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ABSTRACT

In this paper, we present how 3D split and merge segmentationusing topological and geometrical structuring
with an Oriented Boundary Graph may be optimized by parallelalgorithms. This structuring allows to implement
efficiently split and merge operations, but since these treatments have often to be applied with large images, we
have studied how to improve performances by parallelizing this process. After a short description of the structuring
model and its construction, we describe algorithms for parallelizing the construction of the structuring and describe
how this model can be maintained while using parallel processes. We explain the way of partitioning data for use
with multiprocessor systems, and extension for use with NUMA architectures and graphics processing units (GPU)
is described. Exemples on two medical images of different sizes is presented and execution time will be given.

Keywords
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1 INTRODUCTION
Image segmentation is a process that leads to its parti-
tion into regions. Two main approaches exists : contour
detection algorithms and region-based methods. Con-
tour detection algorithms are based on the idea that
contours delimitate rapid changing in image intensities
which can be detected for example by using derivative
operators [Can86, Der87] while region-based methods
regroup all neighboring 2D pixels (or voxels in 3D) ac-
cording to an homogeneity criterion (such as region in-
tensity mean or variance) [Har85, Bis94].

Split and merge algorithms belong to the latter one
[Hor74]. Their goal is to alternately split non-homo-
geneous regions or merge adjacent regions with the
same criterion value. An efficient implementation of
related algorithms needs a structuring of the image.
This structuring have to facilitate the retrieval of ge-
ometrical features (such as the domain corresponding
to a region) and topological ones (such as the list of
adjacent regions for a given region or the regions in-
cluded into it). Several models have been proposed
in 2D and 3D [Bra99, Fio96, Ber00, Bra99, Bra03].
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In order to capture both the geometry and the topol-
ogy of the image, most of these models are based on
the cellular decomposition of the discrete space and on
combinatorial maps. If such a structuring is straight-
forward in 2D, topological problems arise in 3D and
leads to either non minimal representations or non fully
geometrically embedded models. Furthermore, com-
binatorial maps require to decompose region boundary
into surface elements homeomorphic to a topological
disc, which needs extra processing on surfaces result-
ing from a segmentation. For this reason, while 2D
split and merge algorithms based on this kind of struc-
turing are efficient [Bra98], the first 3D split and merge
algorithms developed are fully functionnal but not opti-
mal [Dam02, Bra01].

As most of segmentation algorithms do not require
the whole topology of the image, we have proposed
an other model [Bal08], lighter than models based on
combinatorial maps. It is especially designed to be ef-
ficient with split and merge algorithms. We will recall
this model and its construction in the first part of this
article.

Another problem occurs when dealing with 3D med-
ical images, industrial scans or microscanner acquisi-
tions. The new generation of acquisition devices pro-
duces high resolution images leading to huge amount
of data. For example, a classical 3D X-Ray microscan-
ner acquisition at a 25µm spatial resolution of a lum-
bar vertebra weights almost 4 Gb of data. It is thus
very difficult to process such images as a whole in
physical memory and computation times for segmen-
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Figure 1: Elements of the cellular decomposition of 3D
discrete space.

tation will be crippling. A classical method to address
this problem is to partition the image and parallelize
treatments. In the field of image segmentation, sev-
eral parallel implementations of 2D or 3D algorithms
have been presented (see for example [Bad96, Mog97,
Til89, Kho90, Aln91, Mon03] or [Pit93] for applica-
tions on MIMD parallel machines). They mainly differ
in the way they partition image data and in their par-
allel machine-dependant implementations. Nowadays,
multi-core and multiprocessors computers are available
as working stations, which democratizes and facilitates
the use of lightly-parallelized algorithms. Our approach
is slightly different from the common one. We chose to
use multi-core/multiprocessor implementation and the
parallelization is not done on the segmentation algo-
rithm but on the construction of the structuring model it
needs to be efficient.

In this article, our goal is to present a feasibility study
on how to implement an efficient parallel 3D split and
merge algorithm, while using our structuring model,
in oder to show that our model do not prevent from
using parallel algorithms. The parallelization will be
proposed on the construction of the structuring model
needed. We present first a recall of our structuring
model, then we explain our data partitionning method.
After a presentation of our results on different multi-
core/multiprocessor computers, we will conclude about
the feasability of such algorithms and discuss about the
future of our work.

