
Defying the Memory Bottleneck in
Hardware Accelerated Collision Detection
Andreas Raabe Frank Zavelberg

University of Bonn
Technical Computer Science

Römerstr. 164, 53117 Bonn, Germany
{raabe,zavelber}@cs.uni-bonn.de

ABSTRACT

A novel approach for hardware-accelerated high-speed collision detection is presented in this article. It focuses on dedicated
hardware for collision detection queries and its interaction with the memory interface. A specialised tree-traversal algorithm is
presented that exploits arbitrary memory interfaces optimally to minimise delay of collision queries. Along with this a novel
caching technique is introduced that combines high-speed access to the bounding-volume hierarchy with minimal resource
consumption. Simulation and synthesis results are presented that prove the conjunction of both techniques to enable real-time
collision queries at rates required by force-feedback while fitting onto a standard field-programmable gate array.

1 INTRODUCTION
Collision detection between graphical objects is a fun-
damental task in many applications, such as gaming,
virtual prototyping and physically based simulation.
As [13] report it is also a major bottleneck in all ar-
eas of physically based simulation, since up to 95% of
the overall effort is spent on collision detection. This
is because most approaches are reactive in a way that
they first place objects at certain positions, check for
collisions and then calculate forces and positions that
remove the collisions. This demands collision queries
at tremendous rates, because of the hard real-time con-
straint to complete all collision checks within a simu-
lation cycle. Another highly demanding application is
force feedback, where updates of about 1000Hz must
be achieved in order to yield stable force computations.
Since collision detection is such a fundamental and yet
performance hungry task it is highly desirable to have
hardware acceleration available. The benefit is an in-
creased number of objects that can be processed per
simulation cycle and therefore can populate the simu-
lated environment. Additionally, the CPU is liberated
from processing collision queries.

This is underlined by the fact that a growing prob-
lem in high-performance computing is the increasing
energy consumption of state-of-the-art processing de-
vices. This ongoing trend favours specialised hardware

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2008 conference proceedings, ISBN
WSCG’2008, , 2008
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

in performance hungry areas of application, since these
are in general far more energy efficient than calcula-
tions done on general purpose CPUs.

This article presents a dedicated hardware for colli-
sion detection queries and investigates on its interac-
tion with the memory interface. As will be shown in
the following the major bottleneck in hardware accel-
erated collision detection are memory accesses. Hence
special effort needs to be spent to minimise the num-
ber of memory accesses and to maximise performance
of the memory hierarchy. To the authors’ knowledge
this article is the first to systematically investigate on
this. A specialised tree-traversal algorithm is presented
that exploits arbitrary memory interfaces optimally to
minimise delay of collision queries. Along with this
a novel caching technique is introduced that combines
high-speed access to the bounding-volume hierarchy
with minimal resource consumption. A very fast, yet
hardware efficient collision detection hardware results.

2 RELATED WORK
Considerable work has been done on hierarchical colli-
sion detection in software [9, 4, 22, 11, 23]. A great va-
riety of bounding volumes are utilised, such as spheres,
axis-aligned bounding boxes (AABB), oriented bound-
ing boxes (OBB), and discretely oriented polytopes
(DOP).

In [20, 21] cache-efficient layouts of bounding vol-
ume hierarchies for standard CPU and GPU caches
were presented. A significant speed-up was yielded, but
the impact of different caching techniques was not in-
vestigated.

Recently many collision detection algorithms
running standard graphics hardware have been pre-
sented [3, 8, 10, 6, 5]. Those have the disadvantage

WSCG2008 Communication papers 25 ISBN 978-80-86943-16-9

that either the collision detection has to compete for
resources with the rendering process or an additional
graphics card must be spend. The latter is a tremendous
waste of resources since the vast majority of resources
is not utilised at all.

