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ABSTRACT 

 
3D shape transformation is usually confined to transformation between a pair of objects. The objective of this paper 
is to look at shape transformation from a different perspective: instead of binding this concept between two objects, 
the technique is extended to the concept of  incorporating the characteristics of a number of objects in one body at a 
time. Equal number of slices are generated from all objects. Slices may be parallel to each other or each slice may 
have different orientation. Traversal of a data along its longitudinal direction may generate slices which are 
differently oriented from each other. When multiple objects are transformed to one and is used as an influence shape,  
it also works as incorporating multiple influence shapes at a time during transformation between two objects.  The 
paper shows the ease of implementation of this concept in sliced data and also discusses its extendibility. 
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1. INTRODUCTION 
Generally shape transformation means incorporating 
the characteristics of two different bodies in one output. 
Our aim is to interpret the term in a different way: 
incorporating the overall characteristics of a number of 
different objects (more than two) in one output or 
incorporating the characteristics of a number of 
different objects in different proportions in one output. 
The idea of inventing and designing new models may 
have applications in show piece design, in pottery 
industry as well as in animation industry.  
In this paper a shape transformation algorithm based on 
slices is discussed. A number of objects are collected 
and equal number of slices are generated from these 
objects. Slices from a particular object may be parallel 
to each other or each slice can have different 
orientations. The method works with minimal user 

intervention without producing any significant 
distortion to the eye. Again a number of different 
transformed output can be generated from the same 
number of objects and user has the right to choose the 
best one. This method particularly shows the 
extendibility, versatility of the sliced data and ease of 
its implementation.  
 
2.   BACKGROUND 
Shape transformation algorithms can be classified into 
the following two broad categories: a) Surface-based: 
consists of continuous mapping of small pieces of 
polygonal surfaces of corresponding objects; b) 
Volume-based: modifies voxel values of a volume data 
set. 
Surface-based approach uses user-defined control fields 
such as point fields, line fields etc. during transforma -
tion to map key features of the input objects  [Hong88, 
Kent92, Gregory98, Lazarous94, Lee99]. Surface-based 
methods are important because of its ability to morph 
between objects of different types of genus, but these 
methods also require a significant amount of user input. 
Another troubling feature of surface-based method is 
the problem of self-intersection. It cannot guarantee that 
polygonal surfaces will not pass through themselves, 
creating self-intersecting intermediate result as found in 
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[Hong88]. All these problems will become more 
prominent when more than two objects are involved. 
Volume-based approach alleviates some of the 
problems mentioned above. Among them, the simplest 
approach is the cross-dissolving method [ Hughes92,He 
-94] which at first transforms volume data from spatial 
domain to frequency domain, interpolates volume in 
frequency domain and again transforms back to spatial 
domain. Transformation of multiple objects based on 
fourier or wavelet can be easy but both methods will 
have difficulties in specifying slightly complex 
geometric transformations such as object rotation. 
This problem can be alleviated by applying warping 
before interpolation as found in [Lerois95]. Here user-
defined warp is applied on input objects to resemble 
each other. Instead of using point and line control fields, 
user-specified disk field [Chen96] can be used. Equal 
number of disks are applied on both source and target to 
establish correspondence between them. Each disk has 
its own normal direction which helps considering 
distortion of the body. But as the number of input 
objects increases, the amount of user intervention 
involved  also increases in both of the above mentioned 
cases. 
‘Distance Volume’ [Payne92] measured by computing 
the shortest distance of each voxel within the volume to 
the surface of the object or ‘Level Set Method’ 
[Breen01] where the way in which points on the surface 
moves is used to establish connection among all input 
objects may not scale well as the number of objects 
increases. 
In shape transformation using implicit function 
[Turk99], implicit functions of each pair of 2-D slices 
are determined using a set of constraints i.e. location, 
weight, scalar values etc. When the number of objects 
increases, this method may become a bit complex. 
Pasko et al. uses CSG for blending a number of objects 
but in a very limited way [Pasko05]. 
From the above discussion, it is obvious that most of 
the shape transformation methods do not scale well as 
the number of objects increases. Our aim is to develop a 
shape transformation algorithm which optimizes user 
input, considers rotation/orientation of rigid body 
during transformation as well as scales better when the 
number of input objects increases. 
  
