
Procedural Modeling in Theory and Practice

T. Ullrich, C. Schinko, D. W. Fellner

Institut für ComputerGraphik und WissensVisualisierung, TU Graz, Austria

Fraunhofer Austria Research, Visual Computing Devision, Graz, Austria

Fraunhofer Institute for Computer Research and Technical University of Darmstadt, Germany

ABSTRACT

Procedural modeling is a technique to describe 3D objects by a constructive, generative description. In order to tap the full

potential of this technique the content creator needs to be familiar with two worlds – procedural modeling techniques and

computer graphics on the one hand as well as domain-specific expertise and specialized knowledge on the other hand.

This article presents a JavaScript-based approach to combine both worlds. It describes a modeling tool for generative modeling

whose target audience consists of beginners and intermediate learners of procedural modeling techniques.

Our approach will be beneficial in various contexts. JavaScript is a wide-spread, easy-to-use language. With our tool procedural

models can be translated from JavaScript to various generative modeling and rendering systems.

Keywords: Computational Geometry and Object Modeling, Computer Graphics Methodology and Techniques, Modeling

Languages

1 INTRODUCTION

Within the last few years generative modeling tech-

niques have gained attention. In order to accelerate

the modeling process, many researchers enforced re-

search on procedural modeling. All models with well-

organized structures and repetitive forms benefit from

procedural model descriptions. In these cases genera-

tive modeling is superior to conventional approaches.

Its strength lies in a compact description [1], which

does not depend on the counter of primitives but on the

model’s complexity itself. Especially large scale mod-

els and scenes – such as plants, cities, and landscapes

– can be created efficiently. In this way generative de-

scriptions make complex models manageable as they

allow to identify a shape’s high-level parameters [7].

A characteristic of generative modeling is its explicit

analogy of 3D modeling and programming. This anal-

ogy has two negative aspects. First of all, the need to

use a programming language is a significant inhibition

threshold especially for architects, designers, etc. who

are seldom experts in computer science and program-

ming. Secondly, a programming language introduces

a new dimension of complexity and further dependen-

cies.

Furthermore, it has never been easy to convert 3D

models between various file formats and with genera-

tive modeling techniques the the situation will proba-

bly become worse. If a 3D model does not only con-

tain static geometry but algorithmic descriptions, the

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG’2010, February 1 – February 4, 2010
Plzen, Czech Republic.

file format also depends on the languages and the in-

terpreter that is able to execute the script.

In this paper we investigate generative modeling ap-

proaches concerning these aspects and present a new

possibility to create procedural models in a beginner-

friendly way. Additionally, we address the file format

problem and present a solution to reduce the dependen-

cies to scripting and rendering engines.

2 PROCEDURAL MODELING

In today’s procedural modeling systems, grammars are

often used as a set of rules to achieve a description.

Early systems based on grammars were Lindenmayer

systems [17], or L-systems for short. They were suc-

cessfully applied to model plants. Given a set of string

rewriting rules, complex strings are created by applying

these rules to simpler strings. Starting with an initial

string the predefined set of rules form a new, possibly

larger string. The L-systems approach reflects a bio-

logical motivation. In order to use L-systems to model

geometry an interpretation of the generated strings is

necessary. The modeling power of these early geomet-

ric interpretations of L-systems was limited to creating

fractals and plant-like branching structures. This lead to

the introduction of parametric L-systems. The idea is to

associate numerical parameters with L-system symbols

to address continuous phenomena which were not cov-

ered satisfactorily by L-systems alone.

CGA Shape

Later on, L-systems and shape grammars were success-

fully used in procedural modeling of cities [16]. Parish

and Müller presented a system that, given a number

of image maps as input, generates a street map includ-

ing geometry for buildings. For that purpose L-systems

have been extended to allow the definition of global ob-

jectives as well as local constraints. However, the use of

procedurally generated textures to represent facades of

WSCG 2010 Poster papers 5



buildings limits the level of detail in the results. In later

work, Müller et al. describe a system [14] to create de-

tailed facades based on the split grammar called CGA

shape. A framework called the CityEngine provides a

modeling environment for CGA shape. It relies on dif-

ferent views to guide an iterative modeling process.

Another modeling approach presented by Lipp et al.

[11] following the notation of Müller [13] deals with

the aspects of more direct local control of the under-

lying grammar by introducing visual editing. The idea

is to allow modification of elements selected directly

in a 3D-view, rather than editing rules in a text based

environment. Therefore principles of semantic and ge-

ometric selection are combined as well as functionality

to store local changes persistently over global modifi-

cations.

