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ABSTRACT

Toruses and double spheres are particular cases of Dupin cyclides. In this paper, we study the conversion of rational
biquadratic B́ezier surfaces into Dupin cyclide patches. We give the conditions that the Bézier surface should satisfy to be
convertible, and present a new conversion algorithm to construct the torus or double sphere patch corresponding to a given
Bézier surface, some conversion examples are illustrated and commented.
Keywords: Torus and Dupin cyclides surfaces, rational biquadratic Bézier surfaces.

1 Introduction

Rational biquadratic Bézier surfaces are tensor product
parametric surfaces widely used in the first generation of
computer graphics applications and geometric modelling
systems. Good introductions to these surfaces may be found
in [PT89, For68, DP98, HL93].

Dupin cyclide surfaces represent a family of ringed sur-
faces, i.e., surfaces generated by a circle of variable radius
sweeping through space [Pra90, Deg94]. It is possible to
formulate them either as algebraic or parametric surfaces.
In recent decades, the interest of several authors in these
surfaces relates to their potential value in the development
of CAGD tools [Pra95, DMP93, Gar07]. Also, cyclide in-
tersections and the use of cyclides as blending surfaces have
been investigated [BP98, She98].
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The primary aim of this paper is to present an algorithm
to convert a rational biquadratic Bézier surface into a par-
ticular Dupin cyclide patch. This conversion allows the
obtention of parameters of the implicit equation of Dupin
cyclide corresponding to the converted surface. Section
2 recalls the definition of Bézier curves and surfaces, and
Dupin cyclides. Section 3 shows the construction of the
control points and the computation of the weights of a
Bézier surface which can be represented by a Dupin cyclide
patch. Section 4 details the conversion algorithm. Section 5
presents our conclusions and suggests directions for future
work.

2 Background

2.1 Rational Bézier curves and surfaces

Rational quadratic Bézier curves are second degree para-
metric curves defined by:

−−−−→
OM(t) =

∑2
i=0 wiBi(t)

−−→
OPi∑2

i=0 wiBi(t)
, t ∈ [0, 1] (1)

whereBi(t) are quadratic Bernstein polynomials defined
as:

B0(t) = (1 − t)2 , B1(t) = 2t (1 − t) andB2(t) = t2
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and for i ∈ {0, 1, 2}, wi are weights associated with
the control pointsPi. For a standard rational quadratic
Bézier curve,w0 and w2 are equal to1, while w1 can
be used to control the type of conic defined by the curve
[Far93, Far99, Gar07].

Rational biquadratic Bézier surfaces are defined by con-
trol points(Pij)0≤i,j≤2 and weights(wij)0≤i,j≤2 as:

−−−−−−−→
OM (u, v) =

∑2
i=0

∑2
j=0 wijBi (u)Bj (v)

−−−→
OPij∑2

i=0

∑2
j=0 wijBi (u)Bj (v)

(2)

More details on Bézier surfaces can be found in [Far93,
Far99, Gar07]. In the remaining of this paper, we only con-
sider rational Bézier curves and surfaces of degree two to
which we refer, for short, by Bézier curves and Bézier sur-
faces.

2.2 Dupin cyclides

Non-degenerate Dupin cyclides, figure 1(a), have been
definied by P. Dupin [Dup22]. A. R. Forsyth [For12] and G.
Darboux [For12, Dar17] have given two equivalent implicit
equations:(
x2 + y2 + z2 − µ2 + b2

)2
= 4 (ax− cµ)2 + 4b2y2 (3)

(
x2 + y2 + z2 − µ2 − b2

)2
= 4 (cx− aµ)2 − 4b2z2 (4)

in an orthonormal basis(O,−→ı0 ,−→0 ,
−→
k0) whereO is called

Dupin cyclide center. Parametersa, b andc are related by
c2 = a2 − b2. The parametera is always greater than or
equal toc. Parametersa, c andµ determine the type of
the cyclide. Whenc < µ ≤ a it is a ring cyclide, when
0 < µ ≤ c it is a horned cyclide, and whenµ > a it is a
spindle cyclide.