In [24, 25] a first architecture of a collision hardware
was proposed, but only a functional simulation was pro-
vided. [1] presents an FPGA implementation of the
well known triangle intersection test proposed in [12]
that is detailed in [2]. The approach is fast, but very
limited in the number of tested triangles, since it de-
mands that all triangles to be tested reside in the fast, but
small Block-RAM (BRAM) of the FPGA. [14] presents
a design that is optimised for speed only. Simulation
results show that speed-up factors of several orders of
magnitude compared to software implementations can
be achieved, if a sufficiently dimensioned memory in-
terface is available. The approach utilises a total of over
4 million gates only for the collision detection unit it-
self and a 756 bits wide bus to a DDR2-RAM. This
is very expensive for realisation in any technology and
prohibitively expensive for FPGA implementation. A
highly hardware efficient, fixed-point based architec-
ture along with a correctness proof and error-bounds
were presented in [18, 17], along with a register-transfer
accurate implementation and synthesis results. On a
standard FPGA prototyping board a speed-up of 4 com-
pared to a standard PC with a comparable DDR-RAM
interface was achieved.

This article combines hardware efficiency and util-
isation of standard FPGA boards with high speed-up
factors by implementing a specialised cache to exploit
temporal and optimally exploit spacial data locality. A
special traversal scheme is presented that optimally in-
teracts with the new memory hierarchy.

3 THE ALGORITHM
In this section we will quickly recap the algorithm of
hierarchical collision detection, and a special kind of
bounding volume, the k-DOP .

3.1 Hierarchical Collision Detection using
k-DOPs and SAT

In this paper we use hierarchical collision detection.
This avoids checking every triangle of an object O for
intersection with all triangles of object Q. The accel-
eration data structure is a bounding volume hierarchy
(BVH), where each leaf corresponds to one triangle and
inner nodes correspond to groups of triangles. Each
node has a bounding volume (BV) attached that bounds
all triangles associated with it. In order to achieve a
feasible hardware design, we use a binary tree here, but
n-ary trees could be considered as well. If two objects
are checked for intersection, both hierarchies are tra-
versed simultaneously. If their BVs intersect, the next
level of BVs is checked. In this work, we use k-DOPs

as BVs because they were proven to yield very fast
collision queries by extensive benchmarking in soft-
ware ([22]), and performed very well in our hardware
studies ([14, 7, 18, 17]), too.

k-DOPs
All k-DOPs are defined over a fixed set
{D1, . . . ,Dk/2,Dk/2+1, . . . ,Dk} of vectors in R3.
Each vector Di is antiparallel to Di+k/2.

A single k-DOP is defined by k distances di, one
along each vector Di, thus defining a half-space. The
(d1, . . . ,dk) define the distances of the associated halfs-
paces to the origin.

The intersection of these halfspaces forms the BV:

DOP =
⋂

i=1,...,k

Hi, Hi : Dix−di ≤ 0 (1)

The orientation matrix D, of all vectors Di, is fixed and
equal for all objects. Hence k-DOPs are very memory-
efficient: only k coefficients di need to be stored.

SAT for k-DOPs
In this article we use the Separating Axis Test (SAT)
[4, 19] to check DOP-pairs for intersection. This test is
applied to k-DOPs and implemented in hardware.

Applying the separating axis theorem of [4] to k-
DOPs results that testing N = (k/2)+(k/2)+(3k−6)2

axes for being separating axes suffices. These test axes
are: the normals of the faces of both DOPs and the
axes orthogonal to an edge from each polytope. The
test projects both k-DOPs onto each of the test axes. If
the resulting pair of intervals on an individual axis is
disjoint, the DOPs must be disjoint.

If only a subset of these axes is tested, disjoint k-
DOPs might be reported as intersecting. This is called
a false positive.