3.    PROPOSED ALGORITHM  
 
The algorithm mainly consists of the following major 
steps as shown in Figure 1: 
• Data Traversal and the Slicing of the Data;  
• Boundary Extraction; 

• Boundary Projection and Boundary Interpolation; 
• Orientation and Translation of Boundaries; 
• Surface Reconstruction. 

 
Figure 1: Flow Chart of the Proposed Algorithm. 
 
Various steps of the algorithm are discussed in detail in 
the following sub sections. 

3.1 Data Traversal and Slicing of the Data 
A number of data is collected. The initial orientations 
along which the data are subdivided in the first step of 
the binary subdivision is defined along any of the 
directions of the Oriented Bounding Box (OBB) 
[Lin96]. An Oriented Bounding Box (OBB) is a 
bounding box that does not necessarily align itself 
along the coordinate axes. OBB is constructed from the 
mean and covariance matrix of the cells and their 
vertices that define the dataset. The eigen vectors of the 
covariance matrix are extracted, giving a set of three 
orthogonal vectors that define the alignment of the 
dataset. Figure 2 shows the difference between a 
normal bounding box and an oriented bounding box. 
No doubt, an oriented bounding box more closely fits 
the data than a normal bounding box. The purpose of 
choosing the oriented bounding box is to allow 
checking of the longitudinal direction of dataset from 
its oriented bounding box rather than from normal 
bounding box. 
Eigen vectors describe the maximum, medium and mini 
–mum  variance of  concentration of  point  clouds. The 
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Figure 2: (a) Normal Bounding Box and (b) Oriented 
Bounding Box. 
 
‘maximum’ direction shows the maximum amount of 
concentration of the cells of the data along that 
direction, whereas the ‘medium’ direction exhibits less 
amount of concentration than maximum direction and 
the ‘minimum’ direction shows the least amount of 
concentration or the least alignment of the cells along 
that direction. The first subdivision takes place along a 
plane centered at the center of the Oriented Bounding 
Box (OBB) of the object with normal along the initial 
alignment. This step, called ‘step 0’, divides the data 
into two end parts. 
In the next step i.e. ‘step 1’, each of the two end pieces 
found from ‘step 0’ is wrapped with OBB and tested 
whether the longitudinal direction of the alignment of 
the sliced end is still within the maximum or medium 
direction of the OBB. If the alignment is still within 
maximum/ medium direction, a line joining the center 
of the previous cut plane and the center of the OBB is 
used as the direction of the cut plane normal for the 
ends in that step (Figure 3(a)). Otherwise ends are 
sliced along the cut plane normal found in the previous 
step which is used for any further subdivision of the 
ends and in the subsequent steps no further checking on 
the alignment is done. At the end of ‘step 1’, the data is 
divided into four parts i.e. two end parts and two middle 
parts. 
Before further subdivision of the ends, if necessary, 
checking is done for the alignments of the two sliced 
ends. The procedure described in ‘step 1’ is followed 
for further subdivision of the two ends. For the middle 
parts, data is sliced along the plane with center as the 
center of the OBB and normal directed along the 
resultant normals of the two ends of the middle data 
(Figure 3(b)). Slicing is continued along the 
longitudinal direction until the desired number of steps 
is reached. In each subsequent step, the number of 
slices is doubled. The default longitudinal direction is 
the ‘maximum’ direction of the eigen vectors and the 
default number of steps for binary  subdivision of the 
data is ‘four’. To provide more flexibility, the initial 
longitudinal direction as well as the number of steps 
can be defined by the user. We indicate the maximum 
alignment as ‘0’, the medium alignment as ‘1’ and the 
minimum as ‘2’. Therefore, the users are allowed to 

vary the morphed output based on the initial alignment. 
Subdivision can also be forced to happen along any 
particular direction or along any of the axes i.e. x, y or z 
to generate parallel slices.  
 

 
Figure 3: Division of (a) the End Data and (b) the Middle 
Data. 
 
After reaching the desired number of steps, two ends 
are traversed along the tip. Usually no further checking 
for the alignments of the two ends are needed now as 
the current alignments of the sliced ends are usually not 
along the maximum or the medium direction of the 
OBB of the two sliced ends. Hence the normal is 
usually along the direction which was found at the step 
before the last checking step and traversing towards the 
tip is continued along that direction until it is close  
enough  to the tip. At this stage two ends are again divi 
-ded into two parts.  
 