2 STRUCTURING MODEL DESCRIP-
TION AND CONSTRUCTION

A segmented image is a partition of the image into re-
gions according to criteria. A Region is a set of 6-
connected voxels. Regions intersections define sepa-
rating surfaces which need the encoding of intervoxel
elements to be represented. Intervoxel representation
lays on the elements of the cellular decomposition of
3D discrete space (Figure 1) which are voxels (elements
of dimension 3), surfels (intersection of two voxels),
linels (surfels intersection) and pointels (linels intersec-
tion) [Kov89, Kov03].

Our model [Bal08], calledOriented Boundary Graph
(OBG), is composed of a topological level encoding
region adjacency relation and surface adjacency rela-
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Figure 2: A voxel and its corresponding encoded inter-
voxel elements in the boundary image.
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Figure 3: Example of image with the corresponding
representation in our model.

tion, and a geometrical level encoding intervoxel el-
ements. Links between the two levels are necessary
to efficiently update the representation. The link is
done by associating an oriented surfel to each surface
in theOBG.

The topological level is a multiple region adjacency
graph, encoding each region with a node and each sep-
arating surface with an edge. Furthermore, edges cor-
responding to adjacent surfaces are linked in the graph.
This is necessary to efficiently compute the merge op-
eration that can lead to adjacent surfaces merging.

The geometrical level is a matrix, called boundary
image, encoding the presence of three surfels, three
linels and one pointel on one byte, corresponding to the
voxel with same coordinates in the image (Figure 2).

In the topological level, each edge encodes an embed-
ding surfel allowing to retrieve its corresponding sur-
face in the boundary image, and which incident voxel
belongs to the regions corresponding to the extremity
nodes. Those representative surfels are also marked in
the geometrical level and represent entry points to the
graph from the geometry. Figure 3 shows an example
of a segmented image and its representation with the
different types of links.

The construction of the model is done using the split
operation considering the region to split is the entire
image. We consider that criteria needed for this split
operation is given by anOraclefunction. This function
answers if two given voxels belong to the same region
and is sufficient to describe the segmentation of an im-
age. The split operation (Algorithm 1) consists in la-
belling identically voxels belonging to a same region
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and surfels belonging to a same surface. Two different
regions or surfaces can not have the same label. For
each voxel label a node is added in the graph and for
each surfel label an edge is added. Those labelling are
done by traversing the image and labelling voxels and
surfels. Linels, which are needed to traverse single sur-
faces faster, are created in the same time. Image travers-
ing is done with a scanline method to avoid some tests,
and thus a region or a surface can have several labels. In
this case their corresponding topological elements are
merged and an indirection table is maintained to avoid
an other labelling operation.

Algorithm 1 Split Algorithm
Require: An OBG, A domainD and anOracle func-

tion
1: for all Voxel v∈ D do
2: for all labelled voxelvi neighbors ofv do
3: if Oracle(vi ,v) then
4: SaveLabel(list,vi)
5: else
6: addSurfelBetween(vi ,v)
7: end if
8: end for
9: if NumberOfLabel(list)> 1 then
10: MergeRegion(list)
11: else
12: if NumberOfLabel(list) == 0then
13: CreateNewRegion(NewLabel)
14: end if
15: end if
16: for all 4 labelled voxel cuboid containingv do
17: if more than 2 surfels are presentthen
18: AddLinel(x, y, z)
19: end if
20: LabelAddedLinels()
21: LabelSurfels()
22: end for
23: end for

Merging two regions (Algorithm 2) consists in delet-
ing all the surfels belonging to surfaces shared by both
regions from the boundary image, and the correspond-
ing edges from the graph. It can result that several sur-
faces have to be merged if only two surfaces remain
incident to a linel. This condition can be detected dur-
ing the geometrical traverse of surfaces by looking at
encountered linels.

3 PARALLELIZATION
We propose in this paper a method to study the possibil-
ity to reduce the split operation computation time. This
analysis does not pretend to be exhaustive as it is only a
feasibility study driven by the need to process large 3D
images. Note that the merge operation can also be par-
allelized with few constraints on our structuring model.

Algorithm 2 Merge Algorithm
Require: 2 regionsr1 andr2 to merge
Ensure: The new regionr = r1∪ r2

1: for each surface ofr1 do
2: if it separater1 from r2 then
3: linellist← deleteSurfaceFromGeometry()
4: DeleteSurfaceFromTopology()
5: end if
6: end for
7: for each linel of linellistdo
8: if its degree is 2then
9: DeleteLinelFromGeometry()
10: if it is a representative linelthen
11: MergeSurfaces(linel)
12: end if
13: else
14: if its degree is less than 2then
15: DeleteLinelFromGeometry()
16: end if
17: end if
18: end for

The first tests on classical images show that the merge
process is far less time consuming than the split one.
For example merging 100000 regions takes about 1 sec-
ond on our test platform with only one thread. Future
parallelization of the merge operation will be discussed
in section 5, but similar results than with the split oper-
ation can be expected.