A Dupin cyclide admits two planes of symmetryPy :
y = 0 andPz : z = 0 which define two couples of cir-
cles, called principal circles, figures 2(a) and 2(b). From the
knowledge of a couple of principal circles and the Dupin cy-
clide type, it is easy to calculate Dupin cyclide parameters
[Gar07].

If c = 0 anda 6= 0 then the Dupin cyclide is a torus,
figure 1(b), and then :

• principal circles of the Dupin cyclide inPy have the
same radius, they represent a torus meridian;

• principal circles of the Dupin cyclide inPz become
concentric circles.

If a = c = b then a Dupin cyclide is a double sphere and
principal circles in both planes are identical.

The planes containing circles of curvature of a Dupin cy-
clide form two pencils of planes, figure 3, and define two

(a)

(b)

Figure 1: A ring Dupin cyclide (a) and a ring torus (b).

straight lines∆θ as the intersection of the planes of the first
pencil and∆ψ as the intersection of the planes of the other
pencil. If the Dupin cyclide is a torus, the line∆ψ belongs
to the infinity plane (the planes containing circles of curva-
ture are parallel).

Figure 4 shows lines∆θ and∆ψ with the principal cir-
cles of the ring Dupin cyclide in planePy (Cθ1, Cθ2) and in
planePz (Cψ1 , Cψ2 ). ∆0 is the common perpendicular to∆θ

and∆ψ . More details about properties of Dupin cyclide can
be found in [Pra90, She98, AD96, DMP93].

Several authors have proposed algorithms to convert a
Dupin cyclide patch into a Bézier surface [Pra90, Ued95,
AD96, FGP05, Gar07] and vice-versa [Gar07, GFN06]. Ta-
ble 1 gives the four most important properties of control
points of a Bézier surface obtained by the conversion of a
Dupin cyclide patch.
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(a)

(b)

Figure 2: Principal circles of ring Dupin cyclides. (a) : in
planePy : y = 0. (b) : in planePz : z = 0.

(a) (b)

Figure 3: Two pencils of planes generated by Dupin cyclide
curvature circles defining∆θ (a) and∆ψ (b).

Figure 4: Straight lines∆θ and∆ψ obtained as intersec-
tions of two pencil planes.

(PG1) P00, P02 , P22 etP20 are cocyclical

(PG2)
P00P01 = P01P02 P02P12 = P12P22

P22P21 = P21P20 P00P10 = P10P20

(PG3)
−−−−→
P00P10 ⊥

−−−−→
P00P01

−−−−→
P02P01 ⊥

−−−−→
P02P12

−−−−→
P22P12 ⊥

−−−−→
P22P21

−−−−→
P20P21 ⊥

−−−−→
P20P10

(PG4)

−−−−→
P00P11 •

(−−−−→
P00P10 ×

−−−−→
P00P01

)
= 0

−−−−→
P02P11 •

(−−−−→
P02P01 ×

−−−−→
P02P12

)
= 0

−−−−→
P22P11 •

(−−−−→
P22P12 ×

−−−−→
P22P21

)
= 0

−−−−→
P20P11 •

(−−−−→
P20P21 ×

−−−−→
P20P10

)
= 0

Table 1: Geometrical properties of a Bézier surface ob-
tained by conversion of a Dupin cyclide.

In table 1, property (PG4) can be presented as:

P11 ∈ Aff {P00;P01;P10} ∩Aff {P02;P12;P01}
∩ Aff {P20;P21;P10} ∩Aff {P22;P21;P12}

(5)
whereAff {A;B;C} designate the affine space generated
by pointsA, B andC.

3 Construction of the Bézier surface

In this section, we construct a Bézier surface convertible
to a Dupin cyclide patch and so properties of table 1 must
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be satisfied [Gar07, GFN06]. The construction of a Bézier
surface convertible to a torus patch or a double sphere patch
is also considered.

