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Abstract

In order to improve object recognition results, usually several image preprocessings are performed. If color images are used, a

color normalization is normally applied. Algorithms for color normalization will be compared to a colorimetric approach found

in the literature. Recovering colorimetric values instead of a simple RGB camera output leads to more reliable color images.

To this kind of processed object image a basic object recognition approach using different histogram distances is applied. It

will be shown that there is an effect on the results of object recognition rates if we use color calibrated images instead of color

normalization methods.
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1 INTRODUCTION

The use of color histograms as features is widely used

to solve the object recognition task and is described in

detail e.g. in [11]. In In our contribution, the color

of the object is not the main aspect of interest but the

statistical distribution of the image itself. We use the

RGB value and count it in a histogram bin, rather than

recording the color defined by a colorimetric tristimu-

lus value. We use three histograms per image that are

given by each of the R, G, and B color channel in the

RGB value case as well as in the colorimetric case.

The RGB values formed by the camera depends

heavily on the image formation process - especially the

illumination involved. Mainly for this reason color nor-

malization algorithms are applied to estimate the influ-

ence of pose and color of the illumination and elimi-

nate – or at least minimize – their influence to the im-

age appearance. In several situations such color nor-

malizations leads to an improvement of the recognition

rates that are presented in section 5. The question arises

whether the use of calibrated color values in the his-

tograms lead to another raise of these rates.

The following section gives an overview to some fa-

miliar color normalization algorithms. The calibration

approach used in the experiments is presented in sec-

tion 3. Results are discussed in sections 4 and 5.

2 COLOR NORMALIZATION

Using a normalized color one might expect the object

features to be better distinguishable. Hence numer-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

ous color normalization approaches have been proposed

(e. g. [1, 3, 9, 7, 2]).

One very simple method normalizes the color of one

pixel (r, g, b) by dividing it by the lightness (r + g + b).

The results are called chromaticities.

A very well known assumption is the world to be

gray. It was formalized by Buchsbaum [1] and postu-

lates in average the color of a natural scenes sums up to

a gray.

A combination of the aforementioned was proposed

by Finlayson [3] who iteratively applies the two ideas

above in his so-called ‘comprehensive color image nor-

malization’ (CCN) algorithm.

Another idea that uses the gray world assumption is

the color normalization by rotation. All color values

are considered to be coordinates in a three dimensional

color space. All pixel together form a color cloud with

a preferred direction. Rotating their principal vector

onto the main diagonal, which is the gray axis of the

color space, leads to a normalized representation. Sev-

eral color spaces are used by different authors. One that

uses the RGB color space is proposed by Paulus [9].

Since color constancy is a nature of human per-

ception, some methods for color normalization try

to copy this feature. One well known approach is

called ‘Retinex’ and was introduced by Land [7].

A modification used for the experiments is done by

Fankle [4].

The Retinex is also capable to normalize the effect

of different light sources, while most other algorithms

assume only one. One approach that tries to deal with

local changes in illumination is called ‘local space av-

erage color’ (LSAC) and was introduced by Ebner [2]

who assumes that the changes are moderate within the

scene. The impact of several color normalization al-

gorithms is shown in Figure 1. Upper left shows the

original image from the capturing device, bottom right

illustrates the colorimetric calibrated version.
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Original Chromaticity Gray world CCN

RGB-Rotation Retinex LSAC Calibrated

Figure 1: Influence of several color normalization methods

used in the experiments to the unprocessed image (top left).

Bottom right the result of the calibration method proposed by

Lee [8].

3 CALIBRATION

Using a calibration for cameras leads to more reliable

results concerning the color of an object. Besides a

photometric calibration that determines the brightness

transfer function, a radiometric calibration is manda-

tory for colorimetric information. We use a a method

that provides a colorimetric calibration as proposed by

Lee [8].

3.1 Image formation

A simplified model of image formation considers the

light source, the reflectance of the object, and the cam-

eras sensor sensitivity. The brightness transfer function

is assumed to be equal to one, making the relation be-

tween radiance and the sensors response to be linear.

Camera outputs that do not hold this assumption are lin-

earized in a preprocessing step prior to the calibration.

