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Line Correspondences Between Two Images Using 
Local Affine Moment Invariant 
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ABSTRACT 
This paper proposes an algorithm for matching line segments between two images which are related by 

affine transformations using local affine moment invariant (AMI). Instead of using traditional methods for 
objection recognition in which each object is globally represented by a vector of affine moment invariants, here 
each pair of line segments extracted from each image is locally represented by an affine moment invariant. This 
algorithm is suitable for line correspondences with multi-planes and occlusion. Matches are determined through 
comparing invariant values and voting. Experimental results are given for both synthetic and real images. The 
noise model of affine moment invariant is also presented.  
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1. INTRODUCTION 
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Figure 1. Robustness of different invariants to noise. 

Image matching is one of the basic problems in 
computer vision. It is the process of finding features 
such as line segments in different images that 
represent the same feature of the observed scene. 
Many papers have been published in the past on line 
matching under an affine transformation. Some of 
them make use of geometric invariants for matching. 
Lamdan et.al [Lam90a] developed a geometric 
hashing technique which calculates affine invariant 
coordinates for arbitrary point sets under various 
geometric transformations. The method is however 
very computation intensive. There are three other 
commonly used affine invariants: distance ratio 
[Hut91a], area ratio [Cha02a], and affine moment 
invariant (AMI) [Flu94a]. Distance ratio and area 
ratio are ratios of two relative affine invariants, so 
they may have an ordering problem. On the other 
hand, AMI is defined over an area and is invariant to 
the starting position. Besides, AMI is more robust to 
noise. Figure 1 shows the average error (in %) of the 

invariants against the noise level (in SNR) on 1000 
arbitrary quadrangles. The upper one is area ratio, the 
middle one is distance ratio and the bottom one is 
AMI. It can be seen that AMI can tolerate a larger 
range of noise. 

 

 

 

 

 

All methods which use AMIs, to the best of our 
knowledge, are mainly for pattern matching or object 
recognition. They are computed over a set of data 
points or a closed-boundary region (usually an 
object), so they may encounter the problem of 
occlusion. Distance ratio and area ratio have been 
proposed by some authors for localized line matching 
[Gro95a], but AMIs have not been used for the same 
purpose. This paper presents the key idea to match 
line segments between two affine transformed 
images using local AMI. The noise model of AMI is 
also presented. 
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2. ALGORITHM 
2.1 Selection of line segments 
This algorithm assumes that both images contain line 
segments that do not intersect except at their end 
points only. In the case that there are intersecting 
lines, they are broken up so that finally there are only 



two kinds of line configurations: connected lines (3 
noncollinear point pairs) and disjoint lines (4 
noncollinear point pairs). Since connected lines 
provide just enough information to determine the 
affine transformation, even if the point pairs are 
mismatched, we can still find a transformation which 
can exactly relate the point pairs. Hence, such 
configuration does not help line matching at all. On 
the other hand, for disjoint lines, besides 3 basic 
point pairs, there is one extra point pair which 
enforces an extra constraint for the determination of 
an affine transformation. There is no exact solution 
except when all 4 pairs are really related by an affine 
transformation. Since such configuration has a 
discriminatory power, this algorithm only considers 
line matching based on the affine moment invariant 
calculated from such configuration. 

2.2 Selection of starting position 
Given a pair of disjoint lines in both images, the end 
point correspondences are not known, so there are 4! 
= 24 combinations of end point correspondence. To 
reduce the number of combinations, the convex hull 
constraints are added. Hartley proved that projective 
transformation preserves the convex hull of a point 
set [Har93a]. In the four-point case, the convex hull 
may contain 3 or 4 points. 

First consider the convex hull containing all 4 points, 
we can form a loop which passes through the end 
points one by one with no skipping as shown below. 

 

 

If the conditions above are enforced, the number of 
combinations is reduced to 8 (4 clockwise and 4 anti-
clockwise). If the orientation of the convex hull is 
chosen for all pairs of lines in both images to be in 
clockwise direction, the number of combinations is 
reduced to 4. Finally, the loop can be restricted to 
traverse both points of one line segment before going 
on to another line segment, whereby the number of 
combinations is reduced to 2. For example, in 
diagram (II) above, the only possible loops are either 
(1→2→3→4) or (3→4→1→2).  

