
Shape Transformation of Multiple Objects Using
Slices

Shamima Yasmin Abdullah Zawawi Talib

School of Computer Sciences School of Computer Sciences
Universiti Sains Malaysia Universiti Sains Malaysia

11800 USM Penang, Malaysia 11800 USM Penang, Malaysia
shamima@cs.usm.my azht@cs.usm.my

ABSTRACT

3D shape transformation is usually confined to transformation between a pair of objects. The objective of this paper
is to look at shape transformation from a different perspective: instead of binding this concept between two objects,
the technique is extended to the concept of incorporating the characteristics of a number of objects in one body at a
time. Equal number of slices are generated from all objects. Slices may be parallel to each other or each slice may
have different orientation. Traversal of a data along its longitudinal direction may generate slices which are
differently oriented from each other. When multiple objects are transformed to one and is used as an influence shape,
it also works as incorporating multiple influence shapes at a time during transformation between two objects. The
paper shows the ease of implementation of this concept in sliced data and also discusses its extendibility.

Keywords:
Shape Transformation, Boundary interpolation, Surface Reconstruction.

1. INTRODUCTION
Generally shape transformation means incorporating
the characteristics of two different bodies in one output.
Our aim is to interpret the term in a different way:
incorporating the overall characteristics of a number of
different objects (more than two) in one output or
incorporating the characteristics of a number of
different objects in different proportions in one output.
The idea of inventing and designing new models may
have applications in show piece design, in pottery
industry as well as in animation industry.
In this paper a shape transformation algorithm based on
slices is discussed. A number of objects are collected
and equal number of slices are generated from these
objects. Slices from a particular object may be parallel
to each other or each slice can have different
orientations. The method works with minimal user

intervention without producing any significant
distortion to the eye. Again a number of different
transformed output can be generated from the same
number of objects and user has the right to choose the
best one. This method particularly shows the
extendibility, versatility of the sliced data and ease of
its implementation.

2. BACKGROUND
Shape transformation algorithms can be classified into
the following two broad categories: a) Surface-based:
consists of continuous mapping of small pieces of
polygonal surfaces of corresponding objects; b)
Volume-based: modifies voxel values of a volume data
set.
Surface-based approach uses user-defined control fields
such as point fields, line fields etc. during transforma -
tion to map key features of the input objects [Hong88,
Kent92, Gregory98, Lazarous94, Lee99]. Surface-based
methods are important because of its ability to morph
between objects of different types of genus, but these
methods also require a significant amount of user input.
Another troubling feature of surface-based method is
the problem of self-intersection. It cannot guarantee that
polygonal surfaces will not pass through themselves,
creating self-intersecting intermediate result as found in

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

WSCG 2009 Communication Papers 17 ISBN 978-80-86943-94-7

[Hong88]. All these problems will become more
prominent when more than two objects are involved.
Volume-based approach alleviates some of the
problems mentioned above. Among them, the simplest
approach is the cross-dissolving method [Hughes92,He
-94] which at first transforms volume data from spatial
domain to frequency domain, interpolates volume in
frequency domain and again transforms back to spatial
domain. Transformation of multiple objects based on
fourier or wavelet can be easy but both methods will
have difficulties in specifying slightly complex
geometric transformations such as object rotation.
This problem can be alleviated by applying warping
before interpolation as found in [Lerois95]. Here user-
defined warp is applied on input objects to resemble
each other. Instead of using point and line control fields,
user-specified disk field [Chen96] can be used. Equal
number of disks are applied on both source and target to
establish correspondence between them. Each disk has
its own normal direction which helps considering
distortion of the body. But as the number of input
objects increases, the amount of user intervention
involved also increases in both of the above mentioned
cases.
‘Distance Volume’ [Payne92] measured by computing
the shortest distance of each voxel within the volume to
the surface of the object or ‘Level Set Method’
[Breen01] where the way in which points on the surface
moves is used to establish connection among all input
objects may not scale well as the number of objects
increases.
In shape transformation using implicit function
[Turk99], implicit functions of each pair of 2-D slices
are determined using a set of constraints i.e. location,
weight, scalar values etc. When the number of objects
increases, this method may become a bit complex.
Pasko et al. uses CSG for blending a number of objects
but in a very limited way [Pasko05].
From the above discussion, it is obvious that most of
the shape transformation methods do not scale well as
the number of objects increases. Our aim is to develop a
shape transformation algorithm which optimizes user
input, considers rotation/orientation of rigid body
during transformation as well as scales better when the
number of input objects increases.