Assume object O is placed relatively to object Q by
rotation M and translation T. Now let (A1, . . . ,Ak) be
the orientations of the DOPs’ faces shared by all DOPs
in O’s bounding volume hierarchy after applying rota-
tion M. Analogously, let (a1, . . . ,ak) denote the DOP
coefficients for DOPs of O’s BVH, let (B1, . . . ,Bk) de-
note the vectors shared by all DOPs in Q’s BVH, and
let (b1, . . . ,bk) denote the corresponding DOP coeffi-
cients. Now the test axes, the projection p = L ·T and
a correspondence vector (jA,0, jA,1, jA,2) of the orienta-
tions whose faces meet in the point that maps onto the
minimal interval border with respect to L can be pre-
computed. The mapping vectors PA and PB that map
(a jA,0 ,a jA,1 ,a jA,2) onto the minimal interval border can
also be precomputed from that.

Calculating the actual projection is now reduced to
calculating

amin =
(
a jA,0 a jA,1 a jA,2

)
·PA

amax =
(
a jA,0+k/2 a jA,1+k/2 a jA,2+k/2

)
· (−PA)

(2)

WSCG2008 Communication papers 26 ISBN 978-80-86943-16-9

A

B

D E F G

C

1

3

4 5

2

6 7

C3

G7G6F7F6

B2

E5E4D5D4

C2

G5G4F5F4

B3

E7E6D7D6

A1

Figure 1: Bounding-volume hierarchies of two objects
and the resulting test tree.

This is done for bmin and bmax analogously.
Now the condition for separation is straight-forward.

Let

diff1 = (amin + p)−bmax

diff2 = bmin− (amax + p)
(3)

diff = max(diff1,diff2) (4)

then the intervals [amin,amax] and [bmin,bmax] are dis-
joint if and only if diff > 0. And from the Separating
Axis Theorem we know that

(diff > 0)⇒ separation. (5)

Computations shown in Eqs. (2)–(5) need to be done
for each DOP test, and hence cannot be precomputed.

These calculations were implemented for 24-DOPs in
SystemC in abstract style for early performance evalu-
ation as well as in VHDL for implementation on a Xil-
inx Virtex II FPGA (see Sec. 5.3). They were imple-
mented as a nine-staged pipeline. A formal correctness
proof that no false positives can occur and calculation
of bounds on the number of false positives can be found
in [7].

3.2 Control
Fig. 1 shows two BVHs and the resulting test tree.
As discussed in [15] the test tree is traversed in the
following ”optimised brotherhood” order:
A1 - B2 B3 C3 C2 - D4 D5 E5 E4 - D6 D7 E7 E6 - F4
F5 G5 G4 - F6 F7 G7 G6.
This way it is possible to mostly "keep" one DOP for
the next calculation and the loading order is:
A,1,B,2,3,C,2,D,4,5,E,4,D,6,7,E,6,F,4,5,G,4,F,6,7,G,6.
It can easily be seen that this still is not opti-
mal, since almost half of the DOP loadings
could still be saved. The optimal order would be:
A,1,B,2,3,C,D,4,5,E,6,7,F,G.

B
V

-p
ip

e
lin

e

Controller

B
V

-S
ta

c
k

P
ip

e
D

a
ta

(a
d

d
re

s
s
e

s
,

la
s
t)

BV-
control

GetData

a b

Axis-
Control

Tria
n
g

le
-U

n
it

bnewanew

DDR-RAM

control

addresses

addressesBVH-
result

BV-datatest axis

triangle
data

triangle-result (intersecting triangles)

control

DDR-ControllerPCI-Controller

Overall
result

o
v
e
ra

ll re
s
u
lt

collision
query

BV-data

Application (Benchmark)

PCI-API API

Host PC

FPGA

BV-
result

Figure 2: The overall collision detection architec-
ture with a single BV test pipeline.

Hard wiring an order like that would demand
tremendous effort, hence this potential can only be
exploited using caching techniques.

As discussed in Sec. 3.1 not testing all potentially
separating axes may lead to false positives. Since in
case of a BV collision the algorithm descends into both
BVHs and tests the sons pairwise for intersection, false
positives do not alter the outcome of the calculation.
The separation will still be detected later. In the ex-
treme, if no axes are tested at all, the test proceeds to
the leaves of the BVH and all primitives of one object
are checked for intersection against all primitives of the
other. Hence, a sufficient number of axes needs to be
tested for the hierarchical collision detection to take ef-
fect.

