
Appearance Based Recognition of Complex Objects 
by Genetic Prototype-Learning 

 
Martin Stommel 

Realtime Learning Systems 
University of Siegen 
Hoelderlinstrasse 3 

57068 Siegen, Germany 

stommel@fb12.uni-siegen.de 

 
Klaus-Dieter Kuhnert 

Realtime Learning Systems 
University of Siegen 
Hoelderlinstrasse 3 

57068 Siegen, Germany 

kuhnert@fb12.uni-siegen.de

 
ABSTRACT 

This paper describes a method to recognize and classify complex objects in digital images. To this end, a uniform 
representation of prototypes is introduced. The notion of a prototype describes a set of local features which allow to 
recognize objects by their appearance. During a training step a genetic algorithm is applied to the prototypes to optimize 
them with regard to the classification task. After training the prototypes are compactly stored in a decision tree which 
allows a fast detection of matches between prototypes and images. The proposed method is tested with natural images of 
highway scenes, which were divided into 15 classes (including one class for rejection). The learning process is 
documented and the results show a classification rate of up to 93 percent for the training and test samples. 
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1. INTRODUCTION 
The recognition of complex objects in digital images is 
one of the major tasks in computer vision with many 
applications in automatisation. Traditional graph based or 
grammar based approaches model complex objects as sets 
of homogeneous image regions [BB97][KC03]. The 
challenge in this approach is to achieve a robust 
segmentation under varying lighting conditions. Recent 
appearance based approaches avoid the segmentation 
step. Instead, pose, lighting conditions and the object 
composition are part of the model. Murase and Nayar 
[MN95] showed experimentally that it is possible to 
estimate the pose and illumination projecting an unknown 
image into a low dimensional subspace constructed from 
the sample images. Ettelt [Ett02] applied a decision tree 
to accomplish a fast object detection with an intensity 
based model. Low-pass filters were used to reduce the 
search space. Olson and Huttenlocher [OH97] used an 
edge-pixel based object model for object recognition in a 

military application. Nelson and Selinger [NS00] 
researched unsupervised learning in the context of 
appearance based object recognition. 

The method presented in this paper uses a decision tree 
for the representation of a prototype based object model. 
This model combines edge-based and intensity based 
features in a uniform way. A genetic feature selection 
algorithm is used to obtain prototypes which generalize 
over one class but separate between different classes. The 
algorithm is tested with car images from highway videos 
using the background of the images as a natural rejection 
class. 

2. OBJECT RECOGNITION 

Structure of Prototypes 
The use of prototypes is motivated by a probabilistic 
understanding of the object recognition process. From 
this point of view, an image of width w and height h is 

perceived as the joint ensemble hwCwCCC ,...0,...0,10,0  

where yxC , is a triple ( )CxyCxy PAc ,,  with xyc  

denoting a random value (the colour at coordinate x,y) 

which takes on values from the alphabet CA (a discrete 

colour space) with the probabilities CxyP . Assuming we 

have a certain number of sample images which represent 
objects of different classes a simple nearest neighbour 
classification algorithm would execute a pixelwise 
comparison between a new image and the sample images 
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and then return the most similar one as the result. 
Following the probabilistic approach this can be regarded 
as the maximisation of the conditional probability  
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that the unknown image corresponds to a certain sample 
image given the result of the pixelwise comparison. Here 

k
xyc denote the pixel value for the coordinate x,y of 

sample image k and uc denote the pixel values of the 
unknown image. From the observation that in natural 
images the colour is nearly constant over small distances 
follows that some pixels have a negligible influence on 
P(k). To achieve a viable computation time we exclude 
these pixels from the recognition process and benefit 
more from the information contained in the geometric 
relationship between the remaining pixels. In this paper 
the notion of a prototype is used to refer to such a set of 
pixels. More abstractly, a prototype is regarded as a list of 
local features F={f 1, f2,...,fn}. Each feature f = {x,y,T,v} 
describes an object with regard to the the position (x,y) of 
the feature measured in pixels, the type T of the feature 
and the discrete number v giving the value of the feature 
up to a sufficient accuracy. In this paper the red, green 
and blue component of a pixel, as well as the gradient 
orientation serve as features.  