3. PROPOSED ALGORITHM

The algorithm mainly consists of the following major
steps as shown in Figure 1:
• Data Traversal and the Slicing of the Data;
• Boundary Extraction;

• Boundary Projection and Boundary Interpolation;
• Orientation and Translation of Boundaries;
• Surface Reconstruction.

Figure 1: Flow Chart of the Proposed Algorithm.

Various steps of the algorithm are discussed in detail in
the following sub sections.

3.1 Data Traversal and Slicing of the Data
A number of data is collected. The initial orientations
along which the data are subdivided in the first step of
the binary subdivision is defined along any of the
directions of the Oriented Bounding Box (OBB)
[Lin96]. An Oriented Bounding Box (OBB) is a
bounding box that does not necessarily align itself
along the coordinate axes. OBB is constructed from the
mean and covariance matrix of the cells and their
vertices that define the dataset. The eigen vectors of the
covariance matrix are extracted, giving a set of three
orthogonal vectors that define the alignment of the
dataset. Figure 2 shows the difference between a
normal bounding box and an oriented bounding box.
No doubt, an oriented bounding box more closely fits
the data than a normal bounding box. The purpose of
choosing the oriented bounding box is to allow
checking of the longitudinal direction of dataset from
its oriented bounding box rather than from normal
bounding box.
Eigen vectors describe the maximum, medium and mini
–mum variance of concentration of point clouds. The

 Data Collection

Data1 Data n

Boundary Projection

Boundary Extraction

Sliced
Data 1

Sliced
Data n

Projected
Boundary 1

Projected
Boundary n

 Interpolated Boundaries

Transformed
Output

 Orientation and Translation of Boundaries

 Surface Reconstruction

Oriented and
Interpolated
Boundaries

Data2 Data n-1 … …

Sliced
Data 2

Sliced
Data n-1

Sliced
Boundary 1

Sliced
Boundary 2

Sliced
Boundary n-1

Sliced
Boundary n

… …

Projected
Boundary n-1

Projected
Boundary 2 …

…

Boundary Interpolation

 Data Traversal and Slicing of Data

WSCG 2009 Communication Papers 18 ISBN 978-80-86943-94-7

Figure 2: (a) Normal Bounding Box and (b) Oriented
Bounding Box.

‘maximum’ direction shows the maximum amount of
concentration of the cells of the data along that
direction, whereas the ‘medium’ direction exhibits less
amount of concentration than maximum direction and
the ‘minimum’ direction shows the least amount of
concentration or the least alignment of the cells along
that direction. The first subdivision takes place along a
plane centered at the center of the Oriented Bounding
Box (OBB) of the object with normal along the initial
alignment. This step, called ‘step 0’, divides the data
into two end parts.
In the next step i.e. ‘step 1’, each of the two end pieces
found from ‘step 0’ is wrapped with OBB and tested
whether the longitudinal direction of the alignment of
the sliced end is still within the maximum or medium
direction of the OBB. If the alignment is still within
maximum/ medium direction, a line joining the center
of the previous cut plane and the center of the OBB is
used as the direction of the cut plane normal for the
ends in that step (Figure 3(a)). Otherwise ends are
sliced along the cut plane normal found in the previous
step which is used for any further subdivision of the
ends and in the subsequent steps no further checking on
the alignment is done. At the end of ‘step 1’, the data is
divided into four parts i.e. two end parts and two middle
parts.
Before further subdivision of the ends, if necessary,
checking is done for the alignments of the two sliced
ends. The procedure described in ‘step 1’ is followed
for further subdivision of the two ends. For the middle
parts, data is sliced along the plane with center as the
center of the OBB and normal directed along the
resultant normals of the two ends of the middle data
(Figure 3(b)). Slicing is continued along the
longitudinal direction until the desired number of steps
is reached. In each subsequent step, the number of
slices is doubled. The default longitudinal direction is
the ‘maximum’ direction of the eigen vectors and the
default number of steps for binary subdivision of the
data is ‘four’. To provide more flexibility, the initial
longitudinal direction as well as the number of steps
can be defined by the user. We indicate the maximum
alignment as ‘0’, the medium alignment as ‘1’ and the
minimum as ‘2’. Therefore, the users are allowed to

