
Improving the Responsiveness in Multiplatform

Collaborative Environments

Luiz Gonzaga da Silveira Jr
UNISINOS, V3D Studios, Brazil

lgonzaga@unisinos.br

Wu Shin-Ting
UNICAMP, Brazil

ting@dca.fee.unicamp.br

ABSTRACT

This paper addresses the design issues that may improve the responsiveness of a multi-platform collaborative modeling system,

for which robustness and awareness are necessary requirements. The key points of our proposal are, whenever possible, (1)

to reduce as much as possible the granularity of the transmission data over network; (2) to simplify as much as possible the

functional feedbacks for fast screen update; and (3) to avoid as much as possible the network accesses for synchronization.

On the basis of these hypotheses, we explore the features of a hybrid groupware architecture and show the feasibility of our

proposal. Several latencies are measured to validate our assumptions.

Keywords: Collaborative Systems, Groupware, Geometric Modeling, Geometric Robustness, Awareness.

1 INTRODUCTION

The typical scenario for collaborative modeling is a

shared workspace, where a dispersed group of users

(end-users) work together for creating and modifying

an application-dependent 3D-model over an internet

network. Concerning with the underlying system ar-

chitecture one may distinguish three approaches: cen-

tralized, replicated [2], and hybrid one [9].

In the centralized architecture only one instance of

the shared application runs in a central server, while

end-user workspaces display the same scene from the

central server and managing the input events. It makes

the 3D-model concurrency control simpler to be imple-

mented, but the interactivity might be compromised.

Beside, this approach may generate substantial over-

load both in the central server and network due to the

continuous traffic and processing.

In the replicated architecture, one instance of the

shared application runs locally on each end user’s

workspace. The system’s response time may be

enhanced, once the network traffic is relatively lighter.

The benefits of a replicated architecture must, however,

be balanced against the homogeneous numerical

computation offered by the centralized one, when

we migrate to a heterogeneous computing environ-

ment. Under heterogeneous platform, we understand

internetwork of computers equipped with distinct

hardwares (CPU, display technologies, memory and

mainly GPUs), under different operating systems, com-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG’2010, February 1 – February 4, 2010
Plzen, Czech Republic .

piler implementations and capabilities for float-point

computing.

To achieve consistency across the heterogeneous ma-

chines, without disregarding their individual perfor-

mance, we proposed in [3, 9] a hybrid architecture

for collaborative applications, as a tradeoff solution for

keeping the consistency of 3D-model (geometric ro-

bustness) and keeping the system usability. The hy-

brid architecture results from the combination of the

both centralized and replicated architectures. The ba-

sic idea consists in separating application-dependent

model from graphics functionalities.

Besides the robustness, the separation of the geo-

metric and the graphical model makes the rendering

mode in each participating machine tailorable to the lo-

cal computing power. Though, the participants may not

only be working in different parts of the space with dis-

tinct viewpoints, but also calibrate the rendering param-

eters to the acceptable interactivity level.

In this paper we consider the aspect that helps ensure

usability of any interactive system: the responsiveness.

We will show that in the hybrid architecture we may

control the granularity and the frequency of the trans-

mitted information without sacrificing interactivity and

robustness. Moreover, since the rendering mode may be

tuned in the local workspace to fit the hardware capabil-

ities. Personalized rendering may be set to compensate

the latencies of different network transmission rates and

the distinct processing performance of low ou high end

GPUs used together. To validate our proposal, we have

integrated our solutions in the multiplatform collabo-

rative geometric modeler called CoMo (Collaborative

Geometric Modeler) [9]. Several measures of latency

have been performed and compared with the range of

acceptable values proposed by Nielsen [7].
1

WSCG 2010 Poster papers 71



Master Copy

Client (Front(End) Client (Front(End)

Access Access
Geometric and

Operations

Common Light

3D(Graphical Model

Common Camera

Sharing

Rendering Pipeline

Sharing

3D(Graphical Scene

Light Camera

3D(Graphical Model

Rendering Pipeline

Raster Image Raster Image

3D(Graphical Scene

Light Camera

3D(Graphical Model

Topological Model

Figure 1: The conceptual model of a collaborative mod-

eling system.