The comparison of a prototype with an unknown image is 
executed using special thresholds tR, tG, tB, tφ, according to 
the type of the feature. We obtain the box classifier 
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for RGB-features and an analogous classifier for the 
gradient direction which takes care of the fact that the 
domain of v is a modulo ring here. With the number 

∑
=

++=
n

i OffsyiyOffsxixboxfeatM
1

),(  

of positive classifications for the features {f1, f2,...,fn} 
shifted by the offset (xOffs,yOffs) relatively to the image we 
obtain a matching function 
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which returns one if a prototype matches to the relative 
image position (xOffs,yOffs) with regard to a number of 
fixed thresholds. 

Genetic Feature Selection 
After creating an initial set of prototypes a number of 
training cycles are executed which consist of a generation 
and a mutation operation. After each operation a measure 
of fitness is computed for every new prototype. The best 

prototypes are kept for further processing, while the worst 
prototypes are discarded. They will be replaced by new 
ones during the next generation or mutation step. 

2.1.1 Prototype Generation 
New prototypes are initialised with a random number of 
features at random positions. If the gradient at a feature 
position is above a certain threshold, the direction of the 
gradient is used as feature. Otherwise the red, green and 
blue component of the pixel serve as features. A [-0.5 -1 
0 +1 +0.5] filter matrix is used to compute the horizontal 
and vertical gradient. The orientation is computed via the 
arc tangent. Since the box classificator is sensitive to 
impulsive noise, the sample images are first filtered with 
the known olympic filter. 

2.1.2  Selection 
The fitness of prototypes is measured in terms of 
selectivity and generalisability. A high selectivity means 
that a prototype matches only the desired class and 
produces few false positive results. A high 
generalisability on the other hand means that a prototype 
matches many sample images from one class. To 
determine the generalisability the number of matching 
relative positions  

∑
∈

=
Iyx

yxFmatchprotM
,

),,(  

between an image I and the prototype F from class k is 
determined. An image is covered by F if there is at least 
one match. Denoting the number of images in class k 
covered by F with Mcov, the generalisability g is computed 
according to the equation 
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The division by the class size is used to normalize the 
result to the interval [0 1]. To determine the selectivity 
the total number of matches of F to images from other 
classes than k is computed according to the equation 
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To speed up the computation a upper limit HStop of total 
matches is introduced, so the matching procedure can be 
stopped early for non-selective prototypes. The selectivity 
s is then computed as 
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The logarithm expresses that the selectivity is more 
interesting for lower numbers of matches. Like the 
generalisability the selectivity is normalized to the 
interval [0 1]. The fitness is then computed as the product 
of the selectivity and the generalisability. 



2.1.3 Mutation 
Mutation is carried out here by adding zero-mean 
gaussian noise of a certain standard deviation to the 
feature coordinates. If an edge feature moves into a 
homogenous region or vice versa, the type of the feature 
is adapted. Features are discarded if their coordinates 
leave the image borders. The prototypes are randomly 
chosen for mutation. The probability of a prototype to be 
chosen depends linearly on its position in the list of 
prototypes sorted by fitness. 

Classification via Decision Trees 
After training the prototypes are converted into a more 
compact decision tree representation which  allows a fast 
image recognition. The tree structure is vaguely related to 
Quinlan's C4.5-Algorithm [Qui93]. The decision tree is 
used to classify all pixel positions of an image, which 
corresponds to adding an offset to the position of every 
feature {x,y,T,v} of a prototype. Since single non-selective 
prototypes have a strong influence on the search result, a 
further threshold is introduced to exclude bad prototypes 
from the tree generation. 

3. EXPERIMENTS 
Data Base 
 The experiments were conducted on a data base of 1900 
car images and 120 images of highway scenes without 
cars. The car images stem from different highway videos 
and were cut out by hand and classified by a human. To 
make the object recognition process independent of the 
context, the background of the car images was removed 
manually. Figure 3.1 shows four cars from the data base 
in different positions, sizes and lighting conditions.  

