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ABSTRACT 
This paper presents a new method of specific cavity analysis in protein molecules. Long-term biochemical 
research has the discovery that protein molecule behaviour depends on the existence of cavities (tunnels) leading 
from the inside of the molecule to its surface. Previous methods of tunnel computation were based on space 
rasterization. Our approach is based on computational geometry and uses Voronoi diagram and Delaunay 
triangulation. Our method computes tunnels with better quality in reasonable computational time. The proposed 
algorithm was implemented and tested on several real protein molecules and is expected to be used in various 
applications in protein modelling and analysis. This is an interesting example of applying computational 
geometry principles to practical problems. 
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1.  INTRODUCTION 
Long-term research into the biochemical 
characteristics of protein molecules has the discovery 
that protein reactivity is closely related to the 
presence of routes leading from the protein surface to 
a biochemically relevant cavity inside the protein, an 
active site. In the active site chemical reactions 
between the protein and some substrate molecule 
take place. One of the conditions the substrate 
molecule requires to get to the active site is the 
presence of an empty space connecting the surface of 
the protein molecule with the active site. This empty 
space is used by the substrate molecule to reach the 
active site without crossing any atom of the protein 
and is referred to as a tunnel. In Figure 1, a substrate 
molecule can use two different tunnels to get to the 
active site. 
We emphasise that the geometrical existence of the 
tunnel alone is not sufficient to guarantee that a 

substrate molecule can access the active site. The 
ability of the protein to react with the substrate is 
based on many different physical and chemical 
factors. Still, a tunnel computed concerning just the 
geometrical point of view could provide information 
that will help chemists to focus on specific parts of 
the protein.  

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
Copyright UNION Agency – Science Press, Plzen, Czech 
Republic. 

Figure 1. Tunnels in protein, the active site is 
accessible by two tunnels. 
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Considering only the geometry of the protein, the 
molecule will be simplified to a set of spheres where 
each sphere represents one atom. Each of these 
spheres is situated in a certain position in 3D space 
and has an appropriate Van der Waals radius. At this 
stage we will not consider any other chemical 
properties of the atoms or the molecule. The 
substrate molecule is simplified to one bounding 
sphere enclosing all substrate atoms. Due to these 
simplifications tunnels always have circular  
cross-sections and can be compared with one another 
with respect to the diameter of the minimal cross-
section. This value limits the size of substrate 
molecules that are able to access the active site. 
The computation time is crucial especially when 
analysing large sequences consisting of thousands of 
‘molecule snapshots’, i.e. changes in  positions of 
atoms over a  time period. In such cases the tunnel 
computation has to be performed separately for each 
snapshot. 

2.  RELATED WORK 
The existing method of tunnel computation is based 
on space discretization and is implemented in the 
program CAVER [Pet06]. The space containing the 
molecule is regularly sampled and the samples in the 
3D raster (cubes) are evaluated by distances from the 
nearest atom. The raster is interpreted as a graph with 
weights at graph vertices. The search for a tunnel 
with the greatest minimal distance is based on the 
Dijkstra algorithm.  

Another method of protein cavity analysis is based 
on α-shapes [Ede94] and is implemented in the 
program CASTp [Lia98]. CASTp deals with overall 
cavity analysis, including determination of atoms 
forming rims of cavities inside the molecule and 
other analyses such as volume measurements of 
cavities. Cavity analysis is done for all cavities 
present (whether accessible from the outside or not) 
and does not require any user input. As this 
algorithm was designed as a general solution to 
cavity analysis it does not deal with tunnels as export 
routes and  cannot be used for tunnel computation. A 
fast and specialised algorithm is required. 

A lot of research has been conducted in the area of  
Voronoi diagram (VD) and Delaunay triangulation 
(DT) modifications. In [Kim04] an algorithm for a 
construction of a VD of a set of spheres, referred as 
an additively weighted VD, is presented (sometimes 
also referred as Euclidean VD of spheres).  

In [Gho03] the additively weighted DT is used as a 
solution to the problem of network routing. The 
algorithm is based on 2D additively weighted DT. 
Since the algorithm maintains the additively 
weighted DT of sites that dynamically change its 

position when users in mobile networks move, it is 
more general. 

3.  PROPOSED SOLUTION 
As mentioned above, the protein molecule is 
simplified to a set of spheres S. Each sphere s ∈ S is 
defined as s (cs,rs), where cs denotes its center point 
and rs its radius. When we mention an atom below, 
we are referring to the sphere representing this atom.  

