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ABSTRACT

Toruses and double spheres are particular cases of Dupin cyclides. In this paper, we study the conversion of rational

biguadratic Bezier surfaces into Dupin cyclide patches. We give the conditions tha&tfierBurface should satisfy to be

convertible, and present a new conversion algorithm to construct the torus or double sphere patch corresponding to a given

Bézier surface, some conversion examples are illustrated and commented.
Keywords: Torus and Dupin cyclides surfaces, rational biquadratézigr surfaces.

1 Introduction The primary aim of this paper is to present an algorithm

to convert a rational biquadratic Bézier surface into a par-
Rational biquadratic Bézier surfaces are tensor productticular Dupin cyclide patch. This conversion allows the
parametric surfaces widely used in the first generation of obtention of parameters of the implicit equation of Dupin
Computer graphics app"cations and geometric mode”ing CyC"de Corresponding to the converted surface. Section
Systemsl Good introductions to these surfaces may be foun@ recalls the definition of Bézier curves and Surfaces, and
in [PT89, For68, DP98, HL93]. Dupin cyclides. Section 3 shows the construction of the
Dupin cyclide surfaces represent a family of ringed sur- control points and the computation of the weights of a
faces, i.e., surfaces generated by a circle of variable radiug3ézier surface which can be represented by a Dupin cyclide
sweeping through space [Pra90, Deg94]. It is possible topatch. Section 4 details the conversion algorithm. Section 5
formulate them either as algebraic or parametric surfacesPresents our conclusions and suggests directions for future
In recent decades, the interest of several authors in thes&ork.
surfaces relates to their potential value in the development
of CAGD tools [Pra95, DMP93, Gar0Q7]. Also, cyclide in- 2 Background
tersections and the use of cyclides as blending surfaces have
been investigated [BP98, She98].
Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted wjth-
out fee provided that copies are not made or distributed
for profit or commercial advantage and that copies hear

2.1 Rational Bézier curves and surfaces

Rational quadratic Bézier curves are second degree para-
metric curves defined by:

this not.ice and the fu!l citation on the first page. To cg Py , 212_0 wiBi(t)O_P;
otherwise, or republish, to post on servers or to redlis- OM (t) = T t€0,1] 1)
tribute to lists, requires prior specific permission and/or i—o wiBi(t)
afee. o where B;(t) are quadratic Bernstein polynomials defined
pub- .
- as:
Copyright UNION Agency - Science Press
Bo(t) = (1—1t)%,By(t) =2t (1 — t) andBsy(t) = t?
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and for: € {0,1,2}, w; are weights associated with
the control pointsP;. For a standard rational quadratic
Bézier curve,wy and wo are equal tol, while w; can

be used to control the type of conic defined by the curve
[Far93, Far99, Gar07].

Rational biquadratic Bézier surfaces are defined by con-

trol points(F;;),; j<, and weightgw;; ), ., as:
2 2 =
— > ijo w;; Bi (u) Bj (v) OF;
OM (u,v) = 5 5 (2 —
> im0 Zj:O wij B (u) Bj (v) @
More details on Bézier surfaces can be found in [Far93, =7 Torus of evoiiion B

Far99, GarQ7]. In the remaining of this paper, we only con-
sider rational Bézier curves and surfaces of degree two to
which we refer, for short, by Bézier curves and Bézier sur-
faces.

2.2 Dupin cyclides

Non-degenerate Dupin cyclides, figure 1(a), have been
definied by P. Dupin [Dup22]. A. R. Forsyth [Forl2] and G.
Darboux [Forl2, Dar17] have given two equivalent implicit
equations: (b)

(% +y>+2° — p® + b2)2 =4 (ax — cp)® + 46%y% (3) Figure 1: A ring Dupin cyclide (a) and a ring torus (b).

(332 + y2 +22 - ,u2 - b2)2 =4 (cx — a,u)2 — 4p%22 4) ) ) ) ) )

. straight linesA as the intersection of the planes of the first
in an orthonormal basig0, 7, 70, ko) WhereO is called pencil andA,, as the intersection of the planes of the other
Dupin cyclide center. Parametersb andc are related by  pencil. If the Dupin cyclide is a torus, the lin®,, belongs
c? = a® — b?. The parametes is always greater than or to the infinity plane (the planes containing circles of curva
equal toc. Parameters, ¢ and ;. determine the type of  ture are parallel).

the cyclide. When: < 4 < a it is a ring cyclide, when Figure 4 shows lines\y, and A, with the principal cir-
0 < u < citis a horned cyclide, and when > « itis a cles of the ring Dupin cyclide in plan®g, (C{, C§) and in
spindle cyclide. planeP. (CV, C¥). A, is the common perpendicular vy