The most straightforward form of control would be
to test a fixed number of axes and abort if a separat-
ing axis is found. For the presented approach testing
24 axes was empirically found to be optimal. Concur-
rently the next pair of DOPs is fetched from memory
into some temporary registers. When the intersection
test is finished, proceed to the next test. This could be
called a “pull architecture” since the next pair of DOPs
is read (pulled) from the registers when the test of the
preceding pair is finished. This leads to stalling the
memory infrastructure whenever a test needs more time
than loading the next data. Another solution would be
to test only as many axes as it takes to load the next
data. This on the other hand would lead to pipeline

WSCG2008 Communication papers 27 ISBN 978-80-86943-16-9

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

R
u

n
ti
m

e
 /

 m
s

Object Distance

Software

FPGA with one pipeline, without cache

Figure 3: The architecture shown in Fig. 2 is approx-
imately 4 times faster than a state-of-the-art software
implementation running on a standard PC with com-
parable memory bandwidth. The runtime for each dis-
tance is an average over all orientations.

stalls whenever more than one DOP needs to be loaded
for the next test or if triangles need to be fetched from
memory.

Both, stalling the pipeline and stalling the memory
can be avoided by starting a new calculation whenever a
new pair of DOPs is ready to be tested. In the meantime
further axes can be tested for intersection. Since find-
ing a separating axis prevents descending deeper into
the test tree the number of bounding-volume tests to
be scheduled is decreased. This new approach will be
called “push architecture” in the following. Here a min-
imum number of tests to be performed needs to be de-
fined. Otherwise the test could run down the test tree
without considering enough (or worse any) axes and
this way reduce performance instead of speeding-up the
calculation.

4 THE ARCHITECTURE
The complete architecture is implemented on a Xilinx
Virtex II FPGA running on an Alpha Data ADMXRC
board with DDR-SDRAM memory. The latter offers a
maximum overall bandwidth of 2.1 GB/s. The FPGA
board is connected via PCI interface to a host PC where
the calling application is running.

Fig. 2 shows a block diagram of the architecture.
The application can schedule tests via an API, which
sends the request via PCI communication to the test
controller. The controller schedules the test
of the root bounding-volumes of the BVHs by pushing
their addresses onto its internal BV-Stack. The most
recently pushed BV-pair addresses are popped from
the stack and the DOP coefficients are fetched by
the DDR-Controller from the DDR-RAM. The
GetData module decides whether triangle or DOP
data was loaded and routes them to the according
test pipeline. In case of DOP coefficients the current

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300 350 400 450

R
u

n
ti
m

e
 /

 m
s

Clock Rate / MHz

Fixed Pipeline Clock = 100 MHz, varying RAM-Clock

Fixed RAM Clock = 100 MHz, varying Pipeline Clock

Figure 4: Influence of memory bandwidth and pipeline
clock on the performance of the collision detection sys-
tem. Speeding up the pipeline would not result in a
significant speed-up of the overall calculation. How-
ever, increasing the memory bandwidth (done here by
increasing the memory clock rate) has a much larger
effect.

BV test is finished and a new one is started. The
Axis-Control module provides the pipeline with
the vector of the first test axis. It requests testing of
further axes as long as no new DOP data is present.
The PipeData module contains bookkeeping infor-
mation of the tests within the BV pipeline that
enables the controller to decide whether an axis test
that leaves the pipeline is the last one of a DOP-pair.
Additionally, it contains the son addresses of the DOPs
that were tested, so they can be scheduled pairwise for
intersection testing into the BV-Stack, if necessary.
If no more BV-pairs need to be tested and all requested
triangle tests are finished an Overall result
module joins the results of the BVH test and the
triangle test and reports them back to the host via the
PCI-Controller. As will be discussed in the next section
memory bandwidth is the main bottleneck in the
design. Additionally, space is a vital resource in FPGA
development. Therefore a SAT-based triangle intersec-
tion test was implemented in Triangle-Unit, that
uses minimal bandwidth and can be implemented very
resource efficiently.