The simplified image formation model is built as

f (k) =

∫

λ

E(λ) · ρ(λ) · Rk(λ) dλ (1)

Herein f (k) is used as the sensors response which is

the signal at the output of the cameras channel k. Nor-

mally, a RGB-triplet value (K = 3, k ∈ {r, g, b})

is used. The spectral composition of the light source,

denoted by E(λ), is multiplied with the spectral re-

flectance ρ(λ) of the object. Hence the cameras inci-

dent light is Eρ with the related spectrum. The mul-???

tiplication with the spectral sensitivity Rk(λ) leads to

the sensor response which is the integrated value over

the spectral range of the sensor. The spectral calcula-

tion of the color values in the experiments is limited to

the range of 380 nm to 730 nm with respect to the em-

ployed measurement device ‘Eye-One Photo’ of Gre-

tag Macbeth. The width of the sampling interval is

∆λ = 10 nm which leads to L = 36 samples. The

discretized version of (1) is

f (k) =

L
∑

n=1

Eλ · ρλ · Rk,λ · ∆λ (2)
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Figure 2: Spectra used for the calibration: Camera sensitiv-

ity [a], the light sources used during the image acquisition [b],

exemplary two reflectance spectra of the patches 6 and 16 of

the ColorChecker c© with their reconstructed spectra received

by the applied calibration [c], as well as the CIE color match-

ing functions used to get the color values XY Z [d].

or rewritten in a matrix notation f = PER where f

denotes the 1×K output vector, P the 1×L reflectance

vector, E the L × L illumination spectrum (a matrix

with Eλl
on the diagonal), and R the L × K sensor

sensitivity matrix. The ∆λ as a constant implicitly is

contained in the sensor response.

3.2 Colorimetric calibration

A precondition for calibration as described in Lee [8]

is a controlled environment to set the parameters. After

calibration, a colorimetric tristimulus can be calculated

from RGB values.

The first step is to determine the cameras sensitivity

curves. Lee requires for his method an initial estimate

R̂ (L×K) but gives no hint about the necessary quality.

For this reason the manufacturers specifications (Fig-

ure 2[a]) are used. This first approximation is improved

by a 3 × 3 correction matrix R̃ that contains an adap-

tion to the prevailing acquisition situation. For this rea-

son an image of the ColorChecker c© is captured under a

known illumination (2[b]). The coefficients of the spec-

tral reflectance of the color patches, (e.g. Figure 2 [c]),

are known from the measurements with the photospec-

trometer, too. The Q = 24 RGB-triple that complies

with the camera response for each patch is merged into

a Q × K matrix F . The unknown correction matrix

R̃ is determined by a Moore-Penrose pseudoinverse of

F = P ER̂R̃. The new, adapted camera sensitivity

R is given by multiplication of R̂ and R̃. One has to

keep in mind that this matrix R has a bias induced by

the RGB values of the ColorChecker c© and the illumi-

nation E.
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The next step is to perform a PCA on the spectra of

the calibration target. Lee states, that the reconstruction

of a spectrum could be done sufficiently correct by three

basis vectors that are combined in a b × L matrix P B.

The associated weights are called G (1 × b). Together

with the mean spectrum of all patches P M, (1× L) the

original spectra can be reconstructed by

P = P M + GP B. (3)

With this, (2) can be rewritten as

G = (f − P MER)(P BER)−1. (4)

This is the central equation for reconstructing a spec-

trum by calculating the weight G as a function of the

RGB values f . Putting the weight into (3) leads to a

reconstructed spectra.

Since the values are only correct for the patches, in

the following several correction steps are performed to

get colorimetrically correct values. That is why a Q×K

matrix C is introduced. For each channel (columns)

and patch (rows) the element is determined by the the-

oretical color values given by PER divided by the

measured RGB values in F . An additional correc-

tion is carried out by multiplying each row of C with

the corresponding ratio of the sum of the reconstructed

spectrum to the sum of the measured spectrum. Us-

ing f = C ◦ F leads now to a colorimetrically correct

RGB-value where ‘◦’ denotes the element by element

multiplication.

Still, RGB-values that are not part of the 24
ColorChecker c© patches has to be modified to result

in a good spectral estimation. The data has to be

interpolated, assuming smooth spectral changes leads

to smooth variations in the RGB values.

Hence the spectrum of an unknown triple can be re-

constructed by their neighbouring values from know

patches. This is done by the Euclidean distance from

the f r (that has to be reconstructed) to the every el-

ement (patch) of F . This distance is multiplied by a

weight factor h to reduce the influence of patches with

a larger distance. Lee propose h to be ln(10−9). For

the distance to the jth patch W (j) = e
h·D[j]
range . These

elements are part of the 1×Q ‘inverse distance weight-

ing vector’ W . Range means the difference between

the minimum and maximum value the camera is capa-

ble of, usually 255 using 8 bit. The experiments are

performed by using the minimum and maximum value

within the image while assuming good-natured content.