3.1 Dupin cyclide case

As Dupin cyclide curvature lines are circles, the border
lines of the Bézier surface to be convertible must be circular
arcs. To ensure the convertibility of the Bézier surface, the
following three conditions, on weight computation, has to
be satisfied:
(i) we havew00 = w02 = w20 = 1 and value ofw22 is
calculated using Ueda’s method [Ued95];
(ii) as border lines of a Bézier surface are Bézier curves
reprenting circular arcs, it is easy to determine the weights
w10, w01,w21 andw12 [Gar07];
(iii) the computation of weightw11 is more complex and
can be done using theorem 1 wherebar

{
(Ai, αi)i∈I

}
in-

dicates the barycentre of collection(Ai, αi)i∈I of level-
headed points:

Theorem 1 Barycentric middle curve
Let us consider a B́ezier surface defined by control points

(Pij)0≤i,j≤2 and weights(wij)0≤i,j≤2.
LetGui = bar {(Pi0;wi0) , (Pi1; 2wi1) , (Pi2;wi2)} and

αui = wi0 + 2wi1 + wi2 wherei ∈ [[0; 2]].
LetGvi = bar {(P0i;w0i) , (P1i; 2w1i) , (P2i;w2i)} and

αvi = w0i + 2w1i + w2i wherei ∈ [[0; 2]].
If

∑2
i=0 α

u
i 6= 0, the barycentric middle curveu 7→

M
(
u, 1

2

)
is a B́ezier curve with control points(Gui ;α

u
i )i∈[[0;2]].

If
∑2

i=0 α
v
i 6= 0, the barycentric middle curvev 7→

M
(

1
2 , v

)
is a B́ezier curve with control points(Gvi ;α

v
i )i∈[[0;2]].

Proof:
−−−−−−−→
OM

`

u, 1
2

´

=
P

2

i=0

P

2

j=0
wijBi(u)Bj( 1

2
)
−−−→

OPij
P

2

i=0

P

2

j=0
wijBi(u)Bj( 1

2
)

=

P

2

i=0
Bi(u)

“

wi0B0( 1

2
)
−−−→

OPi0+wi1B1( 1

2
)
−−−→

OPi1+wi2B2( 1

2
)
−−−→

OPi2

”

P

2

i=0
Bi(u)(wi0B0( 1

2
)+wi1B1( 1

2
)+wi2B2( 1

2
))

=

P

2

i=0
Bi(u)

“

wi0
−−−→

OPi0+2wi1
−−−→

OPi1+wi2
−−−→

OPi2

”

P

2

i=0
Bi(u)(wi0+2wi1+wi2)

= 1
P

2

i=0
Bi(u)αi

P2
i=0 Bi (u) αi

−−−→
OGu

i

whereGu
i

= bar {(Pi0;wi0) , (Pi1; 2wi1) , (Pi2;wi2)}
with αi = wi0 + 2wi1 + wi2.

The second proof is similar.

�

To determine the weigthw11, we impose that the point
Gu1 (resp.Gv1) belongs to the perpendicular bissector plane
of [Gu0Gu2 ] (resp.[Gv0Gv2 ]).

The following section considers the conversion of a
Bézier surface into a patch of a torus or a patch of a double

sphere which are particular cases of Dupin cyclides. The
general cases (conversion of a Bézier surface into a regular
Dupin cyclide) has been consider earlier [Gar07, GFN06].
To summerize, a convertible Bézier surface must satisfy
control points properties of table 1 and the three weight con-
ditions given above.

3.2 Torus and double sphere case

We consider that two opposite edges (circular arcs) of the
Bézier surface to be converted are in two parallel planes. In
this case, the line∆ψ belongs to the infinity space and the
conversion result will be a patch of a torus (c = 0, a 6= 0)
or a patch of a double sphere (a = c = 0). To distinguish
between these two cases, we have to consider the remain-
ing edges of the Bézier surface: if the circles containing
the edges have the same diameter line, it is a double sphere
patch, otherwise, it is a torus patch. The type of torus can
be determined throught the following three tests:

• if the circles are disjoint, the result is a ring torus patch;

• if the circles are secant in two points, the result is a
spindle torus patch and the two points of intersection
define∆θ which will be used as a frame axis in the
conversion algorithm, figure 5(b);

• if the circles are tangent, the result is a horn torus
patch.

