be divided as either discrete or
continuous. In a discrete model, a number of
parameters are evaluated at each time step and a
decision is taken, for instance move forward or turn
on the right or stay here. A small change of a single
parameter can lead to a radically different decision.
Typical such models are rule-based ones in which
each possible action is predicated by a condition, all
possible actions being tested in a given order until a
valid one had been found. In a continuous model, a
moving direction is computed as a – continuous -
function of all the parameters. Thus a slight change
of a parameter leads to a slight change of the moving
direction. The continuum crowd method is probably
the more elaborated such model [Tre06]. This paper
extends this model by adding vision capabilities to
the crowd.
The remaining of this paper is organized as follow.
Section 2 recalls the main elements of the continuum
crowd model, together with some improvements.
Section 3 presents our solution to add vision skills to
crowd characters. Some results and a brief discussion
on the limits of our solution are presented in section
4 and section 5 is our conclusion.

2. CONTINUUM CROWD REVISITED
The basic issue any crowd simulation system has to
address at each time step of a simulation is to

WSCG 2009 Communication Papers 89 ISBN 978-80-86943-94-7

compute the next displacement of each character, that
is the moving vector (direction and distance).
Various data can be integrated in the decision-
making process at this time but specific data are
considered in any crowd simulator: physical
environment, that is geometry (height, obstacles), and
positions of other characters. The continuum crowd
model considers 3 kinds of information: terrain slope,
crowd density, and discomfort. All of them are
continuous functions of ℜ2, i.e. the 2.5D simulation
space. The discomfort field is a flexible way to
design how comfortable is an individual at a given
location. Thus it is possible to make characters that
will more likely walk in pedestrian areas rather than
on car drives. Obstacles are not explicitly defined but
they can be easily described their impact on the
discomfort field, typically by assigning high
discomfort values to obstacles locations.

New equation
The principle of any path search method consists in
minimizing a travelling cost C, which computation
can involve various parameters:

Min[∫PCds)] (1)
where P is the path and ds means that integration is
taken with respect to path length.
This requires to be able to evaluate the cost function
at any point for all possible directions, which yields
to a function of two variables: location and direction
of movement. The original continuum crowd cost
function is as follow [Tre06]:

C(x,θ) = (αf + β + γg) / f (2)
Where x and θ are the location and direction of
movement, respectively, f is the speed at location x, g
is the discomfort at position x+θ, and α, β, and γ are
weights (values in the range [0,1] and verifying
condition α + β + γ = 1) for individual terms, which
can be used to define the relative influence of each
term on the final cost.
This equation raises some problems though, because
it is not linear in the weights, which makes it difficult
when an accurate control of the displacement times is
required, for instance for the purpose of building
evacuation certification. Another issue arises for very
small values of f, for instance in congestion
situations.
For this reason we will use a slightly different
function:
 C(x,θ) = α +

 β (1 − [(f(x,θ) − fmin) / (fmax – fmin)]) +

 γ g(x+θ) (3)
This yields to expected results at limit conditions. For
instance if we neglect speed (β=0) and discomfort
(γ=0), the unit cost is 1, which yields to the shortest

path. If distance (α=0) and discomfort are neglected,
we minimize travelling time. Fmin and Fmax are the
minimal and maximal speeds, which correspond to
extreme situations, typically in congestion and free
run at maximum negative slope, respectively. An
interesting property of this function is that it
generates values in the range [0,1].
Because equation 1 cannot be solved analytically, a
discrete version is used, which allows us to compute
an approximation of the optimal path. Thus the
simulation space is discretized as a regular grid and
each field (height, speed, discomfort, cost) is
evaluated at each cell center for isotropic fields
(height, discomfort) or using a MAC-style
arrangement [Fed01] for anisotropic ones.