The function D (x,s) computes the Euclidean distance 
of a point x from the surface of a sphere s. If x is 
situated inside the sphere s, the result of the function 
is negative:  

D (x,s) = || x - cs || - rs 

For each atom with respective sphere a ∈ S, a 
Voronoi cell V (a) is defined as a set of points 
satisfying the following condition: 

∀x ∈ Rd: x ∈ V (a) ⇔ D (x,a) ≤ D (x,b), ∀a,b ∈ S,  
                 a ≠ b, d ∈ {2,3} 

A Voronoi diagram V (S) is a union of all Voronoi 
cells V (u), ∀u ∈ S. Hereafter the border of a 
Voronoi cell will be referred to as a Voronoi edge. 
This definition is equal to the definition of an 
additively weighted Voronoi diagram [Kim04].  

In our algorithm we employ duality between a VD 
and a DT, one of the most important features of these 
structures. For each VD a corresponding DT exists 
and vice versa (see Fig. 2).  

The minimal distance from the point x to the nearest 
sphere (atom) is given by the function r (x): 

r (x) = min {D (x,s) | s ∈ S } 

Using these functions we can formalise intuitive 
notion of a tunnel. A tunnel T leading from a point x 
to a point y is defined by a centerline and a tunnel 
volume. The centerline is a continuous curve aT 
starting in x and ending in y. The tunnel volume is 
formed by the union of spheres inserted at each point 

Figure 2. Duality between Voronoi diagram 
(dashed) and Delaunay Triangulation in 2D 

(left) and 3D space (right). 
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x ∈ aT with appropriate radius r (x). Formally, T is 
defined as 

T = U
Tax

xrxs
∈

))(,(  

The function n (T) returns the radius of the minimal 
sphere of a tunnel T:  

n (T ) = min {r (x) | x ∈ aT } 

The function p (T ) returns a set of points on the 
tunnel T centerline aT satisfying the condition that 
their distance to the nearest atom is n (T ):  

p (T ) = {x | x ∈ aT ∧ r (x) = n (T )}  

In most cases p (T ) returns just a single point, the 
centre of the „narrowest“ passage. 

The order relation on the set ST of tunnels with the 
centerline leading from x to y is defined by n (T ): 

T ≤ T ′ ⇔ n (T ) ≤ n (T ′), ∀ T, T ′∈ ST 

The tunnel T ∈ ST  is ideal if for every other tunnel  
T ′∈ ST the condition T ≤ IT holds. 

Now, we state an important condition that is essential 
for our method. This statement is valid for any 
additively weighted Voronoi diagram and obviously, 
when setting all atom radii to zero, it is also valid for 
a Voronoi diagram of a set of points.  

Lemma 3.1: Let S be a set of spheres in 3D,  
|S | > 1. Consider an ideal tunnel T with the center- 
line leading from a point x to a point y. If  
x ∉ p (T ) ∧ y ∉ p (T ) then at least one point from 
p (T ) (the narrowest passage point) is situated on 
some Voronoi edge of Voronoi diagram V (S). 

Proof: See Appendix. 

Tunnel computation 
For better understanding the following concept is 
explained in the plane. An extension to three 
dimensions is straightforward.  

Given V (S)  for an input set of points S, the ideal 
tunnel can be computed according to the Lemma 3.1.  

The “narrowest” point of a Voronoi edge shared by 
two atoms u and v is located at the intersection of the 
Voronoi edge with the edge connecting u and v. If 
such an intersection does not exist, the narrowest 
point is located in the Voronoi edge endpoint x with 
the smallest r (x). Thus, the narrowest place of every 
tunnel must be located either in the Voronoi edge 
intersection or in the Voronoi edge endpoint. Note 
that knowledge of the shape of all Voronoi edges is 
not necessary for the computation of the ideal tunnel 
Voronoi edge intersections and endpoints mentioned 
above are sufficient. 

For computation, it is more convenient to represent 
space partition with dual structure of VD,  Delaunay 
triangulation. DT can be interpreted as a weighted 
graph G. Nodes of the graph are formed by triangles 
of DT and graph edges are formed by edges shared 
by the two neighbouring triangles. The edge weight 
is defined as the narrowest point of the 
corresponding Voronoi edge (see Fig. 4).  