A Dupin cyclide admits two planes of symmetf, : andA,,. More details about properties of Dupin cyclide can
y = 0andP, : z = 0 which define two couples of cir-  pe found in [Pra90, She98, AD96, DMP93].
cles, called principal circles, figures 2(a) and 2(b). Frbe't Several authors have proposed algorithms to convert a

knowledge of a couple of principal circles and the Dupin cy- Dupin cyclide patch into a Bézier surface [Pra90, Ued95,
clide type, it is easy to calculate Dupin cyclide parameters AD96, FGP05, Gar07] and vice-versa [Gar07, GFNO6]. Ta-

[Gar07]. . o ble 1 gives the four most important properties of control
If ¢ = 0anda # 0 then the Dupin cyclide is a torus, points of a Bézier surface obtained by the conversion of a
figure 1(b), and then : Dupin cyclide patch.

e principal circles of the Dupin cyclide i, have the
same radius, they represent a torus meridian;

e principal circles of the Dupin cyclide i, become
concentric circles.

If « = ¢ = bthen a Dupin cyclide is a double sphere and
principal circles in both planes are identical.

The planes containing circles of curvature of a Dupin cy-
clide form two pencils of planes, figure 3, and define two
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(b)

Figure 2: Principal circles of ring Dupin cyclides. (a) : in
planeP, : y = 0. (b) : in planeP, : z = 0.
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Q) (b)

Figure 3: Two pencils of planes generated by Dupin cyclide
curvature circles definingy (a) andA,, (b).

Figure 4: Straight lineg\y and A, obtained as intersec-
tions of two pencil planes.

(PGI)
(PG2)

Poo, Poz , Pag €t Py are cocyclical
PooPor = PorPoz  PoaPia = PraPas
Py Poy = Py1 Pog PooPro = PioFPoo

PooPro L PooPor  Po2For L PoaPro
PyoPro L PooPoy  PyoPor L PyyPro
Poo P11 e ( PooPro X PooFPo1 ) =0
PyaPry e ( PoaPor X PpaPr2) =0
Py Pry e ( PyaPia X PagPor ) =0

PyPry e (P20P21 X P20P10) =0

(PG3)

(PG4)

Table 1: Geometrical properties of a Bézier surface ob-
tained by conversion of a Dupin cyclide.

In table 1, property (PG4) can be presented as:

Py € Aff{Poo; Po1; Pio} N Af f{Po2; Pi2; Por }
N Aff{Pa0; Pa1; Pio} NAf f{Pa2; Po1; Pra}
(5)
whereAf f {A; B; C} designate the affine space generated
by pointsA4, B andC.

3 Construction of the Bézier surface

In this section, we construct a Bézier surface convertible
to a Dupin cyclide patch and so properties of table 1 must
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be satisfied [Gar07, GFNO6]. The construction of a Bézier

sphere which are particular cases of Dupin cyclides. The

surface convertible to a torus patch or a double sphere patclyeneral cases (conversion of a Bézier surface into a negula

is also considered.
3.1 Dupin cyclide case

As Dupin cyclide curvature lines are circles, the border
lines of the Bézier surface to be convertible must be cincul
arcs. To ensure the convertibility of the Bézier surfabe, t
following three conditions, on weight computation, has to
be satisfied:

(i) we havewyy = wge = weg = 1 and value ofwss is
calculated using Ueda’s method [Ued95];

Dupin cyclide) has been consider earlier [Gar07, GFNO6].
To summerize, a convertible Bézier surface must satisfy
control points properties of table 1 and the three weight con
ditions given above.

3.2 Torus and double sphere case

We consider that two opposite edges (circular arcs) of the
Bézier surface to be converted are in two parallel planes. |
this case, the liné\,, belongs to the infinity space and the
conversion result will be a patch of a torus= 0, a # 0)

(i) as border lines of a Bézier surface are Bézier curvesor a patch of a double sphere & ¢ = 0). To distinguish

reprenting circular arcs, it is easy to determine the weight
w10, Wo1,W21 andUJlQ [Gar07],

(iii) the computation of weightv,; is more complex and
can be done using theorem 1 whéxer { (A;, ;) } in-
dicates the barycentre of collectidm;, o;),., of level-
headed points:

Theorem 1 Barycentric middle curve
Let us consider a &ier surface defined by control points
(Pij)ogi7j§2 and Weights(wij)ogi_’jg.
LetG} = bar {(Pio; wio) , (Pi1; 2wi1) , (P25 wiz2) } and
Ozg = wjo + 2w;1 + wio Wherei € [[O, 2]]
Leth bar {(POi; ’LUQZ') , (Pli; 2’(1}11') , (Pgi; ’wgi)} and
af = wo; + 2w1; + wo; Wherei € [[O; 2]]
If Z?:o ay # 0, the barycentric middle curva —
M (u, 5)
is a Bezier curve with control point&; o}’ (0.1
If S22 ,a? # 0, the barycentric middle curve —
M (%,v
is a Bezier curve with control point&&Y; o)

i€[0;2]"

Proof:

oM (1) =

—

70250 wi; Bi(u)B,;(3)OPi;
270 Xio wii Bi(w)Bj(3)
¥, Bi(’u)(wioBo(%)OPio+’wi1 B (%)OPﬂerisz(%)OPiz)
370 Bi(w)(wioBo(5)+wi1 B1(5)+wiz B2(3))

2, Bi(u) (wi()opio +2w;1 OPi1+’wi2OPiz)
7o Bi(uw)(wip+2wi +w;o)

——
= W Z?:o Bi (u) a;OGY
whereGY = bar {(Pio; wio) , (Pi1; 2ws1) , (Pi2; wi2) }
with a; = w;o + 2w;1 + wio.
The second proof is similar.

[

To determine the weigth;;, we impose that the point
GY (resp.GY) belongs to the perpendicular bissector plane
of [G4GY] (resp.[GEGY)).

The following section considers the conversion of a

Bézier surface into a patch of a torus or a patch of a double
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between these two cases, we have to consider the remain-
ing edges of the Bézier surface: if the circles containing
the edges have the same diameter line, it is a double sphere
patch, otherwise, it is a torus patch. The type of torus can
be determined throught the following three tests:

o ifthe circles are disjoint, the resultis a ring torus patch;

e if the circles are secant in two points, the result is a
spindle torus patch and the two points of intersection
define Ay which will be used as a frame axis in the

conversion algorithm, figure 5(b);

if the circles are tangent, the result is a horn torus
patch.

@) (b)

Figure 5: Torus as Dupin cyclide. (a) : ring torus. (b) :
spindle torus.

We note here that the fran®, 75, J0, /?0) in which the
resulting patch is defined is not the same as the one of the
initial Bézier surface. Vectorg, andj; are perpendic-
ular and belong to the vector plane attached to the affine
planes containing the parrallel circles. The third vector o

<
the frame isky = %5 x Jo.

4 The conversion algorithm

Let~ be a standard Bézier curve definied by level-headed
control points(FPo; 1), (Pr; wy) and(Pe; 1) such that:

o W = fw (Po; Pl;PQ) Wherefw : 533 — R [Gar07];
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e visacirculararc. Algorithme 1 : Conversion of a Bézier surface into a torus
patch or a double sphere.

énput data:

Let S be a Bézier surface defined by level-headed control

| points(P;;; wij)ogi_’jSQ such as:

Algorithm 1 details the steps required to convert a Bézier
surface into a torus patch or a double sphere patch. Figur
6(a) shows the original Bézier surface, its control polyhe
dron, its two barycentric middle curves (theorem 1) as wel
as Bézier curvess, v/, v andy{ which determine the

edge of the Bézier surface. AFF (Poo; Po; Poz) [ /#AF f (Pao; Po1s Po)  (6)

First step of algorithm 1 is the determination of CirdeSBegin
delimiting the Bézier surface. Each circle is reprentediby
union of two Bézier curves having extremal weights equal 1. Bézier surface edges are repre-
to 1, figure 6(b). e.g., circl€; is the union of Bézier curves sented by standard Bézier curves:
having control point$, Py; and Pys, and opposite me- Name| Control points | Intermediate weight
dian Weightwa (POO;P01§PO2) and _fw (POO;POUPOZ) ’Y;_ Poo, Po1; Poo fw (POQ;Pol;PQQ)
[Gar07]. Y5 Poo, Po1; Po2) | — fuw (Poo; Pot; Po2)

( )
( )
’72_ ( ) Jw (Poo; Po1; Pa2)
Yy (Pao; Po1; Pas) | — fu (Pao; Pai; Pao)
( )
( )
( )
(

v fw (Poo; Pio; Pao)
Vs —fw (Poo; Pro; Pao)
Yo Jw (Po2; Pr2; Pea)
Yo Pog; P12; Pa3) | — fu (Po2; Pia; Pa2)
Given circlesCy = 75 Uv;,Cy =7 Uv,, G =
75 Uvs andGs = v Ug -
(@) (b) Condition (6) impliesC; // C4, figure 6(b).

