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ABSTRACT 
Detection of some interest points on an object is useful for many applications, such as local shape description of 
the object, recognition of the object in clutter environment etc. The same object present in different images can 
have some geometric and photometric transformations with respect to one another. The detection method should 
be robust to all these transformations. We describe relative scale Harris method for interest point detection. This 
method is robust to linear geometric transformations. A threshold selection method is also described for 
invariance to intensity change, partial occlusion and clattered environment. Unlike multi-scale methods our 
method is fast enough to be suitable for real time applications. 
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1. INTRODUCTION 
A reference object and a test image are given. The 
reference object present in the test image can have 
some geometric and photometric transformation, 
with respect to the given reference object. Moreover, 
the surrounding of the object of interest could be 
cluttered with other objects and object itself could be 
partial occluded. In all these conditions, we like to 
detect similar sets of interest points on the reference 
object and on the object of interest in the test image. 
Harris detector [Har88] is a classical work on interest 
point detection. Later, it was improved by Schmid et 
al [Sch00] for better repeatability rate of interest 
points, in presence of relative rotation.  These 
detectors fail when there is large scale change for the 
object of interest, present in the image. To alleviate 
the problem Mikolajczyk et al [Mik01], [Mik04] 
investigated scale-space interest point detector, using 
so called Harris-Laplacian method. But this method 
could be computationally quite expensive for real 
time applications.  

In this paper, we introduce relative scale Harris 
method for scale invariant interest point detection. It 
is assumed that the relative scales of the same object 
presents in different images are known a prior. For 

intensity invariant interest points, a heuristic based 
method of threshold selection is proposed. So, our 
detection method is robust for different kind of 
geometric (translation, rotation and scale change) and 
photometric transformations (intensity scaling and 
intensity shift). This method is also robust for 
cluttered environment and partial occlusion. Unlike 
multi-scale interest point detection methods [Mik01], 
[Mik04], our method is computationally quite fast. 
The proposed method of interest point detection 
could be quite useful for many applications such as 
local shape description, object recognition in 
cluttered environment etc.  

Our detection method is described in Section 2. 
Section 3 presents some experimental results to show 
the effectiveness of the method. Section 4 concludes 
the paper with future works. 

2. METHOD 
In this section, our goal is to detect two similar sets 
of points on the same object presents in two images, 
irrespective of different kinds of transformations. 
Section 2.1 presents relative scale Harris method for 
scale and rotation invariant interest point detection. 
Section 2.2 gives a threshold selection method for 
intensity invariant interest points. Section 2.3 deals 
with cluttered environment and partial occlusion. 

2.1  Relative scale Harris method 
The detection method depends on the prior 
knowledge about relative scales of the object, 
present in the images. We assign an arbitrary 
reference scale σR to the given reference object. A 
point (x′, y′) on the object present in the test image is 
related to a point (x, y) of the reference object by 
linear geometric transformations as given bellow: 
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where s is arbitrary scaling factor, θ is arbitrary 
rotation and (a, b) is arbitrary translation. The 
relative scale σI of the object in the test image is a 
linear function of the scaling factor s. 

 σI = csσR 

where c is a constant. The value of c depends on the 
reference scale σR and the range of scale of 
consideration [σmin - σmax], where σmin < σR < σmax. 

In original Harris method [Har88], the image is first 
differentiated in two perpendicular directions and 
then integrated by a circular Gaussian window. In 
improved Harris version [Sch00], a 1D Gaussian 
kernel is convolved with the image for 
differentiation. Here, we use the relative scale of the 
object σI as the variance of Gaussian for Harris 
integration. The variance of Gaussian for Harris 
differentiation is σD = kσI, where k is a constant. The 
scale normalized auto-correlation matrix of Harris 
detector [Mik04], [Mik01] at a point X = (x, y) of the 
image I is given by 

N(X, σI)=σD
2
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here, g(σI) which is the circular Gaussian integration 
window at the scale σI is given by 
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Ix(X, σD) and Iy(X, σD) are the partial derivatives of 
the given image in x and y direction respectively and 
can be found by convolving the image with the 1D 
Gaussian kernel. 