The graph G is used for computation of the ideal 
tunnel T leading from the active site A. A possible 
utilisation of this graph is described in Section 3.1.2. 
The algorithm extension for computation of more 
than one tunnel is proposed in Section 3.1.3. The 
algorithm described is summarised by the following 
pseudocode: 

Input: set of atoms M 
       active site A 

Output: ideal tunnel 

DT = delaunayTriangulation(M); 
G = convertToGraph(DT);  
T = computeTunnel(G,A); 
output(T); 

 

Figure 3. Tunnel T with the central line aT 
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3.1.1 Delaunay triangulation computation 
The exact computation of an additively weighted VD 
and an corresponding DT would be very expensive. 
Since the algorithm for tunnels needs to be fast, we 
propose several simplifications. We proceed from the 
standard DT for a set of points instead and modify it 
for a set of spheres. The following simplifications of 
the exact solution are possible: 
• Conservative simplification – By the definition, 

the VD of a set of atoms that have equal radius is 
the same as the VD of a set of points. The 
simplification could be performed by setting the 
radius of all atoms to the radius of the biggest 
atom in the molecule. Then the DT of a set of 
atom centers could be considered as the valid DT 
of the set of atoms. The process of the edge weight 
evaluation in the graph G is modified. The weight 
of every edge is reduced by an amount 
corresponding to the radius of the biggest atom in 
the molecule. 

• Approximate simplification – Typical protein 
molecules usually consist of only a few types of 
atoms and their radii do not vary significantly 
(from 1.2 to 1.85 Ångström1). If we have the DT 
of a set of atom centers and presume that it is a 
valid DT for a set of atoms, possible error caused 
by this approximation is minimal. The weight of 
the edge in G is set to half the minimal distance of 
the two surfaces of the atoms forming the edge. 

DT could be obtained by several algorithms, e.g. the 
lifting algorithm [Bar95] which uses the relation 
between the convex hull and the DT. The convex 
hull of a set of points in Rd+1 corresponds to the DT 
in Rd. The time complexity of the convex hull 
computation in R4 is O(n2 ), where n is the number of 
points in the input set. The evaluation of edge 

                                                           
1 1 Å = 10-10 m 

weights in the graph G is linear with respect to the 
number of nodes in G. 

3.1.2 Tunnel computation 
 In order to compute the ideal tunnel, we process the 
graph G using a modified Dijkstra algorithm. The 
function f(x) evaluating each node in G provides 
maximization of the minimal weight on the way from 
the starting node to processed node. The Dijsktra 
algorithm guarantees that the tunnel found for the 
given starting point and the graph G is ideal. Time 
complexity of Dijkstra algorithm is O(n2 ), where n is 
the number of nodes in G, i.e. number of triangles in 
DT. 
 The output of our algorithm is one ideal tunnel for a 
given active site and therefore it is not necessary to 
evaluate every node in G. It is sufficient to perform 
the evaluation of nodes until we reach the exterior of 
the molecule. In our case, the exterior is determined 
by the convex hull of the molecule. In the graph G, a 
convex hull can be simply found as a set of nodes 
having at least one of its neighbours missing.  
Although this simplification does not improve 
computational complexity in general, for real 
molecules the time of computation is much faster, as 
demonstrated in Section 4.  

Figure 5. Example of Dijkstra algorithm 
progress. 
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The modified Dijkstra algorithm is described by the 
following pseudocode; d[v] denotes the actual n (T ) 
on the centerline of the tunnel T leading from the 
starting node s to the node v, previous[v] denotes the 
predecessor of v on the centerline of T and w(u,v) 
denotes the weight of edge (u,v) in G. 

3.1.3  Modification for more tunnels 
If two tunnels T1, T2 with the same  
n (T1) = n (T2) satisfy the condition for the ideal 
tunnel, one of them is selected randomly by the 
Dijkstra algorithm. However, if p (T1) ≠ p (T2), it 
could be useful to compute both these tunnels. Also 
the computation of the next-best tunnels is required 
sometimes. Therefore if more than one tunnel is to be 
found, we propose the following solution. To exlude 
already found tunnels, the graph G is modified after 
each particular tunnel computation and the whole 
process is repeated.  To find new tunnels we may use 
various graph modifications which are obvious from 
geometrical point of view. However, the chemical 
relevance of these modifications is not known yet. 
We propose the following modifications: 
•  Set to zero weight of all edges of G with the 

minimal weight along the computed tunnel. 

•  Set to zero weight of all edges of G along the 
computed tunnel from the surface to the edge with 
the minimal weight furthest from the surface. 

• Set to zero weight of edges in the close 
neighbourhood of edges with the minimal weight. 

We use constraints C to determine the number of 
computed tunnels. The process of tunnel computation 
is repeated until C is not satisfied. As an example, for 
compution of all tunnels with minimal width higher 
than 1.2 Å, C would be a condition “n(T) > 1.2”. 