2 DESIGN ISSUES

In [9], we presented a hybrid architecture for collabo-

rative 3D modeling systems, where two equivalent data

are kept in the geometric modeling kernel: a geometric

and a graphical data (Figure 1).

The geometric data is common to all end-users (inter-

active applications), whereas the 3D graphics data are

replicable for visualization and manipulation in each

end user workspace (interactive application). In this

approach, we may take advantages of the well-known

robust geometric algorithms [5], designed for mono-

lithic modeling applications, to enhance the robustness

of the entire heterogeneous platform.

To provide a more versatile way to refer to an object

residing in the geometric modeling kernel, a proxy [1]

is designed to make the user workspace communicate

with a representative of the geometric model, rather

than with the geometric model itself. We reused

rendering and interaction functionalities provided by

the Manipulation Toolkit MTK [4], running on top of

OpenGL [6]. This is because that a main differential of

MTK with respect to the other known graphical toolkits

is its loosely decoupling of the application and the

graphical models, although it provides efficient direct

manipulation mechanisms via 3D-metaphors.

Several users may interact with the shared 3D model

simultaneously. To avoid/solve resource contention of

potential conflicts that may arise from simultaneous ac-

cesses of a shared application by various end users and

to support group awareness, it is also devised in our ar-

chitecture floor control mechanisms residing in a group

manager server. The adopted infrastructure for objects

communications over a network, independent of spe-

cific platform and techniques used to implement these

objects, is based on the the Common Object Request

Broker Architecture (CORBA) [8].

One drawback of the hybrid architecture, is that the

group awareness may be drastically reduced and the

system’s usability may be deteriorated. As a solution,

we proposed to integrate two awareness sub-windows

in the user interface of each interactive application (on

the left side of each application interface in Figure 2), in

addition to the conventional drawing area (scene view)

where users can interact with the 3D model through the

3D-metaphors (on the right side of each application in-

terface in Figure 2). The awareness windows are re-

sponsible for conveying the global view of the ongoing

activities: one is a listbox that contains the participant

names (on the bottom left) and the other is the second

drawing area (global view on the top left) where a sim-

plified version of the global overview of the 3D shared

workspace is presented.

Group Server

Modeling Server

User

User

User

workspace

shared

User

Figure 2: A Sample of The Modeller User Interface

For 3D graphics interactive systems, some of usabil-

ity metrics are functions of system’s latency. Latency is

related with the update speed of an image in response

to a user action. It plays an important role in the fluidity

of end user interactions with their applications. The la-

tency must be the lowest as possible. As computer can-

not provide fairly immediate response, three important

latency limits have been identified regarding the reac-

tion and behavior of end users [7]: 0.1s - the sistem is

reacting instantaneously, no feedback is required; 1.0s

- limit for the user’s flow of thought to keep uninter-

rupted, despite the noticeable delay; 10s - the limit for

keeping the user’s attention focused on the dialogue, vi-

sual feedback is required.

3 THE SYSTEM RESPONSIVENESS

The emphasis on the design of an end-user workspace

application for a hybrid architecture based system is its

tailorability to each local computing power and the ac-

cessibility to all geometric functions provided by a ge-

ometric modeling server and the knowledge of the ac-

tions of the other users that share the same application

model.

For making each instance of the end user workspace

an interactive application, we have proposed useful

awareness feedbacks, four problems must be solved:

1. System latency;

2. Event handling;
2

WSCG 2010 Poster papers 72



3. Remote pointing and viewing volumes;

4. Graphic states synchronization;

3.1 System latency

One of the challenging issues that we must circumvent

is to devise a technique for interacting with a remote

object through its corresponding graphical object in the

user workspace, whose latency can be expressed as

tlatency = tt1 + tm + tt2 + tr, (1)

where tt1, tm, tt2, and tr, are, respectively, the trans-

mission time of a user’s request, the processing time in

the central server, the transmission time of the server’s

response, and the rendering time on each participating

computer.