5 THE MEMORY HIERARCHY
The benchmark used in the following places two dif-
ferent objects at different distances of their centers and
with different rotations. For each constellation, the time
to detect all intersecting triangles is determined. The
objects intersected in nearly all object configurations
used.

As shown in Fig. 3 the presented architecture is ap-
proximately 4 times faster than the state-of-the-art soft-
ware implementation proposed in [23] running on a
standard PC with comparable memory bandwidth. Us-
ing massively parallel calculations done on the FPGA

WSCG2008 Communication papers 28 ISBN 978-80-86943-16-9

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 4 6 8 10 12 16 20 24

R
u

n
ti
m

e
 /

 m
s

Minimum number of axis tests

No Cache

Direct Mapped 32

Direct Mapped 64

LRU 32

LRU 64

Perfect Cache

Figure 5: Comparison of the influence of different
caching techniques on the performance of a single
DOP pipeline. Numbers mark the cache size in num-
ber of cacheable 24-DOPs.

this is not a satisfying result. It results from the fact, that
this comparison is still unfair, since the PC is equipped
with a standard memory hierarchy of several caches.
This indicates that a memory bottleneck exists.

The results of a systematic investigation on the influ-
ence of the memory bandwidth are shown in Fig. 4. It
shows that speeding up the pipeline (or implementing
multiple pipelines) without increasing memory band-
width would not result in a significant speed-up of the
calculation. However, increasing the memory band-
width (which is done by increasing the memory clock
here) has a much larger effect. Since when using a stan-
dard FPGA board the memory interface to the DDR-
SDRAM itself is fixed, using caches is the only remain-
ing solution. As discussed in Section 3.2 there still ex-
ists potential for optimising the loading order of DOPs
from DDR-RAM that can be exploited using caching
techniques.

5.1 Comparing Caching Techniques
Spacial Locality For cache implementation the main
challenge is to determine how to exploit spacial and
temporal locality of data for the problem at hand. For
spacial locality it suffices to determine the optimal
block size. In case of the presented collision detection
hardware this is easy, since only complete DOPs are
used. Additionally, the memory infrastructure never
runs idle in case of a push architecture. Hence, it is
obvious that loading complete bounding-volumes in
one burst and storing them as a cache block is the
optimal way to exploit spacial data locality.

Temporal Locality To most efficiently exploit tem-
poral locality it is necessary to determine the caching
strategy best suited for the problem at hand.

Fig. 5 shows a comparison of the influence of dif-
ferent caching techniques on the performance of a sin-
gle DOP pipeline obtained in simulation. The span
between No Cache and Perfect Cache indicates the

 6.5

 7

 7.5

 8

 4 6 8 10 12 16 20 24

R
u

n
ti
m

e
 /

 m
s

Minimum number of axis tests

LTA 64

LTA 512

LRU 64

LRU 512

Perfect Cache

Figure 6: Comparison of a fully associative LRU cache
and the lockable two-way associative cache (LTA). LTA
and LRU with 64 cache entries each perform nearly
equally well. LTA 512 performs close to the theoretical
optimum. An LRU implementation of this size would be
prohibitively expensive.

amount of theoretically achievable savings measured in
clock cycles. The perfect cache saves any data it has
ever seen and never needs to replace any of it. Imple-
menting such a structure is somewhat pointless, since it
would require a tremendously large cache. It serves as a
reference only. The figure shows that for the presented
collision detection hardware with only a single collision
detection pipeline over 35% speed-up can theoretically
be achieved.

Also shown are two more realistic caching strate-
gies. Firstly, a fully associative cache with least re-
cently used (LRU) strategy is investigated. It qualita-
tively behaves like the perfect cache and yields good
performance. But, to determine if the currently re-
quested data block is present comparing all cache en-
tries in parallel is necessary. Therefore, it consumes
a lot of chip space. Secondly, the very simple direct
mapped cache that maps each cache block to a unique
entry is investigated. Though very hardware efficient it
performs far below the optimum.