Complexity 
The time complexity of DT computation is quadratic 
with respect to the number of atoms. The number of 
nodes in G is linear to the number of atoms. The time 
complexity of the Dijkstra algorithm is also quadratic 
with respect to the number of nodes in G. Therefore 
the overall time complexity is O(n2 ), where n is the 
number of atoms  

4.   RESULTS 

Implementation 
The algorithm was implemented in Java. The 
implementation uses the standard DT of a set of 
points in 3D and extends it for a +set of spheres. 
Both conservative and approximate simplification 
were implemented. The output of our program is a 
set of spheres approximating the computed tunnel. A 
sphere is inserted into the center of each node and to 
the narrowest point on each edge through which the 
tunnel leads. Radii of these spheres are computed 
during the transformation phase of the DT to the 
graph G. For better accuracy of the approximate 
method we check possible collisions of these spheres 
with atoms in their close neighbourhood. If the 
collision test is positive we decrease the radius of the 
appropriate tunnel sphere so that the collision does 
not occur. 
The output set of spheres is used for a simple tunnel 
visualization (see Fig. 6 and 7). 

computeTunnel 

Input: undirected weighted graph G 
       starting node s 

Output: sequence of tunnel nodes 

for each node n in G 
   d[n] = -∞; 
   previous[n] = null; 
 
d[s] = ∞; 
u = s; 
while (!u.onBorder()) 
   u = getUnprocessedMaximum(G); 
   for each edge (u,v) outgoing 
             from u 
      if (d[v] < max(d[v],w(u,v)) 
         d[v] =  max(d[v],w(u,v); 
         previous[v] = u; 
 
while (u != s) 
   output(u); 
   u = previous[u]; 

Extension for more tunnels 

Input: set of atoms M 
       active site A 
       constraints C 

Output: computed tunnels 

DT = delaunayTriangulation(M); 
G = convertToGraph(DT);  
do 

{ 

   T = computeTunnel(G,A); 
   G = modifyGraph(T,G); 
   output(T); 

} while (C) 
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Practical results 
The output of both compared methods, CAVER and 
our method, is a set of spheres approximating the 
computed tunnel. The CAVER program was tested 
with sampling densities 0.8, 0.4 and 0.15 Ångström. 
The maximal error of the sampling method is 
dependent on sampling density. 
We tested both algorithms on real protein molecules 
DhaA (consisted of 2358 atoms) and LinB (2479 
atoms). The tests were performed on a computer with 
P4 3.0GHz CPU and 1GB RAM. Active sites were 
determined inside chemically significant cavities 
inside the protein molecule. 
In Table 1, comparison between the two algorithms 
is done considering a real width of the narrowest 
tunnel radius. This value can be achieved in the 
following way. For each center cs of sphere s in the 
sampled tunnel, the value r (s) is determined. If  
rs > r (s) then  rs is changed to r (s). Therefore the 
tunnel found does not intersect any other atom and 
the value n (T ) of the computed tunnel T could never 
be higher than n (IT ) of the actual ideal tunnel IT.  
A solution obtained by using an approximate 
simplification cannot guarantee that the narrowest 
place is determined by one of the sampled tunnel 
spheres. It is possible that error can arise on the 
tunnel centerline between two neighbouring spheres 
in the sampled tunnel. Therefore, the tunnel 
centerline is sampled densely to minimise the 
probability of such errors arising.  
It is not possible to set the sampling density in the 
program CAVER densely enough due to the high 
system requirements. Despite that we consider 
CAVER results to be accurate enough. 
 As shown in Table 1, when testing on two real 
molecules, the solution obtained by the approximate 
simplification is more accurate than the conservative 
simplification. In comparison with the program 
CAVER, the approximate simplification is 

significantly more accurate. On the DhaA molecule 
even the conservative simplification provides better 
results than CAVER.  
Furthermore, if we compare the computation time 
shown in Table 2, the ratio of accuracy to 
computation time obtained by both our methods is 
much better. The computation of tunnels on the LinB 
molecule took CAVER 34914 seconds to be more 
accurate than the conservative simplification 
(computed in 1.031 seconds) of our algorithm.  
The comparison of computation time of the whole 
Dijkstra algorithm and the reduced Dijkstra 
algorithm is shown in Table 3. These results imply 
that stopping Dijkstra algorithm on the Convex hull 
brings a significant decrease in computation time of 
the Dijkstra algorithm. 