vary the morphed output based on the initial alignment.
Subdivision can also be forced to happen along any
particular direction or along any of the axes i.e. x, y or z
to generate parallel slices.

Figure 3: Division of (a) the End Data and (b) the Middle
Data.

After reaching the desired number of steps, two ends
are traversed along the tip. Usually no further checking
for the alignments of the two ends are needed now as
the current alignments of the sliced ends are usually not
along the maximum or the medium direction of the
OBB of the two sliced ends. Hence the normal is
usually along the direction which was found at the step
before the last checking step and traversing towards the
tip is continued along that direction until it is close
enough to the tip. At this stage two ends are again divi
-ded into two parts.

3.2 Boundary Extraction
Only boundaries of the slices are extracted (Figure 4).
As discussed above, in ‘step 0’, data is divided into two
parts. In each of the subsequent steps, the number of
slices are doubled. Hence in ‘step 4’, there are 2(4+1) i.e.
32 slices. From 32 slices, 31 boundaries can be
extracted. Then boundaries at the ends which are
determined after the specified number of steps is
reached are also added. Two such boundaries at the two
ends result in a total of 33 boundaries each. Hence in
‘step 4’, the number of extracted boundaries (for each
data) is computed as follows:

2(step+1) + 1 = 2(4+1) + 1= 25 + 1 = 33.

3.3 Boundary Projection and Boundary
Interpolation

All data boundaries are projected onto the XZ plane and
centered at the origin. Each of the boundaries are
traversed along the direction of their minimum X (Xmin)
to maximum X (Xmax) with a traversal plane defined as
(1,0,0). For each boundary, traversal spacing is deter-

 N = N2 + N3’

C2 =
Center

of
OBB

 N2 N3

 N3’

Next cut plane is along
normal N with Center C2.

(b)

C1=
Center

of
OBB

O1 = Center of
Previous Cut Plane

 N1= Line joining C1 and O1

Next cut plane
along normal N1
with Center C1.
(Alignment is
within maxi-
mum/ medium)

(a)

(a) (b)

WSCG 2009 Communication Papers 19 ISBN 978-80-86943-94-7

Figure 4: Extraction of Boundaries from a Number of
Data.

mined separately. Equal number of traversals is perfor -
med for all data. Traversal spacing is determined as
follows:

Spacing = (Xmax – Xmin)/ Number of Traversals

Only boundary points are extracted from the traversals.
If the number of extracted points in any cut plane
happens to be odd, it is made to be even. Next interpo -
lation is performed onto the XZ plane. For simplicity,
linear interpolation is used in our implementation. Here
it should be noted that only one normal is extracted per
boundary regardless of whether any particular boundary
consists of multiple holes or empty spaces. Also each
boundary has one center irrespective of the irregular
geometric configuration of that particular boundary.
Usually corresponding boundary point clouds are just
interpolated. Sometimes enhancement of the interpola -
tion process is carried out. When all boundaries have
equal number of regions and there are more than one
region in all of them, then each of the corresponding
regions are interpolated so that interpolated point
clouds also have equal number of regions (Figure 5).
Region is an area where the number of points extracted
by the cut plane is the same while traversing along the
X axis.