Collision avoidance versus minimum
distance enforcement
The continuous continuum crowd model can prevent
collisions, assuming density threshold is properly set.
However, approximation solutions of equations 1 in
discrete space lead to numerical errors, a typical
consequence being that collisions actually occur.
Treuille et al. propose a minimum distance
enforcement mechanism to address this issue. It
consists in explicitly checking all pairs of individuals
in the vicinity of a character before moving it. The
overhead involved by these tests can be important,
especially in congestion situations.
We adopt a different strategy. Once theoretical
displacements have been computed by the simulator,
an advector is in charge of actually moving the
individuals. Several specialization classes have been
design, which all inherit from a generic advector
class and implements different advecting strategies,
the most basic one consisting in just advecting the
crowd. But more sophisticated advectors have been
developed, which allows us to evaluate different
collision avoidance strategies.
One of them implements the following algorithm:
AdvectCrowd(list<character> L)
{
 While L is not empty Do
 Extract a character from the list randomly
 Vector v = theoretical displacement vector
 Position p = character position + v
 Integer #tries = 3
 While #tries > 0 And there is a collision Do
 v = v / 2
 p = p – v
 #tries = #tries – 1
 If #tries > 0 Then
 Move character to its new position
}

WSCG 2009 Communication Papers 90 ISBN 978-80-86943-94-7

Changing the order of advection from a time step to
the next is important because it contributes to keep
crowd compactness and it avoids strong slow downs.
This can arise for instance in a tight corridor in which
overtaking is impossible. In such a situation, if it
turns out that the individual at the head of the queue
is advected in last position, all other characters will
be blocked, their advections being impossible
because there is no space in front of them. Note that
except in such special situations, this kind of problem
is properly addressed by the simulation phase, the
high density in front of an individual will make it try
to overtake by the right or by the left.
This algorithm offers a good trade-off between
advection quality and computation complexity.
Quality of advection can be measured as the distance
between positions of the crowd using the theoretical
advection, that is displacement vectors computed by
the simulator, and actual positions, i.e. collision free
positions.

3. VISION AWARENESS
Here we detail how individual characters of our
continuum crowd model get vision capabilities and
thus are able to react to changes in their visual
environment.

Problem statement
In the original continuum crowd model [Tre06],
every individual has a complete knowledge of the
whole environment and is able to determine an
optimal path toward his own group target. Obviously
this model is not realistic in many common real
world situations. A trivial case is a discovery process,
in which someone is trying to find his/her way in a
partially unknown environment. Another common
situation is a dynamic environment, for instance a
city in which a street becomes suddenly no longer
available for some reason: people far from this place
are typically not aware of this event and hence should
not reconsider their path.
A realistic model should take individual knowledge
into account, rather than collectivity knowledge.
Moreover this knowledge should be subject to
changes, as a function of the various events
encountered by each individual, typically events
occurring in his/her vision space. This implies for a
simulator to include the following mechanisms:
- manage individual knowledge, that is each
individual has his own knowledge base,
- handle knowledge evolution over time.

Individual knowledge representation
The original continuum crowd model does not
consider the large variety of information that can be
available in an environment, such as buildings, roads,
trees, lakes, fire, hard-to-walk-in places such as

dense forests or marsh, etc, but rather considers
discomfort as a way to take any kind of information
into account. A nice property is that equation 2 only
involves three data fields: height, people density, and
discomfort. Up to the end user to design any function
to map the various information data to discomfort.
In order to have each individual reasoning with
his/her own knowledge base, it is necessary to
duplicate these three fields for every character. This
is obviously memory consuming, especially for large
crowds, which are indeed the main target of the
original continuum crowd model. We decrease this
memory overhead by storing only the cost field
C(x,θ) instead (see equation 3).

Dynamic individual knowledge
reconstruction
Now we describe how each individual knowledge
base is updated at each time step of the simulation.
At the beginning, people in a single group share a
common knowledge base. Then at each time step,
each individual updates his/her knowledge base
according to his/her percepts of the environment.
Percepts can be simply visual or they may include
information gathered by any source, such as voice
diffusion – a fire alert for instance – or mobile phone
communications. For each kind of percept, a specific
information acquisition mechanism, called percept
processing unit, is set up, which affects some cells of
the simulation grid. Terrain slope being likely not to
change over time, only the crowd density and
discomfort fields are affected by the percepts
processing unit. Then C(x,θ) is updated only for the
cells affected by the percepts. Last, the Fast
Marching Method is run in order to produce a new
potential field, which will give the moving direction
for the avatar.