Now consider the convex hull containing only 3 
points as shown in Figure 3. If the same rules are 
applied, four combinations are valid: (1→2→3→4), 
(2→1→3→4), (3→4→1→2) and (3→4→2→1). 
Note that the relative size of areas is preserved under 
an affine transformation, i.e., if area A is larger than 
area B in the first image, the affine transformed area 
A is still larger than the transformed area B in the 
transformed image. Hence, the number of loops is 

reduced by half if they are restricted to have a larger 
area. If the area enclosed by the path (1→2→3→4) 
or (3→4→1→2) is larger than that enclosed by the 
path (3→4→2→1) or (2→1→3→4), then paths 
(1→2→3→4) and (3→4→1→2) are selected. 
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In the case that the line pattern is symmetric as 
shown in Figure 4, there is an ambiguity in choosing 
the paths as the same area is enclosed by 4 different 
paths. However, the shape enclosed by the path 
(1→2→3→4) or (3→4→1→2) is just the reflection 
of the shape enclosed by the other two paths, and 
AMI is invariant to an affine transformation 
including reflection. Therefore, the AMIs for both 
areas are the same and can be used for matching.  

2.3 Affine moment invariant 
A moment invariant is a moment-based descriptor of 
a planar shape, and is very useful for pattern 
recognition. J. Flusser and T. Suk extended the idea 
to AMI, which is invariant under an affine 
transformation [Flu93a]. The moment m(p,q) of 
order (p + q) of a binary 2-D object G is defined as: 

∫∫=
G

qp dydxyxqpm
 

 ),(  … (1) 

while the central moment µ(p,q) of order (p + q) is 
defined as: 

∫∫ −−=
G
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p
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where xt = m10/m00 and yt = m01/m00 are the 
coordinates of the center of gravity of object G. The 
second-order AMI is defined as [Flu94a]: 

))1,1()2,0()0,2((
)0,0(

1 2
4

µµµ
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−=AMI  … (3) 

It is a time consuming task to compute the double 
integrals of equations (1) and (2). Our algorithm is 
based on the method described in [Sin93a]. In order 
to use AMI for line matching, we need to derive the 
variance of AMI when the line segments are 
perturbed by noise. Assume we are given 4 ordered 
points (xi, yi), i = 0,…,3, which form the object G. 
Let (p1,…,p4,p5,…,p8) = (x0,…,x3,y0,…,y3), and AMI 
= f(p1,…,p8), each variable pi can be expressed 
as iii pp δ+= , where ip is the true but unknown 
value of , andip iδ  is a random perturbation (noise) 
added to the true variable ip . Assume  is 
independent and identically distributed with zero 
mean and standard deviation σ

iδ

δ. Then AMI = 
).8,...,1;( =+ ipf ii δ  Expanding AMI in Taylor 

series and neglect second and higher order terms: 

Figure 2. Convex hull containing 4 points. 
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line pattern. 
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each term in (6) can be computed as follows: 
 

 

 

 

 

 

 

 

 

 

 

2.4 Procedure 
This subsection describes the whole procedure of 
line matching in details. Given M and N line 
segments extracted from two images which are 
approximately related by unknown affine 
transformations, the matching procedure consists of 
the following steps: 

2.4.1 Step 1 
Construct connectivity tables of size M×M and N×N 
for the first and second images respectively. These 
tables show if segments are connected to the starting 
or end points of other line segments in the image.  

2.4.2 Step 2 
Construct affine moment invariant tables of size 
M×M and N×N for the first and second images 
respectively. In the calculation of the affine moment 
invariant between two segments, a path through the 
line segments is chosen such that the line 
configuration fulfills the requirement described in 
section 2.2. Besides, given the standard deviation of 
noise σδ, the range for each affine moment invariant 
(AMI ± σAMI) is computed. In the case that two line 

previous step, they will not be considered in the 
following steps. 