Again when there are equal number of empty spaces in
all boundaries, we have equal number of corresponding
regions for the corresponding boundaries. Thus corres -
ponding regions can be interpolated. When some of the
boundaries contain empty space while other does not
have any, number of empty spaces is counted from the
boundary which contains the least number of empty
spaces and equal number of empty spaces are inserted
into the non-empty boundaries. Now all the boundaries
contain empty spaces. When there are unequal number
of empty spaces/ regions, rightward and leftward traver
-sals are carried out from both ends until region in one
of the boundaries is exhausted. Corresponding regions

Figure 5: Interpolation of Boundaries after Region
Separation.

during the traversal are just mapped and interpolated
while the remaining regions can just be mapped if the
exhausted side ends with an empty space. Otherwise
number of empty spaces is counted from the non-
exhausted side which contains the least number of
empty spaces and a similar process is applied by
inserting into the region of the exhausted side equal
number of empty spaces.

3.4 Orientation and Translation of
Boundaries

Each of the interpolated boundary already projected
onto the XZ plane is oriented along the resultant normal
of each of the source and target boundaries and trans
lated- to the average center of each of the source and
target boundaries (Figure 6). When all the interpolated
boundaries are oriented as well as translated, we get the
outline of the morphed output (Figure 7).

Figure 6: Orientation and Translation of a Single Inter -
polated Boundary.

2 point region

 4 point region

2-point region

 4-point region

Boundary 1

Interpolated
Boundary

Boundary 2
Boundary 3

N1 N2
N3

N = N1+N2+N3

C1

 C2 C3

C = C1+C2+C3/3

WSCG 2009 Communication Papers 20 ISBN 978-80-86943-94-7

Figure 7: Orientation and Translation of All Interpola-
ted Boundaries.

3.5 Surface Reconstruction
From the stack of oriented and translated boundaries,
surface of the morphed object is constructed. Each of
the boundaries merges with the next boundary by
dividing the in-between space of the two consecutive
boundaries into a number of cells. Surface reconstruct-
tion is performed by only considering each of the two
consecutive boundaries. This simplifies the overall sur -
face construction process as where data is highly ire -
gular, necessary modification among cell coordinates is
limited to only two consecutive boundaries. Surface
reconstruction in detail is discussed next.

3.5.1 Disconnected Region Separation
Each consecutive boundary may have regions which are
disconnected from one another (Figure 8(a)). Nearest
neighbor searching is carried out to find this kind of
regions. The disconnected regions are laterally mapped
(for better effect) and the other regions are to be
mapped across the boundary. This is called vertical
mapping (Figure 8(b)). The details of the vertical
mapping are discussed in the next subsection.

Figure 8: Separating Disconnected Regions
between Two Consecutive Boundaries.