Vision percept computation
Even if various perception channels can be used to
improve individual knowledge, we concentrate here
on the visual acquisition of information. This implies
to be able to determine which part of the scene is
visible by a given character at any time. The data that
can be perceived are stored in the simulation grid:
people positions, moving obstacles such as cars,
smoke, etc. Hence determining which information is
directly visible by a character consists in determining
the list of grid cells that are directly visible from the
character’s position. A trivial way to solve this
problem consists in processing every obstacle in
order to determine the shortest visible distance in
each possible direction. For geometric obstacles, this
can be typically implemented with a Z-buffer
algorithm. But such an approach is not appropriate in
the case of the our continuum crowd scene for the
following reasons:

WSCG 2009 Communication Papers 91 ISBN 978-80-86943-94-7

- there is no longer geometric obstacles but
rather they have contributed to determine
discomfort values (typically walls
correspond to infinite discomfort values),

- we need the visibility region as a list of cells
and thus we would have to compute this list
from the Z-buffer values, which would had a
computation overhead,

- the process could be time consuming for a
large number of obstacles, while only a few
of them is generally visible from a given
location.

Instead we formulate the visibility condition as the
solution of two separate Eikonal equations [Set99a]:
 |∇Tno-obstacles| = 1 |∇Tobstacles| = f(x,y)
with f(x,y)=∞ where g(x,y)=∞ and f(x,y)=1 anywhere
else.
Remember that the discomfort field g(x,y) is
everywhere positive and equal to ∞ for cells that fall
inside an obstacle, typically a wall. Solving this
equations system consists in solving each equation
separately and then comparing results cell by cell.
For a given cell, two strictly equal results means that
the cell center is visible from the character position,
otherwise the cell center is not visible. To understand
this, remember that solving the Eikonal equation
amounts to computing the optimal path from the
source to the target. Visual rays use the straight line,
which means that solution of the left equation
corresponds to the straight line. Solution to the right
equation computes the optimal path by treating f(x,y)
as a cost function, the time necessary to travel
through a given cell being inversely proportional to
the cost associated to that cell. Hence the only case
for which both equations lead to the same value if
when all cells on the straight line have the minimum
cost of 1.
The implementation of this algorithm is not trivial, so
we skip it here, the reader will find all details on the
Fast Marching Methods implementation in [Set99b].
Now we suppose that there exists a function called
ComputeVisibilityList(c0 :<cell>), which computes
the visibility cell list for a given character position
c0.
What we need actually to update each character’s
knowledge base is the list of cells whose information
has changed since the last time they have been
processed by this character. So we withdraw from the
visibility list the cells that were already in the
visibility list at the previous time step and whose
attached values have not changed at the current time
step.
The algorithm for updating individual knowledge
bases is as follows:

<list of cells> DetermineListOfCellsToUpdate(c0 :
<cell>)
{
 Vt : visibility list at time step t
 It(c) : information stored in cell c at time step t
 c : <cell>
 Vtemp, Vchange : <lists of cells>
 Vtemp = Vt
 While Vtemp is not empty Do
 c << Vtemp
 If It(c)≠ I t+θ (c) Then
 Vchange << c
 V t+θ = ComputeVisibilityList(c0)
 Vθ = Vt+θ ­ Vt + Vchange
 Return Vθ
}

Once cells which cost changed at the last time step
have been identified, we update the potential field by
running the Fast Marching Method on the updated
cost field C.

4. RESULTS
Figure 1 shows a simulation of two avatars moving in
a building. Since we are just concerned by their
trajectories, a basic 2D rendering is used here. The
blue avatar implements the original continuum crowd
algorithm whereas the magenta one is managed by
our vision aware method. Both characters start from
the same location at the same time (frame #0).
Suddenly (frame #34), a fire arises at a place hidden
from the characters’ positions. The fire is modeled by
increasing discomfort at the corresponding location.
More precisely a discomfort footprint with a
Gaussian shape is added to the discomfort field so as
to not only prevent people from crossing the fire but
also to simulate the heat effect, which should ideally
make people passing at a reasonable distance from
the fire spot. We can observe (frame #38) that, as
soon as the fire starts, the blue character changes his
trajectory and finds a more appropriate path, though
not viewing the fire, as if he would be immediately
aware of this event. The magenta character, who has
visual capabilities, continues on the same path (frame
#88). As soon as he is able to watch the fire (frame
#100), he changes his path accordingly, which in this
case yields to going back in the corridor (frame #108)
and follow an alternative path (frames #180 and
#280).
Our simulator can also provide a realistic 3D
rendering with 3D characters, which are animated
with the Cal3D library [Cal3D].