5.2 LTA Cache
To achieve good performance as well as space effi-
ciency, this article presents a new caching strategy for
bounding-volume hierarchies. The basic structure is
shown in Fig. 7.

It implements a two-way set associative caching stra-
tegy. This is the minimum necessary to avoid two
bounding-volumes to be tested for intersection to re-
quest the same cache entry. Additionally, it implements
a FIFO that feeds data into the pipeline. This input
FIFO is filled with data while the pipeline is process-
ing the minimum number of axes necessary to avoid
running down the test tree to quickly. These test re-
quests can now be processed while the triangle inter-
section tests loads its data from the DDR-RAM. This
way the cache can load data that will be processed at
some point in the future. This is done until some test
data which is still scheduled in the FIFO and needs to
be processed by the pipeline first has to be replaced. To
avoid double bookkeeping the FIFO only needs to con-
tain pointers to the cache entries, not the actual data.

WSCG2008 Communication papers 29 ISBN 978-80-86943-16-9

GetData

BV-data

triangle
data

addresses

control

BV-data

Cache

F
IF

O

a
d
d
re

s
s
e
s

LTA

DDR-Controller

addresses

Figure 7: Basic structure of the LTA cache. To avoid
double bookkeeping a FIFO contains pointers to the
cache entries only. The cache itself is two-way set-
associative. References to cache entries are not
shown in the figure.

The only additional overhead are counters of references
to the cache entries. If an entry’s counter drops to zero
the entry can be replaced, otherwise it is “locked”. If
a new entry needs to replace a locked one, the memory
controller still has to be stalled. But this occurs in less
than 0.0008% of the cases. Hence, no further speed-
up is to be expected by increasing the associativity.
Fig. 6 shows that, though very simple and yet hardware
efficient, this lockable two-way set-associative cache
(LTA) performs nearly as well as the fully associative
approach when providing the same number of entries.
Increasing the number of entries to 512 shows that the
LTA caches performance is very close to the theoreti-
cal optimum. Implementing a fully associative cache
of this size would be prohibitively expensive. The LTA
cache’s hardware consumption remains very modest, as
will be shown in Sec. 5.3.

The presented caching strategy obviously collabo-
rates efficiently with the push architecture introduced
earlier in this article. As long as the FIFO is empty,
more test axes are processed by the pipeline. This way
the probability to find a separating axis is increased
in case of a low bandwidth to the DDR-RAM (possi-
bly temporarily caused by high emergence of triangle
tests). This decreases the number of requested DOP
data, since in case of separation this subtree of the test
tree is not descended any further. This way the memory
bottleneck is further relaxed.

5.3 Performance Evaluation and
Synthesis Results

The LTA-cache was implemented in VHDL and syn-
thesised for the target FPGA architecture. Integrating
it into the collision detection architecture described in
Sec. 4 results in an additional resource consumption of
only 7% of the slices and 5% of the slice flip flops.
Despite performing close to the theoretical optimum it
consumes only 33 out of 144 Block RAMs.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

R
u

n
ti
m

e
 /

 m
s

Object Distance

Software

FPGA with LTA and two pipelines

Figure 8: A design with two pipelines and a DDR-RAM,
both running at only 100MHz, and implementing an
LTA cache in conjunction with the push architecture is
more than 10 times faster than a standard PC with a
comparable memory bandwidth.

Using the LTA cache in conjunction with the push
architecture to effectively decrease the number of
memory accesses during hierarchical collision de-
tection not only speeds-up calculation by a factor of
about 35% when using a single pipeline. It enables
parallel implementation of several pipelines in parallel.
Fig. 8 shows that a design with two pipelines and a
DDR-RAM, both running at only 100MHz, is over
10 times faster than a standard PC with a comparable
memory bandwidth, while still fitting onto a single
FPGA.