N

Figure 6: The conversion algorithm.(a) : the Bézier sugfac New reference frame determination; and j; are
(b) : circular Bézier surface edges. two unit orthogonal vectors generating vector plan
—
Vect (Poo; Po1; Po2) andkyg is determined by :
Figure 7(a) shows the third step of the algorithm.
Stralg_ht lineAy is perpendicular to planes generated by par- ko =7 X 70
allel circles. It passes through the center of one of these

circles Cs in the figure). Figure 7(b) shows the fourth step 3. Altitude axis isA» — (. o) where€)- is the center
of the algorithm. Plané, is the plane passing through - A XIS 13 (€23, ko) W 3!

e ) : of circle Gs, figure 7(a).
with &y as an orthogonal vector, whefes the perpendicu-
lar projection of centef2; of circle Cs onto the straight line 4. Let Q5 be the center of circl€;. The origin of new
(Qs, k—(;). reference frame i), the orthogonal projection d®;

onto (s, k_(;). P, is the plane passing throughwith
ko as the orthogonal vector, figure 7(b).

5. Determination of pointgl and B such that:
{A; B} = GNP, andQB < QA, figure 8(a).

6. In P, principal circlesC, andC, are determined by
centerQ) and radiusp; = QA andp, = QB respec-
tively, figure 8(b).

@ (b) 7. Dupin cyclide parameters computation.

. . . o If C; = C,, we obtain a double sphere with=c =0
Figure 7: The conversion algorithm. (a) : determination of andy —
Ag. (b) : determination of new frame origia and plane y ) ] .
P.. If $(CsNCs) = 2, we obtain a spindle torus with=

0,a = 252 andy = %, else we obtain a ring
Figure 8(a) permits, using Dupin cyclide plane of sym- torus or a horned torus with = 0, a = ”IT*”? and

metry P, the construction of pointsl et B belonging to p = 2522 figure 9(a).

8. Determination of value&,, 01, 1o and; delimiting
the obtained patch [Gar07], figure 9(b).
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Output: A torus patch or a double sphere patch represent-
ing the input Bézier surface.




principal circles. Conditiof2B < QA allows to identify
immediately the great and the small torus principal circles
Condition2B = QA implies that Dupin cyclide is a double
sphere. Obviously, the center of these circles is the goint
Figure 8(b) shows two principal circles i, .

Ng = 93;7?0
(25) @ (b)

Figure 10: Conversion of a Bézier surface into a patch of a

ring torus. (a) : the Bézier surface with the control polyhe

dron. (b) : the resulting patch of ring torus togother with

the control polyhedron of the initial Bézier surface.

(b)

Figure 8: The conversion algorithm. (a) : plaRe. (b) :
torus principal circles belonging 18, .

Figure 9(a) shows the torus, two principal circles, the
Bézier surface with its control polyhedron. Obtained pa-
rameter values are= 0, a ~ 1,63 andu ~ 4, 32. Figure
9(b) shows the Bézier surface, its control polyhedron and @ ()
the resulting torus patch which is delimited by curvature Figyre 11: Conversion of a Bézier surface into a double
lines situated atty ~ 2,526112925, 0, ~ 3,757072362,  gphere patch. (a) : the Bézier surface with the controlpoly
Yo =~ 2,427868285 andyy ~ 3,85531702. hedron. (b) : the resulting patch of the double sphere to-
gether with the control polyhedron of the initial Bézier-su
face.

5 Conclusion

In this paper, we have presented an algorithm which per-
mits the conversion of a rational biquadratic Bézier stefa
@ ®) into a torus patch or a double sphere patch which are par-

ticular Dupin cyclide patches. So, the rational biquadrati
Figure 9: The conversion algorithm. (a) : the Bézier swafac Bézier surface is fully represented by an implicit equatio
with the control polyhedron and the spindle torus. (b) : the of degreel. Moreover, if Dupin cyclide is a double sphere,
spindle torus patch with the control polyhedron of the aliti it is possible to use an equation of degegghe equation of
Bézier surface. the sphere).
An interesting extension of this work is to find the suf-

Figure 10(a) shows the Bézier surface with its control ficiant conditions to construct rational biquadratic B#zi
polyhedron, barycentric middle curves with their control surfaces fully convertible into Dupin cyclide patches. The
polygons. Figure 10(b) shows the Bézier surface with its study of conversion of rational biquadratic Bézier suefac
control polyhedron and the ring torus. into supercyclide patches will also be considered.

Figure 11 shows the conversion of a Bézier surface into
a double sphere patch. Figure 11(a) shows the Bézier sur
face with its control polyhedron and the barycentric middle References
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