WSCG 2009 Communication Papers 92 ISBN 978-80-86943-94-7

Figure 1: Original continuum crowd model (blue)
versus vision aware model (magenta).

Limits
One of the nice properties of the original continuum
crowd formulation is its scalability with the number
of avatars. The memory and computational
complexity is linear with the number of avatar
groups, rather than the number of avatars. In large

crowds of people having common objectives and
common discomfort fields, computation is
particularly efficient. Introducing variety in the
discomfort as a function of information gathered
along each individual path leads to having as many
copies of the discomfort field as the number of
avatars. This leads to both memory and
computational overheads. But people starting at
about the same location toward a common goal leads
to a flocking phenomenon [Rey87]. As a
consequence, they tend to observe the same
phenomena at the same time. Such set of people
might be grouped together as sub-groups, so as not to
duplicate their discomfort fields. An error metrics
could be defined in order to evaluate the correlation
degree of individual knowledge within each sub-
group, together with conditions for sub-group
cutting.
Simulating heat effects of the fire is one of the
properties that a Gaussian footprint can provide but
of course this is not a reliable approach to model heat
transfer: after a certain amount of time, heat should
be felt at a distance that is not directly related to
visibility. But another nice property is to avoid a
geometric description of the fire, which would
probably lead to people passing exactly at the limit of
the fire zone, thus describing unrealistic perfectly
circular trajectories.

5. CONCLUSION
Continuum crowds is an elegant model for crowd
simulation, providing a mathematical and hence
robust environment for various crowd behavior
modeling. Our current work consists in evaluating
the potential of this model for various crowd
behaviors, which are typically modeled through a
discrete formulation. Among them, vision awareness
is an important issue since all entities that may be
candidates for simulation do have vision capabilities:
pedestrians, cars with their drivers, animals, even
robots. Our solution is successful in enabling
individuals to perceive their visual environment but
adds an important computation overhead. Further
investigations are required to find ways to decrease
this cost, grouping individuals with similar
viewpoints being a possible solution.
A further step in the direction of realistic crowd
modeling needs to consider individual diversity in the
way this information is processed in each brain and
to model the underneath cognitive mechanisms.
Coupling a cognitive reasoning module with a
continuum crowd model in a hybrid architecture is
one of our challenges now. One of the main issues is
the continuous versus discrete models, cognitive
models, such as those found in the Multi-Agent
Systems literature, being generally discrete.

WSCG 2009 Communication Papers 93 ISBN 978-80-86943-94-7

6. REFERENCES
[Bra03] Braun, A., Raupp Musse, S., and L.O.B.
Bodmann. Modeling Individual Behaviors in Crowd
Simulation. Computer Animation and Social Agents,
New Brunswick (USA), 2003, pages 143-148.
[Fed01] Fedkiv, R., Stam, J., and H. Jensen, H.
Visual Simulation of Smoke. In ACM Computer
Graphics (SIGGRAPH’01 proceedings), pages 15–
22.
[Pel07] Pelechano, N., , Allbeck, J., and N. Badler.
Controlling Individual Agents in High-Density
Crowd Simulation. ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA'07),
August 3-4, San Diego (USA), 2007.
[Rey87] Reynolds, C. W. Flocks, Herds, and
Schools: A Distributed Behavioral Model. Computer

Graphics 21(4) (SIGGRAPH'87 Conference
Proceedings), pages 25-34.
[Set99a] Sethian, J.A., Level Set Methods and Fast
Marching Methods, Evolving Interfaces in
Computational Geometry, Fluid Mechanics,
Computer Vision, and Material Science, 2nd edition,
1999, Cambridge University Press.
[Set99b] Sethian, J.A., Fast Marching Methods,
SIAM Review 41, July 1999.
[Tha07] Thalmann, D., and S. Raupp Musse. Crowd
Simulation. Springer, 2007.
[Tre06] Treuille, A., Cooper, S, and Z. Popovic.
Continuum Crowds. ACM Transactions on Graphics
25(3) (SIGGRAPH’06 Conference Proceedings).
[Cal3D] http://home.gna.org/cal3d/

WSCG 2009 Communication Papers 94 ISBN 978-80-86943-94-7

	!_WSCG2009_SHORT_final_NUMBERED.pdf
	C61-full
	E02-full