3.5.2 Basic Cell Construction
After region separation, two consecutive point/ cell
arrays (representing two consecutive slices) are
obtained and vertically mapped. The two arrays which
contain the number of interpolated points at each index
need to be compressed so that the process of mapping
can be carried out in an easier and straightforward
manner. Figure 9 shows the process of compressing two
consecutive arrays. In the compression, the arrays are
transformed into two new arrays each: region number
array (where region numbers are stored) and number of
occurrences array (where the number of occurrences of
each region number are stored).
Firstly, the size of both arrays should be made equal
using a heuristic approach. Sometimes some index
values are dissolved and some are omitted in order to
make the size of both arrays equal. Corresponding
values of the number of occurrences arrays should also
be made equal so that they are ready to be vertically
mapped. In the case of unequal values, the larger of the
two values is made equal to the smaller number by
removing excess number of that particular number of
occurrences value. Corresponding number in the two
region number arrays should also be equal for the pur-
pose of vertical mapping. If they are not equal, a further
processing needs to be done. The process starts with
finding the nearest matched index values of the region
number arrays by traversing to the left and the right.
The nearest matched values will ensure better continui -
ty between different-numbered regions. Next the
corresponding region numbers are split into two
portions where the values of the region number of the
first portion is derived from the continuous mapping of
the nearest matched index values to the corresponding
region number values and the values of the region num-
ber of the second portion are the remaining region num
-bers resulting from the split. In the example (Figure 9),
the first discrepancy occurs at index number ‘2’ and the
nearest matched values are at index number ‘1’ with a
value of ‘4’ and ‘4’. The current values (i.e. 8 and 6)
need to be split into two portions. The first portions are
made equal to ‘4’ and the second portions are assigned
the remaining values (8-4 = 4 and 6-4 = 2).
At the end of the entire processing, two sets of region
number arrays are obtained. The top set (Figure 9(a))
now consists of equal region number and can therefore
be vertically mapped whereas each of the bottom set
(Figure 9(b)) is to be laterally mapped separately.
Enhancement is carried out in surface reconstruction
when empty space is met or at the transition point
between two different-numbered regions.

X

Z
Y

Z

X

(0, 0, 0)

(0, 0, 0)

Point clouds in top slice
with only one region

 Region 1 Region 2

Point clouds in bottom
slice with two separate
regions

After region separation
point clouds in top slice
vertically mapped with
region 1 of bottom slice

Disconnected region
2 in bottom slice is
laterally mapped

(a)

(b)

WSCG 2009 Communication Papers 21 ISBN 978-80-86943-94-7

4. IMPLEMENTATION AND RESULTS
The algorithm has been implemented using C++ with
Visualization Tool Kit (VTK) as graphics platform. In
Figure 10(a), transformed shape is constructed when the
number of objects is three using ‘4’ as the number of
steps with the initial direction of traversal for the first
data along the principal axis Y and the rest along the
maximum direction of the eigen vector i.e. ‘alignment =
0’. As the number of step increases, the number of
slices is doubled which also increases the overall run
time. Figure 10(b) shows the transformed output when
the initial direction of traversal for all data is along the
maximum direction of the eigen vector i.e. ‘alignment =
0’. In Figure 10(c) transformed output is generated
when the initial direction of traversal for all data is
along the medium direction of the eigen vector i.e.
‘alignment = 1’ whereas in Figure 10(d), transformed
output is generated with initial direction of traversal for
all data along minimum direction of the eigen vector i.e.
‘alignment = 2’.

Figure 11 shows the shape transformation when there
are four input objects. In Figure 11(a), shape transfor –

mation is performed with the initial direction of traver -
sal for all data along the principal axis Y and in
Figure11(b) transformed output is generated with initial
direction of traversal for all data along minimum direc
-tion of the eigen vector i.e. ‘alignment = 2’.

Figure 12 compares the shape transformation as the ini
-tial direction of traversal for the same input object cha
-nges. In Figure 12(a), the initial direction of traversal
for all data is along the maximum direction of the ei -
gen vector i.e. ‘alignment = 0’ and in Figure 12(b), the
initial direction of traversal for the first data along prin -
cipal axis Y and the rest of the data is along the maxi -
mum direction of the eigen vector i.e.‘alignment = 0’.