 The Learning Process 
For the experiments the number of prototypes was set to 
35 per class. Initial experiments on a two class problem 
showed that the number of prototypes is uncritical for 
values between 20 and 200. The learning process 

consisted of 899 training cycles. The number of 
prototypes obtained by a generation and mutation 
operation in every cycle was set to five. 

 
Figure 3.2. Learning rate during training: mean 

selectivity (upper curve), mean generalisability (mid), 
mean fitness (lower curve) 

Figure 3.2 shows the learning curves for the genetic 
feature selection algorithm. The learning rate is measured 
in terms of mean selectivity and mean generalisability 
over all prototypes. It can be seen that the curves steadily 
increase during the first 300 training cycles and later 
converge to fixed values. The theoretical maximum of 1.0 
resulting from the equations 1 and 2 is not reached in 
practice. From figure 3.3 it can be seen that for some 
classes no optimal set of prototypes can be determined.  

 
Figure 3.3. Mean fitness separated by classes 

The reproduction of prototypes by mutation reduces the 
variety of sample images whose features are represented 
by the prototypes. Figure 3.4. illustrates this effect 
showing the number of different sample images used to 
form the prototypes of one class averaged over all classes. 
This observation has lead to the fixed assignment 
between classes and a set of prototypes.  

 

Figure 3.4. Variety among prototypes 

Figure 3.5 shows the coverage of the training samples by 
the prototypes. The rate of recognized training samples 
stays between 92 and 100 percent during the training 
process. The curve does not approach 100 percent 
because the set of prototypes is not trained for a complete 
coverage of the sample images as a whole. Instead the 
algorithm searches for single prototypes which represent 
good features to recognize different classes of objects. 

Figure 3.1. Examples from the car data base 

    

    

 
 

 
 

    



 

Figure 3.5. Coverage of the training samples 

Classification Results 
The classification results for the trained prototypes are 
shown as confusion matrices. To facilitate the 
computation of confusion matrices objects and 
background were treated separately. All samples images 
were classified giving one vote to every image, i.e. the 
distribution of positive results was normalised to a sum of 
1.0 for every image. The background images were used to 
compute the classification rate for the rejection class. 
Here both positive and negative results are counted. Table 
3.1 shows the proportion of true positives and the total 
number of predictions (from another training process 
with identical parameters). A classification rate of 93.1 
percent is reached after 25 training cycles, which is an 
improvement of 6.8 percent over the untrained prototype 
set. For the following training cycles the results are 
worse, which seems to be a result of the decreasing 
variety among the prototypes. For later training cycles the 
accuracy increases again as a result of the growing 
generalisability. The similarity for the training and test 
samples indicates that the results are representative. 

Training cycles Training samples Test samples 
0 0.883 0.863 

25 0.926 0.931 

50 0.848 0.859 

100 0.870 0.874 

200 0.850 0.847 

400 0.890 0.894 

800 0.927 0.908 

Table 3.1. Accuracy of the object recognition 

Figure 3.6 shows the confusion matrix after 800 training 
cycles. Row 1 represents the rejection class. As apparent 
from the pictures the false matches are not evenly 
distributed over the confusion matrices but can be divided 
into objects which are not recognized at all and classes 
which are often misclassified as one single other class. 
The first group results from the training of single 
prototypes rather than sets of prototypes. The second kind 
of error is caused by single ambiguous prototypes. 

4. CONCLUSION, FUTURE WORKS 
The object recognition method presented in this paper 
employs trained prototypes to find and classify objects by 
their appearance. The training is conducted with objects 
from real world images using their natural background as 
rejection class. 

 

Figure 3.6. Confusion matrix for the test samples 

As our experiments show, the structure of prototypes is 
capable of recognizing complex objects without a 
previous segmentation step and an explicit higher-level 
model. The problem of model construction and 
comparison to noisy segmentation results is avoided. The 
analysis of the learning process shows that single 
prototypes can be trained successfully to generalize over 
one class and at the same time to distinguish between 
objects of different classes. The experiments show also a 
certain potential for improvements concerning the 
coverage of the samples by the prototypes. Thus, in our 
future work we will investigate how whole sets of 
prototypes can be trained instead of single prototypes. 
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