Model Graphs

Lintermann et al. proposed a modeling method as well

as a graphical user interface (GUI) for the creation of

natural branching structures [10]. A structure tree rep-

resents the modeling process and can be altered using

specialized components describing geometry as well as

structure. Another type of components can be used for

defining global and partial constraints. Components are

described procedurally using creation rules which in-

clude recursion. The generation of geometric data ac-

cording to the structure tree is done via a tree traversal

where the components generate their geometrical out-

put.

The procedural modeling approach [4] proposed by

Ganster et al. describes an integrated framework based

on structure trees in a visual language. The infix nota-

tion of the language requires the use of variables which

are stored on a heap. A graph structure represents the

rules used to create an object. Special nodes allow

the creation of geometry, the application of operators

as well as the usage of control structures. Various at-

tributes can be set for nodes used in a graph. Directed

edges between nodes define the order of execution, in

contrast to a visual data flow pipeline (VDFP) where

data is transported between the different stages.

Hierarchical Description

Finkenzeller presented another approach for detailed

building facades [3] called ProcMod. It features a hi-

erarchical description for an entire building. The user

provides a coarse outline as well as a basic style of the

building including distinguished parts and the system

generates a graph representing the building. In the next

step, the system traverses the graph and generates ge-

ometry for every element of the graph. This results in a

generated, detailed scene graph, in which each element

can be modified afterwards. The current version has

some limitations: for example, organic structures and

inclined walls cannot be modeled.

Scripted Modelers

3D modeling software packages like Autodesk MayaTM

provide a variety of tools for the modeling process. In

addition to a graphical user interface, a scripting lan-

guage is supplied to extend its functionality. It enables

tasks that cannot be achieved easily using the GUI and

speeds up complicated or repetitive tasks.

When using parametric tools in modern CAD soft-

ware products, geometric validity is a subject. For a

given parametric model certain combinations of param-

eter values may not result in valid shapes. Hoffmann

and Kim propose an algorithm [8] that computes valid

parameter ranges for geometric elements in a plane,

given a set of constraints.

Postfix Expressions

Havemann proposes a stack based language for creat-

ing polygonal meshes called Generative Modeling Lan-

guage (GML). The postfix notation of the language is

very similar to that of Adobe’s Postscript. It allows the

creation of high-level shape operators from low-level

shape operators. The GML serves as a platform for

a number of applications because it is extensible and

comes with an integrated visualization engine.

An extended system presented by Mendez et al. com-

bines semantic scene-graph markups with generative

modeling in the context of generating semantic three

dimensional models of underground infrastructure [12].

The idea is to connect a geospatial database and a ren-

dering engine in order to create an interactive appli-

cation. The GML is used for on-the-fly generation of

procedural models in combination with a conventional

scene graph with semantic markup. An augmented re-

ality view of underground infrastructure like water or

gas distribution systems serves as a demo application.

WebGL and O3D

WebGL is a JavaScript binding to OpenGL ES 2.0

which enables rich 3D graphics within browsers on

platforms supporting the OpenGL or OpenGL ES

graphics standards [9]. A main advantage of this up-

coming standard is its plugin-free realization within the

browser. The WebGL standard will benefit from recent

developments in Web technology like the HTML5

specification or the JavaScript performance increases

across all major browsers.

Another “Web”-approach is O3D. This is a combina-

tion of a browser plugin and a JavaScript API which en-

ables a web developer to create and display 3D scenes

[5]. In order to have more control over the performance

of the display routines a plugin is used. The JavaScript

part is responsible for the control of the plugin.

Both techniques are still under development so that

they can hardly be discussed in detail. However, due to

WSCG 2010 Poster papers 6



the fact that JavaScript is used as scripting environment,

we will be able to support these techniques as soon as

they reach a stable status.

3 LANGUAGE ELEMENTS

FOR MODELING

When trying to combine different approaches for pro-

cedural modeling, a question arises: Is it possible to

achieve a conversion between file formats, respectively

languages? The simple answer is: Yes, but only with

considerable expenditure. Because of differences in the

intended purpose of the languages as well as paradig-

matic variations it is a rather difficult task. In order to

be able to cover a variety of approaches it would be nec-

essary to implement converters that differ in the source

as well as in the target language. Therefore a central so-

lution representing a common ground for the procedu-

ral modeling approaches is desirable. This solution en-

ables the user to create procedural models represented

by a single language, but allows a variety of output rep-

resentations to be generated.