(a) (b)

Figure 5: Torus as Dupin cyclide. (a) : ring torus. (b) :
spindle torus.

We note here that the frame(O,−→ı0 ,−→0 ,
−→
k0) in which the

resulting patch is defined is not the same as the one of the
initial Bézier surface. Vectors−→ı0 and−→0 are perpendic-
ular and belong to the vector plane attached to the affine
planes containing the parrallel circles. The third vector of
the frame is

−→
k0 = −→ı0 ×−→0 .

4 The conversion algorithm

Letγ be a standard Bézier curve definied by level-headed
control points(P0; 1), (P1;w1) and(P2; 1) such that:

• w1 = fw (P0;P1;P2) wherefw : E3
3 → R [Gar07];
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• γ is a circular arc.

Algorithm 1 details the steps required to convert a Bézier
surface into a torus patch or a double sphere patch. Figure
6(a) shows the original Bézier surface, its control polyhe-
dron, its two barycentric middle curves (theorem 1) as well
as Bézier curvesγ+

3 , γ+
4 , γ+

5 andγ+
6 which determine the

edge of the Bézier surface.
First step of algorithm 1 is the determination of circles

delimiting the Bézier surface. Each circle is reprented byan
union of two Bézier curves having extremal weights equal
to 1, figure 6(b). e.g., circleC3 is the union of Bézier curves
having control pointsP00, P01 andP02, and opposite me-
dian weightsfw (P00;P01;P02) and −fw (P00;P01;P02)
[Gar07].

(a) (b)

Figure 6: The conversion algorithm.(a) : the Bézier surface.
(b) : circular Bézier surface edges.

Figure 7(a) shows the third step of the algorithm.
Straight line∆θ is perpendicular to planes generated by par-
allel circles. It passes through the center of one of these
circles (C3 in the figure). Figure 7(b) shows the fourth step
of the algorithm. PlanePz is the plane passing throughΩ
with

−→
k0 as an orthogonal vector, whereΩ is the perpendicu-

lar projection of centerΩ5 of circleC5 onto the straight line
(Ω3,

−→
k0).

(a) (b)

Figure 7: The conversion algorithm. (a) : determination of
∆θ. (b) : determination of new frame originΩ and plane
Pz.

Figure 8(a) permits, using Dupin cyclide plane of sym-
metryPz, the construction of pointsA etB belonging to

Algorithme 1 : Conversion of a Bézier surface into a torus
patch or a double sphere.
Input data:
Let S be a Bézier surface defined by level-headed control
points(Pij ;wij)0≤i,j≤2 such as:

Aff (P00;P01;P02) // 6=Aff (P20;P21;P22) (6)

Begin

1. Bézier surface edges are repre-
sented by standard Bézier curves:

Name Control points Intermediate weight
γ+
3 (P00, P01;P02) fw (P00;P01;P02)
γ−3 (P00, P01;P02) −fw (P00;P01;P02)
γ+
4 (P20;P21;P22) fw (P20;P21;P22)
γ−4 (P20;P21;P22) −fw (P20;P21;P22)
γ+
5 (P00;P10;P20) fw (P00;P10;P20)
γ−5 (P00;P10;P20) −fw (P00;P10;P20)
γ+
6 (P02;P12;P22) fw (P02;P12;P22)
γ−6 (P02;P12;P22) −fw (P02;P12;P22)

Given circlesC3 = γ+
3 ∪ γ−3 , C4 = γ+

4 ∪ γ−4 , C5 =
γ+
5 ∪ γ−5 andC6 = γ+

6 ∪ γ−6 .

Condition (6) impliesC3 //C4, figure 6(b).

2. New reference frame determination:−→ı0 and −→0 are
two unit orthogonal vectors generating vector plan
V ect (P00;P01;P02) and

−→
k0 is determined by :

−→
k0 = −→ı0 ×−→0

3. Altitude axis is∆θ = (Ω3,
−→
k0) whereΩ3 is the center

of circleC3, figure 7(a).