2.4.3 Step 3 

segments are found to be connected from the 

moment invariant in the moment 

M×N. A vote is 

 and 

the ordering 

e table formed from Step 3, the final 

ine matches are found from Step 4, the   

sense of direction of the line segment in a  

Each affine 
invariant table for the first image is compared with 
all invariants of the second image.  If the affine 
moment invariant between two line segments in the 
second image is within the range of the invariant 
(defined by the standard deviation of noise σδ) 
between two line segments in the first image, the 
pairs of segments are regarded as a putative match 
which is then verified as follows. Since they are 
arranged in the configuration described in section 
2.2, each pair of line segments would only have 2 
possible paths. Therefore, by calculating the two 
affine transformations and projecting the two line 
segments in the first image into the second image, the 
average projection error for each transformation is 
found. If the smaller of the two errors is less than a 
predefined threshold, then the pairs of line segments 
are regarded as matched with known segment 
correspondences. 

Next, form a voting table of size 
added to each of the (i,k) and (j,l) cells of the vote 
table if the segment pair (i,j) in the first image is 
matched to (k,l) in the second image. This table 
accumulates the number of votes for line 
correspondences between the two images. The higher 
the number of votes, the higher the possibility that 
the corresponding line segments are matched.  

Besides, form an ordering table of size M×M
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N×N for the first and second images. As described 
above, each line segment may change its vertex order 
such that it fulfills the requirement described in 
section 2.2. The vertex ordering information is stored 
in the ordering tables. The (i,j) entry states whether 
the line segment i needs to change its vertex order 
when pairing up with the line segment j. 

The ordering information is entered into 
tables only when the pair of line segments has found 
a match during comparison, i.e. the projection error 
is less than the predefined threshold. 

2.4.4 Step 4 
Given the vot
matches between the two images are determined. A 
winner-takes-all approach is adopted. 

2.4.5 Step 5 
After a set of l
end point correspondences are performed. For each 
matched line segment, by examining the ordering 
information of all other matched line segments which 
have been paired with it, we can deduce the correct 
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Figure 7. Example 2: matching multi-plane objects. 
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Figure 8. Line and vertex matching of Example 2. 
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Figure 6. Line and vertex matching of Example 1. 

20
40

60
80

100
120

140
160

0

100

200

300

400

500

600

70010
20

30
40

50
60

70
80

90
100

110
0

100

200

300

400

500

600

700

Figure 5. Example 1: matching planar object. 
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errors often occur in such situations. 
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related by affine transformations is developed, which 
of local second-order affine 
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correspondence. 

 line matching 2.5 Improving
There are other finer data available to 
validity of computed matches and p
new ones. One such information is the connectivity. 
If two line segments are connected in the first image, 
the corresponding line segments in the second image 
should also be connected. Moreover, the sense of 
direction of the segments relative to the connected 
vertex should be consistent. 

3. EXPERIMENTAL RESULTS 
In this section, the algorithm is tested using 2 sets of 
images. The first set is a pair of images of
object as shown in Figure 5. Both images contain 68 
line segments with noise.  

 

 

 

 

 

 

 

 

 

 

 

F
shows the vector flows between the mid-points of 
matched line segments superimposed on the first 
image. Each flow is a match and the dot represents 
the mid-point of the corresponding line segment in 
the second image. In this example, all line matches 
are correct. The right figure shows the vector flows 
of vertex matching superimposed on the first image. 
As each line segment has two vertices, the first 
vertex is represented by a solid dot while the second 
vertex is represented by a circle. In this example, all 
vertices are correctly matched.  

Figure 7 shows a pair of images with multi-planes. 
The edges are approximated by
in the two images that may not correspond. The first 
image contains 122 line segments and the second has 
93. Figure 8 shows the matching results. 91 line 
segments (182 vertices) are matched, with 13 (resp. 
26 vertices) mismatches. The main reason for the 
mismatches is that the series of windows at the 
bottom of the images in Figure 7 are very similar and  

 
 

 

 

 

 

 

 

 

 

 

 

4
The algorithm for line matching between two images 

is based on the matching 
moment invariants. Experimental results are 
presented which show the applicability to multi-
planes line matching with noise. 
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