 Ix(X, σD)=h(σD) ⊗I(X) 

 Iy(X, σD)=(h(σD))T⊗I(X) 

where h(σD) is the 1D Gaussian first derivative 
kernel at the scale of σI 
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The measure of corner response at the point X and 
scale σI is  

R(X, σI)=det(N(X, σI))-λtr2(N(X, σI))  

where λ is a constant. R(X, σI) is positive in corner 
region and a point is selected as a corner point if it 

is the local maximum of the measure of corner 
responses [Har88], i.e. point X is a corner point if  

  R(X, σI) > 0  and R(X, σI) > R(Xw, σI) ∀ Xw∈W  

where W is the 8-neighborhoods of the point X.  

A corner point could be selected as an interest point 
if  

R(X, σI) > Tc 

where Tc is a constant threshold. 

Experimental results for relative scale interest point 
detection are shown in Section 3.  

2.2 Threshold selection for intensity 
invariant detector 
In this section, we investigate the effect of intensity 
change on the detection method. The change in 
intensity may happen for different reasons such as 
different brightness of light source, direction of 
incident, and change in camera aperture etc. In this 
paper we only considered the effect of uniform 
intensity changes, i.e. intensity scaling and intensity 
shift. 

 I′(x, y) = sI(x, y) + c 

where s and c are intensity scaling and shift 
parameters respectively.  

The measure of corner response R′(X, σI), at the point 
X and scale σI for the image I′, is independent of 
intensity shift but the intensity scaling affects the 
response. It can be easily shown that the change in 
corner response is not linear for intensity scaling i.e. 

           R′(X, σI) = s2det(N(X, σI))- s4λtr2(N(X, σI)) 

Here, we propose a heuristic based method to select 
the threshold for intensity invariant interest points. 
The threshold Tv΄ is selected based on the 
normalized-corner response. Consider, Λ = {Xi} is 
the set of corner points for I′(x, y) and R′(Xi, σI) is the 
corner response at point Xi. The points in the set Λ 
are sorted in descending order i.e. R′(Xi, σI) >= 
R′(Xi+1, σI) for i = 1…. |Λ| - 1; where |Λ| is number of 
corner points. We get the normalized-corner response 
Q(Xi, σI), normalizing R′(Xi, σI) by max(R′(Xi, σI)) = 
R′(X1, σI) for i = 1…. |Λ|.  
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Plotting the normalized-corner response Q(Xi, σI) 
against the detected corner points we get Q-Λ 
histogram. From experiments it can be seen that Q-Λ 
histograms always have almost similar shape, 
irrespective of the objects contained in the image. 
Figure 1(a) and 1(b) show two images having 



translation, rotation, scale change and intensity 
change, with respect to one another. Figure 1(c) 
shows the Q-Λ histogram for the image 1(b). X-axis 
of the histogram shows the sequence of detected 
corner points in the sorted set Λ and the Y-axis 
shows the corresponding Q(Xi, σI). Now we select a 
threshold Tv΄ for Q(Xi, σI), where Tv΄ is sufficiently 
large (for example 0.01 - 0.04) to discard most points 
on the portion of the curve parallel to X-axis (Figure 
1(c)). So, a corner point is an interest point if Q(Xi, 
σI) > Tv΄. 

  

 

(a) (b) 

 
(c) 

Figure 1: Threshold selection method a) The 
reference object and detected interest points. 
This image is borrowed from RSORT [Sel99]. 
b) Modified image (reference object is rotated 
(350), scale changed (50%), intensity scaled 
(0.5) and intensity shifted (+10)). c) Q-Λ 
histogram for the image in (b). 

2.3 Cluttered environment and partial 
occlusion 
Now, we should consider two other important factors 
for interest point detection: the given test image may 
contain other objects and the object of interest may 
be partially occluded (Figure 2). The threshold 
selection method is greatly affected by these two 
factors. In the case of cluttered environment, stronger 
corner points may come from other objects, affecting 
the normalization process. For Partial occlusion some 
of the strongest corner points may be absent due to 
the occlusion, again affecting the normalization 
process. In both cases our solution is to reduce the 

threshold, allowing more interest points.  For large 
number of detected corner points due to the 
cluttering, we want to reduce the threshold slightly to 
ensure the higher repeatability rate. A particular 
choice for the final threshold Tv, for invariant interest 
point detection could be  

 Tv = 
ln(| | )

vT ′

Λ
  

where |Λ| is the number of detected corner points in 
the set Λ.  