Consequently, the motivation for this work is to es-

tablish a beginner friendly programming language for

procedural modeling that serves as a basis to generate

code for different target language. In particular the re-

quirements for such a language can be summarized as

follows:
• The language should support a user in typical mod-

eling tasks; i.e. it should provide often needed data

structures, algorithms and routines for geometric

modeling – such as vectors, matrices, etc.
• As our target group is composed mainly of

non-computer scientists and creative coders, the

language should be beginner friendly and yet pow-

erful. A user with little experience in programming

should be able to read the language and use it in

a short period of time [6]. More advanced users

should not be limited by the language.
• Languages using error-prone techniques (pointers,

memory management, etc. [2]) should be omitted;

as Niklaus Wirth stated: “The most important deci-

sion in language design concerns what is to be left

out.”

Currently high-level programming languages can be

classified in scripting- and in system-languages. The

main difference – according to John K. Ousterhout [15]

– is the style of programming: scripts are designed

for gluing programs and algorithms together, whereas

system languages are designed for complex algorithms

and data structures. As a result scripting-languages

are mostly type-less and more dynamic than system-

languages. Of course, due to just-in-time compilation

and even more advanced techniques this separation is

not clear-cut.

In the domain of procedural modeling we favor a

scripting language, as we believe that system languages

tend to slow down the creative coding process by pro-

gramming overhead. Scripting languages tend to be

more fault-tolerant and the explanatory power of the

source code is promoted. The result of these aspects

is presented in the next section.

4 MODELING WITH JAVASCRIPT

The programming language JavaScript meets the re-

quirements mentioned above. It is a structured pro-

gramming language featuring a rather intuitive syntax,

which is easy to read and to understand. As source

code is more often read than written, a comprehensible,

well-arranged syntax is sensible. JavaScript incorpo-

rates features like dynamic typing and first-class func-

tions.

But the most important feature of JavaScript is: it is

already in use by non-computer scientists – namely de-

signers and creative coders. JavaScript dialects are used

in Adobe Flash (called ActionScript), in the Adobe Cre-

ative Suite, in interactive PDF files, in Apple’s Dash-

board Widgets, in Microsoft’s Active Scripting technol-

ogy, in the VRML97, in the Re-Animator framework,

etc. Consequently, a lot of documentation and tutorials

to introduce the language exist.

However, in order to be used for procedural mod-

eling, JavaScript is missing some functionality, which

will be added by libraries.

Data structures and libraries for modeling

In the specification of JavaScript no data types repre-

senting vectors and matrices are defined. These types

are an essential part of computer graphics. Therefore,

the Euclides compiler includes a mathematical library

to correct this drawback.

Modifications of the Language

While using JavaScript for procedural models it is

our aim to be compliant to the standard ECMAScript

(ECMA 262). Hence, we try to support this standard

and do not add new language constructs and features,

which would result in errors when using a standard

JavaScript engine. During the development process the

compiler’s conformance with the JavaScript standard is

tested with JavaScript engines of various web browsers.

5 A GENERATIVE META-MODELER

Our meta-modeler approach differs from other model-

ing environments in a very important aspect: target in-

dependence.

A “normal” generative modeling environment con-

sists of a script interpreter and 3D rendering engine. A

generative model (3D data structures with functional-

ity) is interpreted directly to generate geometry, which

is then visualized by the rendering engine. In our sys-

tem a model’s source code is not interpreted but parsed

into an intermediate representation. After a validation

WSCG 2010 Poster papers 7



process it is translated into the target language. The

process of

parsing → validating → translating

offers many advantages.

The validation step involves syntax and consistency

checks. These checks are performed to ensure a correct

intermediate representation and to provide meaningful

error messages as early as possible within the process-

ing pipeline. Sensible error messages are one of the

most – if not the most – important aspect of a beginner-

friendly development environment.

The consistent intermediate representation serves as

a basis for backend exporters to different languages. As

our compiler has been designed to export and translate

JavaScript to other languages, it includes mechanisms

to map JavaScript methods and data types to the target

language as well as mechanisms to wrap already exist-

ing libraries of a rendering engine. The Euclides com-

piler uses annotation techniques to control this mapping

and wrapping process. These annotations are placed in

JavaScript comments to ensure 100% compliance with

the JavaScript standard. In this way low-level, platform

dependent functions – such as a method to draw a single

triangle – are wrapped platform independently. Dur-

ing the bootstrapping process of a new exporter a few

low-level functions need to be wrapped in this way. All

other functions, methods, etc built upon these low-level

routines are converted and translated automatically.

6 CONCLUSION AND FUTURE

WORK

The analysis of existing procedural modeling tools

shows similarities and differences. While some

approaches are all-purpose modelers, others are

specialized on certain subjects.

A common subset of data types and language con-

structs to describe 3D geometry has been identified.