3.2 Boundary Extraction 
Only boundaries of the slices are extracted (Figure 4). 
As discussed above, in ‘step 0’, data is divided into two 
parts. In each of the subsequent steps, the number of 
slices are doubled. Hence in ‘step 4’, there are 2(4+1) i.e. 
32 slices. From 32 slices, 31 boundaries can be 
extracted. Then boundaries at the ends which are 
determined after the specified number of steps is 
reached are also added. Two such boundaries at the two 
ends result in a total of 33 boundaries each. Hence in 
‘step 4’, the number of extracted boundaries (for each 
data) is computed as follows: 

2(step+1)  + 1 = 2(4+1) + 1= 25 + 1 = 33. 

3.3 Boundary Projection and Boundary 
Interpolation  

All data boundaries are projected onto the XZ plane and 
centered at the origin. Each of the boundaries are 
traversed along the direction of their minimum X (Xmin) 
to maximum X (Xmax) with a traversal plane defined as 
(1,0,0). For each boundary, traversal spacing is deter- 
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Figure 4: Extraction of Boundaries from a Number of 
Data. 
 
mined separately. Equal number of traversals is perfor -
med for all data. Traversal spacing is determined as 
follows: 

Spacing =  (Xmax – Xmin)/ Number of Traversals 

Only boundary points are extracted from the traversals. 
If the number of extracted points in any cut plane 
happens to be odd, it is made to be even. Next interpo -
lation is performed onto the XZ plane. For simplicity, 
linear interpolation is used in our implementation. Here 
it should be noted that only one normal is extracted per 
boundary regardless of whether any particular boundary 
consists of multiple holes or empty spaces. Also each 
boundary has one center irrespective of the irregular 
geometric configuration of that particular boundary. 
Usually corresponding boundary point clouds are just 
interpolated. Sometimes enhancement of the interpola -
tion process is carried out. When all boundaries have 
equal number of regions and there are more than one 
region in all of them, then each of the corresponding 
regions are interpolated so that interpolated point 
clouds also have equal number of regions (Figure 5). 
Region is an area where the number of points extracted 
by the cut plane is the same while traversing along the 
X axis. 

Again when there are equal  number of empty spaces in 
all boundaries, we have equal number of corresponding 
regions for the corresponding boundaries. Thus corres -
ponding regions can be interpolated. When some of the 
boundaries contain empty space while other does not 
have any, number of empty spaces is counted from the 
boundary which contains the least number of empty 
spaces and equal number of empty spaces are inserted 
into the non-empty boundaries. Now all the boundaries 
contain empty spaces. When there are unequal number 
of empty spaces/ regions, rightward and leftward traver 
-sals are carried out from both ends until region in one 
of the  boundaries is exhausted. Corresponding  regions  

Figure 5: Interpolation of Boundaries after Region 
Separation. 

during the traversal are just mapped and interpolated 
while the remaining regions can just be mapped if the 
exhausted side ends with an empty space. Otherwise 
number of empty spaces is counted from the non-
exhausted side which contains the least number of 
empty spaces and a similar process is applied by 
inserting into the region of the exhausted side equal 
number of empty spaces. 

3.4 Orientation and Translation of 
Boundaries 

Each of the interpolated boundary already projected 
onto the XZ plane is oriented along the resultant normal 
of each of the source and target boundaries and trans 
lated- to the average center of each of the source and 
target boundaries (Figure 6).  When all the interpolated 
boundaries are oriented as well as translated, we get the 
outline of the morphed output (Figure 7). 

 
Figure 6: Orientation and Translation of a Single Inter -
polated Boundary. 
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Figure 7: Orientation and Translation of  All Interpola- 
ted Boundaries. 

3.5 Surface Reconstruction 
From the stack of oriented and translated boundaries, 
surface of the morphed object is constructed. Each of 
the boundaries merges with the next boundary by 
dividing the in-between space of the two consecutive 
boundaries into a number of cells. Surface reconstruct- 
tion is performed by only considering each of the two 
consecutive boundaries. This simplifies the overall sur -
face construction process as where data is highly ire -
gular, necessary modification among cell coordinates is 
limited to only two consecutive boundaries. Surface 
reconstruction in detail is discussed next. 