4. Let Ω5 be the center of circleC5. The origin of new
reference frame isΩ, the orthogonal projection ofΩ5

onto(Ω3,
−→
k0). Pz is the plane passing throughΩ with

−→
k0 as the orthogonal vector, figure 7(b).

5. Determination of pointsA andB such that:
{A;B} = C5 ∩Pz andΩB ≤ ΩA, figure 8(a).

6. In Pz, principal circlesC1 andC2 are determined by
centerΩ and radiusρ1 = ΩA andρ2 = ΩB respec-
tively, figure 8(b).

7. Dupin cyclide parameters computation.

If C1 = C2, we obtain a double sphere witha = c = 0
andµ = ρ1.

If ♯̌ (C6 ∩C5) = 2, we obtain a spindle torus withc =
0, a = ρ1−ρ2

2 andµ = ρ1+ρ2
2 , else we obtain a ring

torus or a horned torus withc = 0, a = ρ1+ρ2
2 and

µ = ρ1−ρ2
2 , figure 9(a).

8. Determination of valuesθ0, θ1, ψ0 andψ1 delimiting
the obtained patch [Gar07], figure 9(b).

End

Output: A torus patch or a double sphere patch represent-
ing the input Bézier surface.
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principal circles. ConditionΩB < ΩA allows to identify
immediately the great and the small torus principal circles.
ConditionΩB = ΩA implies that Dupin cyclide is a double
sphere. Obviously, the center of these circles is the pointΩ.
Figure 8(b) shows two principal circles inPz.

(a) (b)

Figure 8: The conversion algorithm. (a) : planePz. (b) :
torus principal circles belonging toPz.

Figure 9(a) shows the torus, two principal circles, the
Bézier surface with its control polyhedron. Obtained pa-
rameter values arec = 0, a ≃ 1, 63 andµ ≃ 4, 32. Figure
9(b) shows the Bézier surface, its control polyhedron and
the resulting torus patch which is delimited by curvature
lines situated at:θ0 ≃ 2, 526112925, θ1 ≃ 3, 757072362,
ψ0 ≃ 2, 427868285 andψ1 ≃ 3, 85531702.

(a) (b)

Figure 9: The conversion algorithm. (a) : the Bézier surface
with the control polyhedron and the spindle torus. (b) : the
spindle torus patch with the control polyhedron of the initial
Bézier surface.

Figure 10(a) shows the Bézier surface with its control
polyhedron, barycentric middle curves with their control
polygons. Figure 10(b) shows the Bézier surface with its
control polyhedron and the ring torus.

Figure 11 shows the conversion of a Bézier surface into
a double sphere patch. Figure 11(a) shows the Bézier sur-
face with its control polyhedron and the barycentric middle
curves with their control polygons. Figure 11(b) shows the
resulting double sphere patch with the control polyhedron
of the initial Bézier surface.

(a) (b)

Figure 10: Conversion of a Bézier surface into a patch of a
ring torus. (a) : the Bézier surface with the control polyhe-
dron. (b) : the resulting patch of ring torus togother with
the control polyhedron of the initial Bézier surface.

(a) (b)

Figure 11: Conversion of a Bézier surface into a double
sphere patch. (a) : the Bézier surface with the control poly-
hedron. (b) : the resulting patch of the double sphere to-
gether with the control polyhedron of the initial Bézier sur-
face.

5 Conclusion

In this paper, we have presented an algorithm which per-
mits the conversion of a rational biquadratic Bézier surface
into a torus patch or a double sphere patch which are par-
ticular Dupin cyclide patches. So, the rational biquadratic
Bézier surface is fully represented by an implicit equation
of degree4. Moreover, if Dupin cyclide is a double sphere,
it is possible to use an equation of degree2 (the equation of
the sphere).

An interesting extension of this work is to find the suf-
ficiant conditions to construct rational biquadratic Bézier
surfaces fully convertible into Dupin cyclide patches. The
study of conversion of rational biquadratic Bézier surfaces
into supercyclide patches will also be considered.
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