We integrated this common subset in the scripting lan-

guage JavaScript and developed a corresponding com-

piler called Euclides. It is suited for procedural model-

ing, has a beginner-friendly syntax and is able to gen-

erate and export procedural code for various, different

generative modeling or rendering engines.

This meta-modeler concept allows a user to export

generative model to other platforms without losing its

main feature – the procedural paradigm. The source

code does not need to be interpreted or unfolded, it is

translated. Therefore it can still be a very compact rep-

resentation of a complex model.

The target audience of this approach consists of be-

ginners and intermediate learners of procedural model-

ing techniques and addresses creative designers who are

seldom computer scientists. These experts are needed

to tap the full potential of generative techniques.

In the future we will support further target platforms

and will concentrate on advanced compiler features.

ACKNOWLEDGMENT

The authors gratefully acknowledge the generous

support from the European Commission for the

integrated project 3D-COFORM (3D COllection FOR-

Mation, www.3D-coform.eu) under grant number FP7

ICT 231809, as well as from the Austrian Research

Promotion Agency (FFG) for the research project

METADESIGNER (Meta-Design Builder: A frame-

work for the definition of enduser interfaces for product

mass-customization), grant number 820925/18236.

REFERENCES
[1] René Berndt, Dieter W. Fellner, and Sven Havemann. Genera-

tive 3D Models: a Key to More Information within less Band-

width at Higher Quality. Proceeding of the 10th International

Conference on 3D Web Technology, 1:111–121, 2005.

[2] Matt Bishop and Deb Frincke. Teaching Robust Programming.

IEEE Security and Privacy, 2:54–57, 2004.

[3] Dieter Finkenzeller. Detailed Building Facades. IEEE Com-

puter Graphics and Applications, 28(3):58–66, 2008.

[4] Björn Ganster and Reinhard Klein. An Integrated Framework

for Procedural Modeling. Proceedings of Spring Conference on

Computer Graphics 2007 (SCCG 2007), 23:150–157, 2007.

[5] Google. O3D API. online: http://code.google.com/apis/o3d/,

2009.

[6] David Gries. What have we not learned about Teaching Pro-

gramming. IEEE Computer, 39:81–82, 2006.

[7] Sven Havemann and Dieter W. Fellner. Generative Paramet-

ric Design of Gothic Window Tracery. Proceedings of the 5th

International Symposium on Virtual Reality, Archeology, and

Cultural Heritage, 1:193–201, 2004.

[8] Christoph M. Hoffmann and Ku-Jin Kim. Towards valid para-

metric CAD models. Computer Aided Design, 33:81–90, 2001.

[9] Khronos Group. Khronos Details WebGL Initiative to Bring

Hardware-Accelerated 3D Graphics to the Internet. online:

http://www.khronos.org/news/press/releases/khronos-webgl-

initiative-hardware-accelerated-3d-graphics-internet/, 2009.

[10] Bernd Lintermann and Oliver Deussen. A Modelling Method

and User Interface for Creating Plants. Computer Graphics Fo-

rum, 17(1):73–82, 1998.

[11] Markus Lipp, Peter Wonka, and Michael Wimmer. Interactive

Visual Editing of Grammars for Procedural Architecture. ACM

Transactions on Graphics, 27(3):1–10, 2008.

[12] Erick Mendez, Gerhard Schall, Sven Havemann, Dieter W. Fell-

ner, Dieter Schmalstieg, and Sebastian Junghanns. Generat-

ing Semantic 3D Models of Underground Infrastructure. IEEE

Computer Graphics and Applications, 28:48–57, 2008.

[13] Pascal Müller, Peter Wonka, Simon Haegler, Ulmer Andreas,

and Luc Van Gool. Procedural Modeling of Buildings. Pro-

ceedings of 2006 ACM Siggraph, 25(3):614–623, 2006.

[14] Pascal Müller, Gang Zeng, Peter Wonka, and Luc Van Gool.

Image-based Procedural Modeling of Facades. ACM Transac-

tions on Graphics, 28(3):1–9, 2007.

[15] John K. Ousterhout. Scripting: Higher Level Programming

for the 21st Century. IEEE Computer Magazine, 31(3):23–30,

1998.

[16] Yogi Parish and Pascal Mueller. Procedural Modeling of Cities.

Proceedings of the 28th annual conference on Computer graph-

ics and interactive techniques, 28:301–308, 2001.

[17] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Al-

gorithmic Beauty of Plants. Springer-Verlag, 1990.

WSCG 2010 Poster papers 8


	!_Posters.pdf
	A59-full.pdf
	E67-full.pdf
	F71-full.pdf

	!_Posters-contents.pdf