We use a eight cores machine and a sixteen cores
machine with NUMA (Non Uniform Memory Access)
[Bol91, Nie96] architecture (see Section 4 for more de-
tails). Our goal is to launch several threads on indepen-
dent data and then to merge the different results. Since
they do not manipulate the same labels, threads can be
executed in parallel without constraint. Label manage-
ment have to be protected in order to ensure that the
label distribution is done without collision, and the out-
side of the image must have a different label for each
thread. The fact that two threads do not have access to a
same label ensures that each thread can build theOBG
corresponding to its part independently, and that each
part can be glued to the others only by analysing its bor-
der. It might be possible for each thread to manage its
label by itself for an adaptation on some architectures
where asking for a label is not efficient (for example
computer clusters). In this case the gluing operation in-
duces to label one of the two graphs with new labels,
and induces some extra treatments to analyse the junc-
tion where different surfaces can have the same label.

Our approach consists in cutting the data into blocks
such as the union of all the blocks corresponds to the en-
tire image. Each thread has its own label for the outside
of the image and computes itsOBGby treating all the
elements of its block except surfels and linels belong-
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Figure 4: Optimal data cutting

Figure 5: Implemented data cutting

ing to the intersection with another block. When two
adjacent blocks are processed, a thread could be launch
to glue them. The gluing operation consists in merging
in the graph the two nodes corresponding to the outside
of the image, and then to test for each surfel of the in-
tersection if it belongs to a region boundary (and thus
labelling it and eventually merging some surfaces by
looking at its neighbors), or if the regions of the two in-
cident voxels have to be merged in the graph. Linels are
processed in the same manner. Note that a block can not
simultaneously be glued with several other blocks, due
to the impossibility to access a same label from several
threads.

The optimal way for making independent blocks is
achieved by minimizing the number of surfels that have
to be post-processed. In order to have an easier glu-
ing operation we have implemented only a cutting along
one axis. This leads to more post-processings but it is
sufficient for testing possible improvements induced by
parallelization. Figure 4 shows the optimal cutting to
use with four threads, and the Figure 5 our implemented
cutting. It can lead to some variations on the execution
time that have to be considered in the analysis. For ex-
ample, on a 512x512x512 image with sixteen blocks,
the optimal cutting needs 1310720 surfels to be post-
processed, whereas our implemented cutting method
needs 3932160 surfels to be post-processed. Even if
this operation is parallelized, it needs more tests for
treating a surfel than during the normal process.

4 RESULTS
The implementation have been tested on two machines.
The first one is equipped with two intel Xeon Quad core
at 2,33Ghz, and the second one is equipped with eight
AMD Opteron Dual core at 1,8Ghz but with a NUMA
architecture. Although our method is suitable for use
with a NUMA architecture (because each thread has its

Femur Brain
size 512x512x475 256x256x256

Regions 456396 73453
Surfaces 1638726 291337

Figure 6: Tested Images Specification

own data and so it is possible to address each processor
with a partition of the data), our partition implementa-
tion is not optimized for such architecture.

Our split criterion is a classifier that returns the class
of a voxel according to its value. Two adjacent voxels
are considered to be in the same region if they belong
to the same class according to this classifier.

We used two medical images to make our tests (Fig-
ure 6). The first one is a MR anatomical image of a
brain of size 256x256x256 voxels. The first split op-
eration needed by the model construction gives 73453
regions with 291337 surfaces. The second image repre-
sents a CT scanned femur and its size is 512x512x475
voxels. The split operation give 456396 regions and
1638726 surfaces.

Before analysing the results it is important to recall
that our implementation is a testing one that could be
easily improved by making an optimal cutting of the
data, and an adapted distribution of the memory for the
NUMA architecture.

Execution time for the split operation on both images
according to the number of threads are presented Fig-
ure 7 and 8. First, we can notice that the NUMA archi-
tecture is two time slower than the other one, partially
due to the lower core frequency and also due to our
inappropriate implementation. Using sixteen threads
is slower than using eight threads due to our unopti-
mal data cutting method. In general, it is not efficient
to make too small blocks of data, because it leads to
more gluing operations. This means that the number of
threads has to be adapted according to the image size.
Despite this drawbacks, we can observe that our test-
ing implementation is sufficient to significantly reduce
computation times. Using eight threads reduces the ex-
ecution time by a factor three on both architectures and
with both images. This results show the possibility of
reducing computation time for split operation in a seg-
mentation process even with the use of our high level
structuring of the image. This is an important result for
the validation of our model and the proof of its usability
with large images.