5.  CONCLUSION 
In this paper we have described a novel method of 
tunnel computation in protein molecules. We 
demonstrated two possible simplifications of the 
proposed algorithm, which speed up the computation 
process without notable loss of accuracy. The 
conservative simplification gives worse but still 
reasonably precise results and is faster due to its 
simplicity. The approximate simplification computes 
wider tunnels at the cost of possible presence of an 
error in the result. In comparison with previous 
solution, both our methods have much better ratio of 
speed to accuracy. 

There are several avenues possible for the further 
research in the future. We want to implement the 

CAVER using grid size DT method Minimal radius 
(Ångström) 0.8Å 0.4Å 0.15Å Conservative Approximate 

DhaA 1.05571 1.29359 1.4153 1.4207468 1.4772751 

LinB 0.647456 0.674731 0.785306 0.7510569 0.8693304 

Table 1. Accuracy comparison. 

CAVER using grid size DT method Time of computation 
(seconds) 0.8Å 0.4Å 0.15Å Conservative Approximate 

DhaA 3.782 108.64 37152.91 0.984 1.312 

LinB 3.391 100.89 34913.98 1.031 1.406 

Table 2. Time of computation. 

Time 
(seconds) Full Dijkstra Reduced Dijkstra

DhaA 2.407 0.031 

LinB 2.891 0.047 

Table 3. Comparison of Dijkstra algorithm 
computation. 
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exact solution using additively weighted DT in 3D to 
confirm our assumption that the accuracy 
improvement is not worth of the speed degradation. 
Utilization of more sophisticated methods of DT 
computation could significantly improve the speed of 
the algorithm, e.g. we could perform some space 
partitioning and compute only a part of the graph G 
on demand of Dijkstra algorithm. 

Volume maximization of the tunnel instead of 
maximization of the narrowest cross-section could be 
biochemically significant. Fast analysis of large 
snapshot sequences sampling molecule in time is also 
demanded. Algorithm output could be also processed 
with other techniques, e.g. haptical devices could 
explore the tunnel surface for other biochemical 
properties. 
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Figure 6. Ideal tunnel in DhaA molecule Figure 7. Tunnel centerline (denoted by the line) 
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APPENDIX 

 
Lemma 3.1: Let S be a set of spheres in 3D,  
|S | > 1. Consider an ideal tunnel T with the center- 
line leading from a point x to a point y. If  
x ∉ p (T ) ∧ y ∉ p (T ), then at least one point from 
p (T ) (the narrowest passage point) is situated on 
some Voronoi edge of Voronoi diagram V (S). 

Proof: Consider a tunel T with the centerline 
leading from the point x to the point y satisfying  
x ∉ p (T ) ∧ y ∉ p (T ). Let the set p (T ) contain 
only one point pT. If p (T ) contains more than one 
point, we perform the construction demonstrated in 
this proof for each element of p (T ).  

Suppose that pT is not situated on any Voronoi edge 
of V (S) and T is ideal (for each tunnels T ′ leading 
from x to y, the condition T ≤ T ′ holds). If pT is not 
situated on any Voronoi edge of V (S), then pT is 
situated inside one of the Voronoi cells  
V (u). This implies D (pT,u) < D (pT,v) for each 
sphere v ∈ S, v ≠ u. 

The point px denotes the intersection of the border 
of V (u) with the part of aT, that lies between x and 
pT. If more than one intersection exists, we select 
the intersection closest to pT. Similarly the point py 
denotes the closest intersection of the border of  
V (u) with the part of aT lying between pT and y.  
If x lies inside V (u), let px be the point x. If  
y ∈ V (u), then py = y. The part of aT between points 
px and py is denoted a′T. The curve a′T is continuous 
and all points of a′T lie inside V (u),  
∀v ∈ a′T ⇒ v ∈ V (u). 

For each point w ∈ a′T we create a half-line with 
the starting point in cu passing through w. w′ denote 
the intersection of this half-line with the border of 

V (u). Note that for each w, w ≠ px ∧ w ≠ py, the 
condition r (w) < r (w′) holds. The set of all points 
w′ forms a continuous curve leading from px to py. 
We denote this curve a″T. Since we assume that T is 
ideal, for each point w ∈ a′T, w ≠ pT the condition  
r (w) > r (pT) holds, therefore for each point  
w′ ∈ a″T the condition r (w′) > r (pT) is satisfied as 
well.  

We modify the centerline of T by replacing a′T with 
a″T. The modified tunnel is denoted by T ′. For each 
point w ∈ aT ′ the condition r (w) > r (pT) holds. 
However, this implies n (T ′) > n (T ), contradicting 
our assumption that T is ideal. 

 

Figure 8. Proof illustration. 
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