3.5.1 Disconnected Region Separation 
Each consecutive boundary may have regions which are 
disconnected from one another (Figure 8(a)). Nearest 
neighbor searching is carried out to find this kind of 
regions. The disconnected regions are laterally mapped 
(for better effect) and the other regions are to be 
mapped across the boundary. This is called vertical 
mapping (Figure 8(b)). The details of the vertical 
mapping are discussed in the next subsection. 

Figure 8: Separating Disconnected Regions 
between Two Consecutive Boundaries. 

3.5.2 Basic Cell Construction 
After region separation, two consecutive point/ cell 
arrays (representing two consecutive slices) are 
obtained and vertically mapped. The two arrays which 
contain the number of interpolated points at each index 
need to be compressed so that the process of mapping 
can be carried out in an easier and straightforward 
manner. Figure 9 shows the process of compressing two 
consecutive arrays. In the compression, the arrays are 
transformed into two new arrays each: region number 
array (where region numbers are stored) and number of 
occurrences array (where the number of occurrences of 
each region number are stored). 
Firstly, the size of both arrays should be made equal 
using a heuristic approach. Sometimes some index 
values are dissolved and some are omitted in order to 
make the size of both arrays equal. Corresponding 
values of the number of occurrences arrays should also 
be made equal so that they are ready to be vertically 
mapped. In the case of unequal values, the larger of the 
two values is made equal to the smaller number by 
removing excess number of that particular number of 
occurrences value. Corresponding number in the two 
region number arrays should also be equal for the pur- 
pose of vertical mapping. If they are not equal, a further 
processing needs to be done. The process starts with 
finding the nearest matched index values of the region 
number arrays by traversing to the left and the right. 
The nearest matched values will ensure better continui -
ty between different-numbered regions. Next the 
corresponding region numbers are split into two 
portions where the values of the region number of the 
first portion is derived from the continuous mapping of 
the nearest matched index values to the corresponding 
region number values and the values of the region num-
ber of the second portion are the remaining region num 
-bers resulting from the split. In the example (Figure 9), 
the first discrepancy occurs at index number ‘2’ and the 
nearest matched values are at index number ‘1’ with a 
value of ‘4’ and ‘4’. The current values (i.e. 8 and 6) 
need to be split into two portions. The first portions are 
made equal to ‘4’ and the second portions are assigned 
the remaining values (8-4 = 4 and 6-4 = 2). 
At the end of the entire processing, two sets of region 
number arrays are obtained. The top set (Figure 9(a)) 
now consists of equal region number and can therefore 
be vertically mapped whereas each of the bottom set 
(Figure 9(b)) is to be laterally mapped separately.  
Enhancement is carried out in surface reconstruction 
when empty space is met or at the transition point 
between two different-numbered regions.  
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4. IMPLEMENTATION AND RESULTS 
The algorithm has been implemented using C++ with  
Visualization Tool Kit (VTK) as graphics platform. In 
Figure 10(a), transformed shape is constructed when the 
number of objects is three using ‘4’ as the number of 
steps with the initial direction of traversal for the first 
data along the principal axis Y and the rest along the 
maximum direction of the eigen vector i.e. ‘alignment = 
0’. As the number of step increases, the number of 
slices is doubled which also increases the overall run 
time. Figure 10(b) shows the transformed output when 
the initial direction of traversal for all data is along the 
maximum direction of the eigen vector i.e. ‘alignment = 
0’. In Figure 10(c) transformed output is generated 
when the initial direction of traversal for all data is  
along the medium direction of the eigen vector i.e. 
‘alignment = 1’ whereas in Figure 10(d), transformed 
output is generated with initial direction of traversal  for 
all data along minimum direction of the eigen vector i.e. 
‘alignment = 2’. 

Figure 11 shows the shape transformation when there 
are four input objects. In Figure 11(a), shape transfor – 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mation is performed with the initial direction of traver -
sal for all data along the principal axis Y  and in 
Figure11(b) transformed output is generated with initial 
direction of traversal  for all data along minimum direc 
-tion of the eigen vector i.e. ‘alignment = 2’. 