Eq. 1 suggests us that when an application is sepa-

rated from the user interface, we have several ways to

improve its latency: (1) we may locally adjust the ren-

dering parameters (tr) in order to counterbalance the de-

lays in a network (tt1 and tt2); (2) we may invest in the

processing power of the central server (tm); or (3) we

may invest in a higher bandwidth network. Whatever is

the solution, a hybrid architecture supports it.

Our network-independent solution for optimizing the

interaction performance is a graphical object–dragger

loosely coupling interaction paradigm that is supported

by MTK. Under a dragger, we understand an object

that has a pictorial representation and can map the 2D

inputs from the pointing devices to motions in three

dimensions. With the Mediator design pattern [1],

we define the class of objects, called Manipulator, to

control the interaction between each pair dragger–

graphical object. In the graphical object–dragger

interaction model, two interaction loops may be distin-

guished: user–dragger–geometrical model–graphical

model–user and user–dragger–user (Figure 3).

Network

Remote interaction loop

Dragger

(graphical)

Local interaction loop

3D object

(geometric)

3D object

(graphical)

3D object
Input

device

2D / 3D

Output

device

Figure 3: Interaction loops.

It is important to remark that the time response of

the two interaction loops are different. Whereas the re-

sponse time of the first loop is given by Eq. 1, the la-

tency of the second loop may be expressed by

tdragger_latency = tl p + tr, (2)

where tr and tl p are, respectively the local processing

and rendering time.

Observing in Figure 3, by a sequence of events view-

point, a manipulator generates a unit of information that

is a semantically valid transformation, which is applied

on the the dragger for local visual feedback. In parallel,

the sequence of transformations is concatenated into a

unique transformation for updating a 3D geometric ob-

ject in the geometric server. This approach relieves the

communication traffic.

3.2 Event Handling

The cost for loosely decoupling the geometric and

graphical model in the context of interactions is the

increase in the complexity of event handling. In

addition to the user input events that can be handled

by any interaction techniques toolkit, there are events

from the communication channel that may also affect

the context of the scene view sub-window, as illustrated

in Figure 3.

An algorithm is necessary to extend the standard dis-

patching code for selecting the correct window for each

of these events. A solution is to use an interaction that

allows some portions of the event dispatching code to

be modified by application programmers, provided by

all GUI SDKs. On top of the window system, a Chain

of Responsibility [1] defines an object that decouples

the sender of events from the windows whose handlers

an event should be forwarded.

3.3 Remote Pointing and Viewing Volume

Whenever a user interacts with the pointing device,

the sequence of actions is collected and mapped into

a meaningful unit of information. This unit of informa-

tion is broadcasted to all the rest of participating ma-

chines for updating the state of the replicated manipu-

lator. It guarantees the location awareness. Moreover,

if the viewing parameters at each user workspace ap-

plication are modified, they must also be multicasted to

all the participating machines for redisplaying the con-

text of the global view window and maintaining the per-

spective awareness. We propose an Observer design

pattern [1] to define the object that performs this pas-

sive replication: the original manipulator/view parame-

ters is the subject that all their replica (observer)

must keep on observing. This approach keeps all client

applications consistently updated.

It is worth observing that the latency of the manipula-

tors is the most critical one, since the user interacts con-

tinually with them and the obtained units of information

must be constantly transmitted over the network. This

latency depends on the transmission time of the repli-

cated data tt1 and the rendering time tr in each partici-

pating machine (Figure 4):

trep_latency = tt1 + tr. (3)

To make this latency as lower as possible, we suggest

to use the wireframe rendering mode in the global view

window and to adopt the simplest graphical represen-

tation to the replicas. The pictorial representations of
3

WSCG 2010 Poster papers 73



Network

Tele-dragger

Dragger

Dragger

Tele-dragger

Output

device

Local interaction loop

Local interaction loop

Input

device

2D / 3D

Input

device

2D / 3D

Output

device User-user interactions

Figure 4: User–user interactions.

the pointing devices and the volume view that we chose

are, respectively, colored graphical representations of

the manipulators and colored wireframe boxes. Fur-

thermore, we allocate an event channel only for repli-

cations of the manipulators and view volumes.

