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ABSTRACT 
This paper presents a novel method of employing "smart objects" for problem solving in virtual environments. 
Smart objects were primarily used for behavioral animation in the past. The paper demonstrates how to use them 
for AI and planning purposes as well. We formally define which operations can be performed on a smart object 
in terms of their requirements and their effects. A planner uses this information to determine the correct 
sequence of actions needed to achieve a goal. This approach enables intelligent agents to solve problems 
requiring a collaboration of several agents and complex interactions with objects. 
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1. INTRODUCTION 
A significant number of virtual reality applications 
require that the virtual characters are able to 
manipulate the objects in their environment. Such 
interactions can be arbitrarily complex and their 
precision requirements vary as well (i.e. ranging 
from simple, single-shot motions to sequences of 
numerous motions that require high accuracy). Many 
existing applications try to tackle this problem in ad-
hoc ways; the usual solution is to combine pre-
designed or motion-captured key frame animations 
with simple object animations. Another, more 
general, approach is to use a concept of smart objects 
where the responsibility for the animation is shared 
between the virtual character and the object itself 
[Kal01]. 

The smart objects paradigm has been introduced for 
interactions of virtual humans with virtual objects 
[Kal01]. It considers objects as agents where for each 
object interaction features and plans are defined. 
Even though smart objects are more flexible than 
other approaches when it comes to animation and 

behaviors, the fact that interaction plans are fixed 
imposes a severe limitation from the artificial 
intelligence point of view, reducing the capability to 
adapt to new situations and to solve more complex, 
dynamic problems. This could be addressed by the 
use of planning techniques. 

One of the first published works about AI planning is 
the STRIPS planner from 1971 [Fik71]. It introduced 
the concept of operators, with preconditions and 
effects. The state of the world is expressed using 
predicate calculus. This method of describing the 
planning problem is still popular and was used in 
many planners – e.g. UCPOP [Pen92], Prodigy 
[Vel95]. One of the most popular planners using the 
STRIPS representation is Graphplan [Blm97] and its 
many derivatives, such as Blackbox, Sensory 
Graphplan [Wel98], Temporal Graphplan [Smi99] 
and many others.  

Our implementation employs a modified version of 
Sensory Graphplan (SGP). It extends the standard 
Graphplan and adds sensing actions and conditional 
effects. It builds contingency plans – plans where the 
initial truth value of some predicate may be uncertain 
and the planner plans for both eventualities 
indicating which actions have to be taken in each 
case (planning worlds). As such, it is more suitable 
for virtual reality simulations because the input 
language is much more expressive compared to the 
standard STRIPS-like planners.  

In this paper, we present a method how to extend the 
smart object concept for use with SGP. Embedding 
the high-level information together with animation 
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data in the smart object allows for more efficient 
planning, because only relevant operations and data 
are considered. Another advantage is that the 
embedding allows integrating the creation of the 
logic data into the design pipeline. This ensures that 
the smart object animations and the corresponding 
high-level information are created at the same time 
and in a consistent way. 

2. EXTENDING SMART OBJECTS 
Smart objects provide not only the geometric 
information necessary for displaying them on the 
screen, but also semantic information useful for 
animation purposes. We store this information in the 
form of sets of attributes attached to the scene graph 
nodes of the object.  

The attributes convey various kinds of information – 
e.g. important places on or around the object (e.g. 
where and how to position the hands of the virtual 
character in order to grasp it), animation sequences 
(e.g. a door opening) and general, non-geometric 
information associated with the object (e.g. weight or 
material properties) The semantic information in the 
smart object is used by the virtual characters to 
perform actions on/with the object, e.g. grasping, 
moving it, operating it (e.g. a machine or an 
elevator).  

However, simple uses of semantic information are 
not sufficient if more complex behavior is desired. 
For example, moving of the crate (a smart object) is 
easily animated using a script and few attributes of 
the object. Moving the same crate by a virtual 
character through a closed door requires a higher 
level planning (i.e. “open the door first, if not open 
already and then push the crate through”) and 
moving a heavier crate may require two virtual 
characters and careful planning to do it. All such 
simulation requirements put high demands on the 
script driving the virtual characters because it has to 
know about all possible situations which may occur. 
This is impractical and inefficient. Planning has the 
potential to solve this problem; however, with many 
possible actions it can become very cumbersome 
because the complexity of the search space explodes 
and certain cases may be simply intractable.  

There is another way to address this problem. Just as 
we move the object-specific “animation intelligence” 
from the virtual characters to the smart objects, we 
can add also the planning and AI-related data there. 
The virtual character does not have to know how to 
interact with every kind of object; he can acquire the 
necessary capabilities on the fly from the object. 

Smart objects [Kal01] already contain “interaction 
plans”, which are essentially scripts containing the 
animation of the action itself. These scripts 

coordinate the human and object animations to create 
the intended result, which could be a virtual human 
pushing a crate, opening a door, etc. Our proposal for 
the extension of smart objects consists of the 
following items to be associated with each action: 

• Preconditions for the action. These conditions 
have to be satisfied in order to be able to 
perform the action. 

• Effects of the action. These predicates will be 
added/removed from the representation of the 
world state when the action is performed. 

The action script is usually written in some high level 
scripting language (in our case Python), the 
preconditions and effects are expressed in PDDL 
format used by the STRIPS planners (i.e. Lisp-like). 
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The general flow of events when interacting with 
extended smart objects is shown in Figure 1. The 
algorithm is as follows:  

1. The virtual character collects the relevant 
information about the current state of the 
surrounding world. This is taken from the 
agent's own beliefs about the world and from the 
smart objects involved in the interaction. 