Figure 12 compares the shape transformation as the ini 
-tial direction of traversal for the same input object cha 
-nges. In Figure 12(a), the initial direction of traversal 
for all data is  along the maximum direction of the ei -
gen vector i.e. ‘alignment = 0’ and in Figure 12(b), the 
initial direction of traversal for the first data along prin -
cipal axis Y and the rest of the data is along the maxi -
mum direction of the eigen vector i.e.‘alignment = 0’. 

Instead of incorporating the overall characteristics of all 
the objects into one, different parts of different objects 
can be incorporated in different proportions during 
shape transformation or some portions of some objects 
can be kept unchanged. This may result in a totally 
different objects which is a blend of a number of 
objects. Figure 13 shows shape transformation by blend 
-ing  two objects in top and bottom portion  while the 
middle portion is a blend of three objects. Figure 14 
shows the gradual transformation between two objects 
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    Figure 9: Basic Cell Construction between Two Consecutive Interpolated Boundaries. 
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where the initial directions of traversal for both objects 
are along the minimum direction of the eigen vector i.e 
‘alignment = 2’. 

   
Figure 10: Shape Transformation when the Number of 
Input Objects is Equal to Three. 

Figure 11: Shape Transformation when the Number of 
Input Objects is equal to Four. 

 
Figure 12: Shape Transformation for the same Input 
Objects with Different Initial Direction of Traversal. 

Figure 13: Shape Transformation by Blending  Different 
Objects in Different Proportions. 

Figure 14: Gradual Shape Transformation between Two 
Objects (Leftmost and Rightmost). 

The usual way of incorporating multiple influence 
shapes in shape transformation is to use different 
influence shapes at different stages of transformation in 
between two objects. Using multiple influence shape in 
this way does not incorporate the overall characteristics 
of all the influence shapes among all the intermediate 
objects.  This shortcoming can be alleviated by using 
our technique. All the influence shapes are transformed 
first. Then the transformed object can be used as a 
single influence shape to produce a uniform blend of all 
the influence shapes during transformation (Figure 15). 

 
Figure 15: Transformation of Multiple Objects to One 
Single Object to Influence the Original Path of Morphing. 
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5. DISCUSSION 
This section compares the proposed algorithm with 
some other existing shape transformation algorithms. 
Most surface-based methods consider the distortion/ 
rotation of the rigid body, but division of both source/ 
target into a number of corresponding patches or 
meshes is needed at the expense of a large number of 
user input and longer pre-processing stage [Kent92, 
Lazarous94, Gregory98, Breen01]. Hence surface-
based methods do not scale well when the number of 
input objects increases. The proposed algorithm works 
without any user input with default initial settings 
(‘number of steps = 4’ and ‘alignment = max’).  If 
variations in the number of steps and alignments are 
desired, the user just needs to specify these two 
variables. The number of slices can also be reduced by 
varying the number of steps. This automated method of 
reducing the number of slices as well as run time is 
absent in most other algorithms. In most other existing 
algorithms, specific number of user-defined disk fields 
[Chen96] or point/line fields [Kent92, Lazarous94, 
Gregory98, Breen01] are used. Varying these fields 
involves a considerable amount of user intervention and 
longer pre-processing time: minor variation in these 
fields can generate a major variation in the output. The 
proposed algorithm automatically traverses the data 
along the user-defined initial alignment and is free from 
any inaccurate user intervention and at the same time if 
needed, allows user to specify the initial direction of 
traversal. This generates different transformed output 
for the same set of data. Scalability is another major 
characteristics of the algorithm. This algorithm scales 
well when the number of input objects increases.  
Transformed shape maintains the geometric features of 
the input objects. Rotation/ distortion of the rigid body 
is also considered which is absent in some volume-
based methods that use discrete mathematical function 
in shape transformation [Hughes92, He94, Turk99]. 
Some volume-based algorithms alleviate this problems 
[Payne92, Breen01]. However they are highly sensitive 
to the user-specified initial overlapping of the objects. 
Use of CSG in blending of a number of shapes is a bit 
rigid and its application is also limited [Pasko05]. 

6. CONCLUSION AND FUTURE WORK 
 
Simplicity and flexibility are two major characteristics 
of the algorithm which have made it more dynamic and 
extendible over other existing shape transformation 
algorithms. Future work includes exploitation of the me 
thod in parallel / distributed computing environment as 
simple data structure of sliced body and binary 

subdivision are suitable for both data and functional 
partitioning. 
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