6 CONCLUSION

A novel approach for hardware-accelerated high-speed
collision detection was presented in this article. It
focuses on dedicated hardware for collision detection
queries and its interaction with the memory interface.
A specialised tree-traversal algorithm, the push archi-
tecture, was presented that exploits arbitrary memory
interfaces optimally to avoid both pipeline and memory
stalls during the calculation. Along with this the novel
LTA cache was introduced that combines high-speed
access to the bounding-volume hierarchy with minimal
resource consumption. It was shown that the newly
proposed caching strategy performs close to the theo-
retical optimum and enables concurrent use of multiple
BV test pipelines. Its full functionality was tested on-
chip. Simulation and synthesis results were presented
that prove the conjunction of LTA cache and push ar-
chitecture to enable real-time collision queries at rates
required by force-feedback while fitting onto a standard
field-programmable gate array. It outperforms state-of-
the art software algorithms running on a standard PC
with a comparable memory interface by an order of
magnitude.

WSCG2008 Communication papers 30 ISBN 978-80-86943-16-9

7 FUTURE WORK
Among the next steps will be the integration of the colli-
sion detection hardware API into a scene graph library.
To further speed-up the processing of collision queries
we plan on developing a custom FPGA board provid-
ing a multi-stage memory hierarchy and a state-of-the-
art DDR2-RAM. Additionally, we will investigate on
the effect of caching primitive data as well, to further
increase effective memory bandwidth. Along the same
lines additional performance could be gained by com-
pressing both, bounding-volume and primitive data.

Another important topic is collision detection of de-
formable objects. It remains an open problem which
data structures and algorithms are suited best for hard-
ware implementation.

Runtime exchange of parts of the algorithm as pro-
vided by the dynamic reconfiguration ability of current
FPGAs, is currently under investigation [16] to further
speed-up calculation and reduce circuit size.

REFERENCES
[1] N. Atay and B. B. John W. Lockwood. A Collision

Detection Chip on Reconfigurable Hardware. In 13th
Pacific Conference on Computer Graphics and Appli-
cation, 2005.

[2] N. Atay and B. B. John W. Lockwood. A Collision
Detection Chip on Reconfigurable Hardware. Technical
report, Washington University in St. Louis, 2005.

[3] G. Baciu and W. S.-K. Wong. Hardware-assisted self-
collision for deformable surfaces. In Proceedings of
ACM Symposium on Virtual Reality Software and Tech-
nology (VRST), pages 129–136. ACM Press, 2002.

[4] S. Gottschalk, M. Lin, and D. Manocha. OBB-Tree: A
hierarchical structure for rapid interference detection.
In H. Rushmeier, editor, SIGGRAPH 96 Conference
Proceedings, pages 171–180. ACM SIGGRAPH, Ad-
dison Wesley, Aug. 1996.

[5] N. Govindaraju, M. Lin, and D. Manocha. Quick-
cullide: Efficient inter- and intra- object collision
culling using gpus. In Proc. of VR 2005, 2005.

[6] B. Heidelberger, M. Teschner, and M. Gross. Detection
of collisions and self-collisions using image-space tech-
niques. In Proc. of WSCG’04, pages 145–152, 2004.

[7] S. Hochgürtel, A. Raabe, G. Zachmann, and J. K. An-
lauf. Collision Detection for k-DOPs using SAT with
Error Bounded Fixed-Point Arithmetic. Technical re-
port, University of Bonn, Sept. 2005.

[8] K. E. Hoff III, A. Zaferakis, M. C. Lin, and
D. Manocha. Fast and simple 2d geometric proxim-
ity queries using graphics hardware. In Symposium on
Interactive 3D Graphics, pages 145–148, 2001.

[9] P. M. Hubbard. Approximating polyhedra with spheres
for time-critical collision detection. ACM Transactions
on Graphics, 15(3):179–210, July 1996.

[10] D. Knott and D. Pai. Cinder: Collision and interference
detection in real–time using graphics hardware. In Proc.
of Graphics Interface ’03, 2003.