2. Prepare planning step builds the problem 
representation. 

3. Planning is performed. The result is a plan and 
the set of alternative planning worlds in case that 
there were some predicates with uncertain value 
in the initial state. There is always at least one 
planning world – in this case it corresponds to 
the initial state directly. 

4. The virtual character executes the plan. The 
actions are taken from the plan, mapped to the 
corresponding low-level functions and executed. 



Sensing actions scheduled by the planner are 
used to determine the status of the originally 
uncertain predicates from the initial state. The 
result determines which planning world the 
agent is in and therefore decides which branch 
of the plan has to be executed. 

This general algorithm does not guarantee that the 
agent will be able to solve every solvable problem. It 
is best-effort heuristics only, because the knowledge 
of the agent about his surroundings is limited. The 
agent may not be aware of critical information 
needed to solve the problem. Another possibility for 
planning failure comes from the fact that it is very 
hard to select the relevant objects from which to 
retrieve the planning information. In fact, this is as 
hard as the planning problem itself, because the agent 
will know whether the object is or is not relevant to 
the task only after the plan is built. 

3. RESULTS  
The described system was implemented as an 
extension of our existing virtual reality platform 
VHD++ [Pon03] and our agent framework described 
in [Aba04]. The agents driving the virtual characters 
are implemented as Python scripts; the planner is 
running as compiled LISP code.  

We constructed a simple scenario for evaluation of 
the proposed approach. In our case, we have a virtual 
art gallery which received two crates (one large one, 
one smaller one) with new art. The goal of the two 
virtual humans is to move the crates inside the lobby 
of the gallery. Both agents have basic facilities for 
teamwork (forming a team, disbanding a team), 
communication and some rudimentary capabilities, 
like navigation in the virtual environment. However, 
they do not have any a-priori knowledge about how 
the crates can be moved.  

Our crates are modeled using the extended smart 
object approach. They contain reference to the file 
with the geometry of the object (mesh, textures, etc.), 
position and orientation data for the hands of the 
agents during the animation, proper position where 
the agent has to be before the animation script is 
started and finally the planning data.  
The difference between the small and the large crates 
is that we have defined the large crate as a heavy 
object and therefore it needs two people to move it.  

Planning data have associated animation scripts, in 
our case a simple animation moving the virtual 
human and the crate on the screen, using inverse 
kinematics to keep the hands in position. 

 
Figure 2 Plans for pushing the small crate (a) and 

the big crate (b) 
 

We are asking the agent Gino to form a plan to get 
the big box to the lobby and afterwards to execute it 
(see Figure 2b). The plan tells the agent to get 
somebody to help. “SELF” is the agent which 
submitted the planning request and “TEAMMATE1” 
is a collaborating agent asked to help. During the 
execution of the plan the originating agent (team 
leader) will negotiate the team formation and when 
successful, it will substitute the real name of a team 
member for “TEAMMATE1”. The next step consists 
of moving the teammate from his current position to 
the front yard, where the crates are. “Anywhere” 
denotes a special place, from which it is possible to 
go everywhere. The team leader does not care where 
the teammate is at the moment, but it needs to 
establish him into a known state (and move him to 
the necessary place). The operation “DECLARE-
DOOR-PASSABLE” is a helper operation which 
declares the two places on the sides of the door as 
connected in case that the door is open. The 
remaining two steps are self-explanatory. The 
resulting action after executing the associated 
animation script from the smart object is depicted in 
Figure 3.  

 
Figure 3 Two agents pushing the large crate 

a. 
 
((((TRANSPORT GINO SMALL_BOX FRONTYARD 
    LOBBY)))) 
 
b. 
 
((((RECRUIT-HELP SELF TEAMMATE1))) 
 (((MOVE TEAMMATE1 ANYWHERE FRONTYARD)) 
  (((DECLARE-DOOR-PASSABLE SELF DOOR))) 
 (((PREPARE-PUSH SELF BIG_BOX)) 
  ((PREPARE-PUSH TEAMMATE1 BIG_BOX))) 
 (((TEAM-PUSH SELF TEAMMATE1 BIG_BOX       

FRONTYARD LOBBY))))



For the small crate, the resulting plan is simpler since 
the agent can immediately perform the needed action 
– Figure 2a. The animation performed by the 
associated animation script is shown in Figure 4. 

 

 
Figure 4 Gino pushing the small crate 

 

4. CONCLUSIONS 
Our scenario shows the possibility of the virtual 
characters (agents) to “learn” how to interact with 
previously not encountered objects by exploiting the 
information stored in them. Furthermore, such 
information encapsulation allows us to let the agent 
work with only the information relevant to his task, 
simplifying the planning process. 
From the design point of view, keeping the animation 
data and formal representation of the interaction in 
one place is beneficial for ensuring that all required 
elements will be created. It is feasible to create an 
authoring tool for extended smart objects which will 
help generate the formal representation and 
animation script template from the specified 
description. 
The process of agent development is simplified as 
well, because the developer does not have to design 
an agent capable of performing many specialized 
actions. It is sufficient to create a simple agent with 
few basic capabilities (such as navigating the virtual 
environment) and leave the rest to a generic 
procedure created on the fly based on the 
declarations and code defined in the extended smart 
object. It could be considered as filling in an action 
template based on the data in the smart object. 
We demonstrated how the smart object approach can 
be extended to handle the formal representation of 
the interaction. The smart objects can handle not only 

the animation alone but also the formal description of 
it. This tight coupling between animation and its 
formal description enables the virtual characters to 
perform sophisticated actions which are either very 
complex to achieve otherwise or just impossible 
outright. It allows us to apply the known artificial 
intelligence techniques to improve the realism of the 
simulation and to provide richer experience to the 
user. 
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