Instead of incorporating the overall characteristics of all
the objects into one, different parts of different objects
can be incorporated in different proportions during
shape transformation or some portions of some objects
can be kept unchanged. This may result in a totally
different objects which is a blend of a number of
objects. Figure 13 shows shape transformation by blend
-ing two objects in top and bottom portion while the
middle portion is a blend of three objects. Figure 14
shows the gradual transformation between two objects

 0 1 2 3 4 5 6 7 8 9 40 41 42 43 44 45 46 47 48 49 Index No:

1st Number Array

2nd Number Array

 Two Arrays Containing the Number of Interpolated Points

Index No:
1st Array

2nd Array

Each Array is
compressed

to
2 arrays

 4 2

 2 4 2

 8 7

 8 7 9

At the End of the
Entire Processing

2 2 2 2 2 2 2 2 4 4 - - - 4

2 2 2 2 2 2 2 2 4 4 6 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4

 Number of Occurrences Array

 0 1 2 3 4 5

8 9 8 7 9 9

8 9 8 7 9 9

 0 1 2 3 4 5

 Region Number Array

2 4 8 6 4 4

2 4 6 8 6 4

2 4 4 4 4 4

2 4 4 4 4 4

8 9 8 7 9 9

8 9 8 7 9 9

Vertical Mapping
 between

Corresponding Cells

Separate
Lateral

Mapping

(a)

(b)

 Figure 9: Basic Cell Construction between Two Consecutive Interpolated Boundaries.

WSCG 2009 Communication Papers 22 ISBN 978-80-86943-94-7

where the initial directions of traversal for both objects
are along the minimum direction of the eigen vector i.e
‘alignment = 2’.

Figure 10: Shape Transformation when the Number of
Input Objects is Equal to Three.

Figure 11: Shape Transformation when the Number of
Input Objects is equal to Four.

Figure 12: Shape Transformation for the same Input
Objects with Different Initial Direction of Traversal.

Figure 13: Shape Transformation by Blending Different
Objects in Different Proportions.

Figure 14: Gradual Shape Transformation between Two
Objects (Leftmost and Rightmost).

The usual way of incorporating multiple influence
shapes in shape transformation is to use different
influence shapes at different stages of transformation in
between two objects. Using multiple influence shape in
this way does not incorporate the overall characteristics
of all the influence shapes among all the intermediate
objects. This shortcoming can be alleviated by using
our technique. All the influence shapes are transformed
first. Then the transformed object can be used as a
single influence shape to produce a uniform blend of all
the influence shapes during transformation (Figure 15).

Figure 15: Transformation of Multiple Objects to One
Single Object to Influence the Original Path of Morphing.

 (a)

 (b)

 (a)

 (b)

(c)

 (d)

 (a)

 (b)

WSCG 2009 Communication Papers 23 ISBN 978-80-86943-94-7

5. DISCUSSION
This section compares the proposed algorithm with
some other existing shape transformation algorithms.
Most surface-based methods consider the distortion/
rotation of the rigid body, but division of both source/
target into a number of corresponding patches or
meshes is needed at the expense of a large number of
user input and longer pre-processing stage [Kent92,
Lazarous94, Gregory98, Breen01]. Hence surface-
based methods do not scale well when the number of
input objects increases. The proposed algorithm works
without any user input with default initial settings
(‘number of steps = 4’ and ‘alignment = max’). If
variations in the number of steps and alignments are
desired, the user just needs to specify these two
variables. The number of slices can also be reduced by
varying the number of steps. This automated method of
reducing the number of slices as well as run time is
absent in most other algorithms. In most other existing
algorithms, specific number of user-defined disk fields
[Chen96] or point/line fields [Kent92, Lazarous94,
Gregory98, Breen01] are used. Varying these fields
involves a considerable amount of user intervention and
longer pre-processing time: minor variation in these
fields can generate a major variation in the output. The
proposed algorithm automatically traverses the data
along the user-defined initial alignment and is free from
any inaccurate user intervention and at the same time if
needed, allows user to specify the initial direction of
traversal. This generates different transformed output
for the same set of data. Scalability is another major
characteristics of the algorithm. This algorithm scales
well when the number of input objects increases.
Transformed shape maintains the geometric features of
the input objects. Rotation/ distortion of the rigid body
is also considered which is absent in some volume-
based methods that use discrete mathematical function
in shape transformation [Hughes92, He94, Turk99].
Some volume-based algorithms alleviate this problems
[Payne92, Breen01]. However they are highly sensitive
to the user-specified initial overlapping of the objects.
Use of CSG in blending of a number of shapes is a bit
rigid and its application is also limited [Pasko05].