 
Figure 2: Detected interest points for partial 

occlusion and cluttered environment. Original 
images are taken form RSORT [Sel99] and 
then manipulated. 

3. EXPERIMENTAL RESULTS 
In order to evaluate our interest point detector we 
have used the repeatability rate criterion proposed by 
Schmid et al [Sch00]. Here, we can define the 
repeatability rate as the ratio of number of 
corresponding interest points pairs and the total 
number of points detected on the given reference 
object, with consideration of a localization error of ε. 
Let Λ(r) = {Xi

(r)} and Λ(t) = {Xj
(t)} be the sets of points 

detected on reference object and on the same object 
in the test image respectively. If C(Xi

(r), Xj
(t)) is the 

number of  corresponding points pairs then the 
repeatability rate is  

 rr = 
( ) ( )
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( , )

| |

r t
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r
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where |Λ(r)| be the number of points in the set Λ(r). 

We carried out experiments on several objects from 
two data sets: RSORT [Sel99] and COIL-20 [Mur95]. 
The four objects used for the experiments are shown 
in Figure 3. The results are summarized in Table 1. 
One of the main objectives of this work is to detect 
scale invariant interest points. We changed the scale 
of each of the objects from 150% to 50% with a 
simultaneous change in rotation (350), intensity 
scaling by a factor 0.6, and intensity shift +10. We 



computed average repeatability rate (avg-rr) for all 
four objects. Figure 4 shows the avg-rr for scale 
change. On the average, we got 86% avg-rr, which is 
much better than the improved Harris detector 
[Sch00] and better than Harris-Laplacian method 
[Mik01], [Mik04]. Our relative scale method is as 
fast as single step Harris method that is much faster 
than the scale-space method. We computed avg-rr 
for change of rotation angle (00 -1800) and change of 
intensity (intensity scaling factor was changed from 
1.6 to 0.4). We also carried out experiments for 
partial occlusion and cluttered environment as shown 
in Figure 2. Here, we have two objects of interest 
(bear and car) present in the image. Both of them 
have further scale, rotation and intensity change with 
respect to the given reference objects. The 
repeatability rate for the bear is 85% and car is 70% 
and avg-rr for these two objects is 77.5%. 

 

 

 
 

Figure 3: Four reference objects used for 
experiment. Detected interest points are also 
shown. Images are taken from RSORT [Sel99] 
and COIL-20 [Mur95] dataset. 
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Figure 4: Average Repeatability rate (avg-rr) for 
scale change (150% - 50%) for the four objects 
in Figure 3. 

Transform-
ation /cond-
ition type 

Range of  
change 

Additional simul-
taneous transfor-
mation/condition 

Average and 
range of avg-
rr (%) 

Rotation 00 - 1800 Scale 80% 
Intensity scaling 1.2 

Intensity shift -5 
86.86 

[83.3 - 91.6] 

Scale 150%-
50% 

Rotation 350 
Intensity scaling 0.6 
Intensity shift +10 

85.84 

[83.3 - 87.8] 

Intensity 
scaling 1.6 – 0.4 

Scale 120% 
Rotation 250 

83.5 

[83.5 - 83.5] 

Cluttered & 
Partial 
Occlusion 

Figure 2 
Scale 80% 

Rotation 200 
Intensity scaling 0.5 

77.5 
bear- 85% 
car – 70% 

Table 1: Results for different transformations and 
conditions. 

4. DISCUSSION 
In this paper, we introduced the relative scale interest 
point detection method for scale invariant interest 
points. A heuristic based method was proposed to 
select threshold for invariance to intensity change, 
cluttered environment and partial occlusion. Our 
detection method gives better performance than the 
existing methods in term of repeatability rate and 
computing time. The method could be useful for 
many applications. For the relative scale method we 
assumed that the scale of the object is known in 
advance. Our method only deals with linear 
geometric transformations. Consideration of affine 
scale change is important for real-time applications. 
As future work we like to find invariant descriptors 
for the detected interest points. Such descriptors 
could be helpful for point to point matching.  
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