3.4 Graphics Attributes Synchronization

For providing appropriate visual feedbacks, positions of

a pointing device that a user manages should be shown

in the scene view sub-window. At the same time, for the

sake of group awareness, these positions must be sent

to all instances of the user workspace application, inclu-

sive the instance that generates the event, in order to up-

date the content of every global view sub-window. This

means that both sub-windows are selected and their

corresponding event handlers are invoked for, concur-

rently, redisplaying. These handlers need to access cor-

rect graphics states for correctly re-rendering the graph-

ics objects. Otherwise, incorrect drawings may be gen-

erated.

The solution that we propose for synchronizing the

graphics states with the selected windows is to explic-

itly issue the command that make the graphics states of

any focused window as the current states. In this way,

the handler can always draw the objects with the ex-

pected attributes in each window.

4 EXPERIMENTS AND CONCLUDING

REMARKS

To validate our proposal, we implemented a new ver-

sion of CoMo with extended functionalities, installed

in different machines (Sparc with Elite 3D, and PCs

with FX6600 and GeForce 8600GT), and measured la-

tency parameters over 1.0Mb/s, 10.0 Mb/s and 1.0Gb/s

LANs. We collected some measure about latencies pa-

rameters proposed in this paper.

The dragger latency lied in the range 0.1–1.0s for all

machines. While, the results collected for object ma-

nipulation shows the transmission rate did not affect the

object latency. It’s because the size of the geometric

data was much smaller than the network capacity. It is

one of the advantages of replicated and hybrid architec-

tures over a centralized architecture. The tele-dragger

latency has been the most critical one, since the user in-

teracts continually with it. Therefore, we shows that the

latency of the tele-draggers is dominantly dependent on

the network transmission rate.

Based on experiment, our proposed solutions is close,

but does not satisfy completely yet, the recommended

interactivity metrics. We have work in thee system

reimplementation, considering lightweight communi-

cation protocols.

The main contribution of this work is to demonstrate

that it is feasible to design an interactive and usable

system in a heterogeneous multi-platform environment,

where the shared data consistency must be ensured. Be-

sides, rendering parameters and display can be adapted

accordingly with local system resource to assure indi-

vidual performance. We believe that a hybrid archi-

tecture may becomes a good alternative for any multi-

platform application whose the most important require-

ments are the robustness and the adaptability to local

computational resources.

REFERENCES
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Desin Pat-

terns – Elements of Reusable Object-Oriented Software. Addis-

son Wesley, 1995.

[2] S. Greenberg, S. Hayne, and R. Rada. Designing Groupware for

Real-Time Drawing. McGraw Hill, 1995.

[3] L.G. Silveira Jr and S.-T. Wu. An object-oriented group-

ware framework for developing collaborative 3d-modelers. In

Thierry Priol e Jamie Painter, editor, Third Eurographics Work-

shop on Parallel Graphics & Visualisation, pages 103–114,

Girona, ESP, Sept. 2000.

[4] M. de G. Malheiros, F. N. Fernandes, and S. T. Wu. Mtk: A

direct 3d manipulation toolkit. In SCCG’98 Proceedings, pages

81–88, Brastilava, april 1998.

[5] D. Michelucci. An introduction to the robustness issue. In Swiss

Conference of CAD/CAM, pages 214–221, Neuchâtel, Switzer-

land, Feb. 1999.

[6] J. Neider, T. Davis, and M. Woo. OpenGL - Programming Guide

- Release 1. Addison Wesley Co., 1993.

[7] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Pub-

lishers, 1994.

[8] Object Management Group (OMG). The common object request

broker: Architecture and specification, Dez 2001. Version 2.6.

[9] L.G. Silveira Jr and S.-T. Wu. Towards consistency in a hetero-

geneous collaborative geometric modeling environmen. In Pro-

ceedings of SIACG 2002, pages 139–148, Guimarães, Portugal,

1–5 July 2002.

4

WSCG 2010 Poster papers 74


	!_Posters.pdf
	E67-full.pdf
	F71-full.pdf

	!_Posters-contents.pdf