Merge operation can be parallelized in a same way.
In order to maintain our structure we have to impose
the same constraints as for the split operation. This
means that a region cannot be simultaneously merged
with several other regions. It can be easily controlled
by using a protected boolean table encoding which re-
gions are in a merging process. This is an important
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Figure 7: Execution time on the brain image.
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Figure 8: Execution time on the femur image.

Figure 9: Segmentation result on the femur image

extension necessary for large images on which deleting
surfaces will be a slow operation.

Figure 9 shows the segmentation result after comput-
ing merge operations on the result of the initial split.
First we have merged little isolated regions with their
unique neighbor. Then we have used criteria based on
the mean difference and size of adjacent region (both
criteria have been computed during the split operation
and are included in our computational time results).
This merge operation only takes few seconds and so
not have been parallelized. The result image is only
composed of eight regions. It means that the bone has
been reconstructed while noise and unnecessary regions
(as the scan table supporting the femur) have been re-
moved.

5 DISCUSSION
Since the implemented algorithm was designed in or-
der to study the improvements achievable by paralleliz-
ing split and merge operations with the constraint of
maintaining a topological structuring of the segmented
image, some optimizations and architecture adaptations
still have to be done. The encouraging results obtained
by our tests show that our structuring model can be used
with large size images which need parallel treatments
in order to be segmented in a reasonable time. Fur-
thermore, the manner in which the data is partitioned
by giving each thread a separate part of the data to an-
alyze allows its usability on every type of parallel ar-
chitecture. Thus the same algorithm can be efficiently
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adapted and implemented on NUMA architecture or
computer clusters using a high-performance network.

The interest of our method to separate data and pro-
tect the access to our representation is that it can be used
to parallelize also the merge operation. Even if the par-
allelization of the merge algorithm is not in the scope of
this article, we can expect by looking at the algorithm
given at the end of section 5 that we will have simi-
lar results than for the split algorithm. Note that in the
case of a parallelized merge process, merging criteria
can also be computed in parallel as this computation is
done by traversing each region. Thus a major improve-
ment in data partionning will be not to cut the image
uniformly but to use our structure by adressing regions
to threads.

The possibility of building our global structuring by
dividing its construction to threads applied on separated
data is mandatory to apply the algorithm on Graphi-
cal Processing Units (GPUs). New generation of GPUs
have been designed to be data-parallel computing de-
vices. There are multi-core based with very high mem-
ory bandwidth. For example, NVidia’s GeForce 8800 is
composed of 16 multiprocessors. Each multiprocessor
being composed of 8 processors, the GPU is theoreti-
cally able to process 128 threads at once [Nvi07]. For
the “Ultra” GPU of this serie, the memory bandwidth
is 103,7 Gbits/s and the memory size is 768 Mb. Fur-
thermore, processes can be parallelized for more than
one GPU. In this case, even if the global memory is
not shared, GPUs can communicate with each other. In
order to fully exploit this kind of architecture, the parti-
tioning of the image will once again be a critical step.

A GPU specific labelling algorithm can be designed
for our purpose. It will be a type of multi-agent sys-
tem [Kab02, Ben07] with the aim of labelling all vox-
els and surfels of the image. The first type of agent
will label identically all the voxel of a region while de-
tecting surfels composing its border. The same kind
of agent will be defined for labelling surfels compos-
ing a surface. Indirection can eventually be envisaged
depending on the size of shared memory. Using agent
corresponding to very light-weighted threads may be a
good way to exploit the parallel computability of GPU,
since we know it is possible to directly extract theOBG
from the results of those labelling.

6 CONCLUSION
An efficient parallel 3D split and merge algorithm has
been presented in this article. Our goal was to demon-
strate the feasibility of such a parallelization on our 3D
structuring model construction.

The first tests we made gave encouraging results. As
these tests were made on different architectures, they
allow us to have a good overview on this kind of par-
allelization problems. Optimizations will first consist
in adapting our data partitioning method to the targeted

computer architecture and then to parallelize the rest
of the processes (the merge and the segmentation algo-
rithm itself). We also plan to port our algorithms on the
new GPU generation to investigate its performance for
our purpose.
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