When normalizing W by its sum and multiplying

by C, the result is close to one for those values pro-

duced by the patches and zero to those not examined

but not exactly one, or zero respectively. This is due

to the interpolation performed. For this reason another

L × L correction matrix W ′ is applied. Its jth row

contains the vector W described above for the respec-

tive patch. To maintain the original correction factor for

the ColorChecker c© patches a final correction matrix C ′

(L × K) is introduced: C ′ =
(

W ′
)−1

C. Using a fi-

nal correction vector c = WC ′ to modify the RGB-

value f r that has to be reconstructed to get the values

f inserted in (4). The resulting weights are used in (3)

to reconstruct the spectrum of which two samples are

shown in Figure 2 [c].

This spectral estimations are assessed with the color

matching functions (Figure 2 [d]) to create the tristimu-

lus values XY Z which we transform to the RGB-color

space in our experiments.

4 EXPERIMENTS

The examinations are based on images taken from

KOPID1 that contains 17 objects recorded under three

different illuminations and at 12 varying viewpoints.

Additionally the camera was moved to five diverse

levels of height. Unlike other image databases such

as COIL-1002 or ALOI3 the KOPID-images contain

the ColorChecker c© what makes it suitable for a

colorimetric calibration based on known color samples.

Other than the histogram comparisons in [11] the

histograms in the experiment at hand are created for

each RGB-channel separately, i.e. we use three one-

dimensional histograms. This simplifies the calcula-

tion of the Earth Mover’s Distance distance (EMD) [10]

which we use for histogram comparsion. The informa-

tion loss compared to the three-dimensional histograms

is justifiable by the results which we show below.

The images were subject to one of the color nor-

malizations mentioned above. The quantization of the

histograms is done from 8 to 16 bins per channel.

As distance measures the sum of squared differences

(SSD), histogram intersection (HI), a χ2 distance, and

the EMD are used. The recognition rates are deter-

mined as follows: The histogram of the object illumi-

nated by the fluorescent spectrum is compared to all

other histograms of the objects illuminated by the halo-

gen spot. If the smallest difference in the histograms

is found in an image containing the same object, the

recognition task is counted as successful. The recog-

nition rate is calculated by the number of successfully

classified objects divided by the total amount of tests

performed.

5 RESULTS

In Figure 3 the advance of the EMD (match distance

respectively) compared to the other histogram distance

measurements is obvious. The rates obtained by the

SSD are the least promising. For this reason, the results

1 http://www.uni-koblenz.de/kopid
2 http://www1.cs.columbia.edu/CAVE//software/

softlib/coil-100.php
3 http://staff.science.uva.nl/~aloi/
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Figure 3: Object recognition rates while using different

histogram distance measures. The set used for this case

contains the calibrated images only.
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Figure 4: Results using different color normalization al-

gorithms. The blue stars determine the recognition rates

where no color normalization is applied. The histogram

distance used to obtain this rates is the EMD.

presented in Figure 4 are achieved by the EMD com-

parison.

The first benchmarks to be reached are the rates re-

ceived by no normalization (blue stars in Figure 4).

These are the recognition rates without performing any

color normalization.

It is obvious that some algorithms do not hold the ex-

pectation to improve the recognition rate. This is the

rotation, gray world, and LSAC. The CCN and chro-

maticity have marks on both sides of the blue border-

line. Using the arithmetic mean they still fail to melio-

rate the recognition rate of no normalization.

The color normalization performed by the retinex-

algorithm displaces the aforementioned by 86,11% cor-

rect classifications in average. The Matlab R© implemen-

tation provided by [5] performs a normalization in 8
seconds on a 3GHz computer. That is roughly five times

as fast as the colorimetric calibration used.

Nevertheless the calibration applied leads to an addi-

tional raise of the recognition rates of around 7% and

performs at 93,54% in average on the top of all normal-

ization methods. Compared to the no normalization this

is a 17% boost.

6 CONCLUSIONS

To consolidate the results in object recognition rates

several extensions could be added. First, the transfer

to three-dimensional histograms should be considered.

Second, the impact of other color spaces than RGB has

to be analyzed. Third, the partly heavy variations in

some of the normalization methods could be analyzed.

One idea here is to increase the number of objects in the

database.

The poor performance of some of the algorithms

might be a topic for further experiments with other or

larger databases or different bin numbers. A larger sam-

ple size could also be contemplated for the calibration

results - the knowledge of (spectral) image formation

given.

Anyhow, finally the results show that a colorimetric

calibration outperforms the recognition rates received

by commonly used color normalization algorithms. The

price of a laborious calibration is well invested into

higher recognition rates.
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