[11] S. Krishnan, M. Gopi, M. Lin, D. Manocha, and
A. Pattekar. Rapid and accurate contact determina-

tion between spline models using ShellTrees. Computer
Graphics Forum, 17(3), Sept. 1998.

[12] T. Möller. A Fast Triangle-Triangle Intersection Test.
journal of graphics tools, 2(2):25–30, 1997.

[13] E. Plante, M.-P. Cani, and P. Poulin. A layered wisp
model for simulating interactions inside long hair. In
N. M.-T. Marie-Paule Cani, Daniel Thalmann, editor,
Computer Animation and Simulation 2001Proceeding,
Computer Science. EUROGRAPHICS, Springer, Sept.
2001. Proceedings of the EG workshop of Animation
and Simulation.

[14] A. Raabe, B. Bartyzel, J. K. Anlauf, and G. Zachmann.
Hardware Accelerated Collision Detection — An Ar-
chitecture and Simulation Results. In Design Automa-
tion and Test (DATE), pages 130–135, Munich, Ger-
many, Mar.7–11 2005. IEEE Computer Society.

[15] A. Raabe, B. Bartyzel, G. Zachmann, and J. K. Anlauf.
Hardware Accelerated Collision Detection – An Archi-
tecture and Simulation Results. In 8th WSEAS Inter-
national Conf. on SYSTEMS, pages 487–321, Vouliag-
meni, Athens, Greece, July12–14 2004.

[16] A. Raabe, P. A. Hartmann, and J. K. Anlauf. Rechannel:
Describing and Simulating Reconfigurable Hardware in
SystemC. ACM Transactions on Design Automation of
Electronic Systems (accepted).

[17] A. Raabe, S. Hochgürtel, G. Zachmann, and J. K. An-
lauf. Hardware-Accelerated Collision Detection us-
ing Bounded-Error Fixed-Point Arithmetic. Journal of
WSCG ’2006, pages 17–24, 2006.

[18] A. Raabe, S. Hochgürtel, G. Zachmann, and J. K. An-
lauf. Space-Efficient FPGA-Accelerated Collision De-
tection for Virtual Prototyping. In Design Automation
and Test (DATE), pages 206–211, Munich, Germany,
2006.

[19] G. J. A. van den Bergen. Collision Detection in In-
teractive 3D Computer Animation. PhD dissertation,
Eindhoven University of Technology, 1999.

[20] S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha.
Cache-oblivious mesh layouts. In SIGGRAPH ’05:
ACM SIGGRAPH 2005 Papers, pages 886–893, New
York, NY, USA, 2005. ACM Press.

[21] S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha.
Cache-efficient layouts of bounding volume hierar-
chies. In Computer graphics forum (Eurographics),
pages 507–516, 2006.

[22] G. Zachmann. Rapid collision detection by dynami-
cally aligned DOP-trees. In Proc. of IEEE Virtual Real-
ity Annual International Symposium; VRAIS ’98, pages
90–97, Atlanta, Georgia, Mar. 1998.

[23] G. Zachmann. Minimal hierarchical collision detection.
In Proc. ACM Symposium on Virtual Reality Software
and Technology (VRST), pages 121–128, Hong Kong,
China, Nov.11–13 2002.

[24] G. Zachmann and G. Knittel. An architecture for hier-
archical collision detection. In Journal of WSCG ’2003,
pages 149–156, University of West Bohemia, Plzeň,
Czech Republic, Feb.3–7 2003.

[25] G. Zachmann and G. Knittel. High-performance colli-
sion detection hardware. Technical Report CG-2003-3,
University Bonn, Informatik II, Bonn, Germany, Aug.
2003.

WSCG2008 Communication papers 31 ISBN 978-80-86943-16-9

WSCG2008 Communication papers 32 ISBN 978-80-86943-16-9

	wscg2008_SHORT_Numbered_.pdf
	A59-full.pdf
	A59-full.pdf

	A67-full.pdf
	B47-full.pdf
	E02-full.pdf
	E07-full.pdf
	F19-full.pdf
	F37-full.pdf