6. CONCLUSION AND FUTURE WORK

Simplicity and flexibility are two major characteristics
of the algorithm which have made it more dynamic and
extendible over other existing shape transformation
algorithms. Future work includes exploitation of the me
thod in parallel / distributed computing environment as
simple data structure of sliced body and binary

subdivision are suitable for both data and functional
partitioning.

7. REFERENCES

[Breen01] D. E. Breen and R. T. Whitaker. A Level-Set
Approach for the Metamorphosis of Solid Models. IEEE
Transactions on Visualization and Computer Graphics, 7(2),
2001, pp. 173-192.
[Chen96] M. Chen, M. W. Jones and P. Townsend. Volume
Distortion and Morphing Using Disk Fields. Computers and
Graphics, 24(2), 1996, pp. 567-575.
[Gregory98] A. Gregory, A. State, M. Lin, D. Manocha and
M. Livingston. Feature-based Surface Decomposition for
Correspondence and Morphing between Polyhedra.
Proceedings of Computer Animation, 1998, pp. 64-71.
[He94] T. He, S. Wang and A. Kauffman. Wavelet-based
Volume Morphing. IEEE Visualization Proceedings, 1994, pp.
85-92.
[Hong88] T. Hong, N. Magnenat-Thalmann and D. Thalmann.
A General Algorithm for 3D Shape Interpolation in a Facet-
based Representation. Proceedings of Graphics Interface,
1988, pp. 229-235.
[Hughes92] J. F. Hughes. Scheduled Fourier Volume
Morphing. ACM SIGGRAPH Computer Graphics, 26(2),
1992, pp. 43-46.
[Kaul92] A. Kaul and J. Rossignac. Solid-interpolating
Deformations: Constructionand Animation of PIPs.
Computers and Graphics, 16(1), 1992, pp. 107-115.
[Kent92] J. R. Kent, W. E. Carlson and R. E. Parent.
Shape Transformation for Polyhedral Objects. Computer
Graphics, 26(2), 1992, pp. 47-54.
[Lazarous94] F. Lazarous and A. Verroust. Feature-based
Shape Transformation for Polyhedral Objects. Fifth
Eurographics Workshop on Animation and Simulation, 1994,
pp. 241-254.
 [Lee99] A. W. F. Lee, D. Dobkin, W. Sweldens and P.
Schroder. Multiresolution Mesh Morphing. Proceedings of
ACM SIGGRAPH , 1999, pp. 343-350.
[Lerois95] A. Lerois, C. D. Garfinkle and M. Levoy. Feature-
based Volume Metamorphosis. Computer Graphics, 29,
“Annual Conference Series”, 1995, pp. 449-456.
[Lin96] S. Gottschalk, M. C. Lin and D. Manocha. OBBTree:
A Hierarchical Structure for Rapid Interference Detection.
Computers and Graphics (30), “Annual Conference Series”,
1996, pp. 171-180.
[Pasko05] G. Pasko, A. Pasko and T. L. Kunii. Bounded
Blending for Function-based Shape Modeling. IEEE
Computer Graphics and Applications, 25(2), 2005, pp. 36-45.
[Payne92] B. Payne and A. Toga. Distance Field Manipu -
lation of Surface Models. IEEE Computer Graphics and
Applications, 12(1), 1992, pp. 65-71.
[Turk99] G. Turk and J. F. O'Brien. Shape Transformation
Using Variational Implicit Functions. Proceedings of ACM
SIGGRAPH , 1999, pp. 335-342.

WSCG 2009 Communication Papers 24 ISBN 978-80-86943-94-7

	!_WSCG2009_SHORT_final_NUMBERED.pdf
	B19-full
	C61-full

