Appearance Based Recognition of Complex Objects
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ABSTRACT

This paper describes a method to recognize andifylasomplex objects in digital images. To this eaduniform
representation of prototypes is introduced. Theonoof a prototype describes a set of local featwich allow to
recognize objects by their appearance. Duringiaitiga step a genetic algorithm is applied to thetgiypes to optimize
them with regard to the classification task. Aftexining the prototypes are compactly stored ireeision tree which
allows a fast detection of matches between protstymd images. The proposed method is tested wiitiah images of
highway scenes, which were divided into 15 clas@esluding one class for rejection). The learningqess is
documented and the results show a classificatignafeup to 93 percent for the training and tesigas.
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1. INTRODUCTION military application. Nelson and Selinger [NSO00]
The recognition of complex objects in digital image researched unsupervised learning in the context of
one of the major tasks in computer vision with many appearance based object recognition.

applications in automatisation. Traditional graj@iséd or  The method presented in this paper uses a dedigien
grammar based approaches model complex objec&dsas s for the representation of a prototype based objedel.

of homogeneous image regions [BB97][KCO3]. The This model combines edge-based and intensity based
challenge in this approach is to achieve a robustfeatures in a uniform way. A genetic feature saect
segmentation under varying lighting conditions. &c  algorithm is used to obtain prototypes which gelimga
appearance based approaches avoid the segmentatiogver one class but separate between differenteda3be
step. Instead, pose, lighting conditions and thgeadb  algorithm is tested with car images from highwageds
composition are part of the model. Murase and Nayar using the background of the images as a naturattiep
[MN95] showed experimentally that it is possible to class.

estimate the pose and illumination projecting aknamvn
image into a low dimensional subspace construcead f 2. OBJECT RECOGNITION

the sample images. Ettelt [Ett02] applied a denidiee

to accomplish a fast object detection with an isgn ~ Structure of Prototypes

based model. Low-pass filters were used to redbee t The use of prototypes is motivated by a probafalist
search space. Olson and Huttenlocher [OH97] used anunderstanding of the object recognition processnr

edge-pixel based object model for object recogmitioa
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this point of view, an image of widtv and heighth is
perceived as the joint ensemlﬂPOOClO..Cwo..th

where C, is a triple (ny, A, Pch) with C,,
denoting a random value (the colour at coordingyg x
which takes on values from the alphab@ (a discrete

colour space) with the probabilitieE’CXy. Assuming we

have a certain number of sample images which reptes
objects of different classes a simple nearest heigh

classification algorithm would execute a pixelwise
comparison between a new image and the sample gmage



and then return the most similar one as the result.

Following the probabilistic approach this can bgareled
as the maximisation of the conditional probability

u k u k

P(k | o0 = CO’O,...,CW,h = Cw,h)

that the unknown image corresponds to a certairplsam
image given the result of the pixelwise comparidéere

nydenote the pixel value for the coordinatgy of

sample imagek and C"denote the pixel values of the
unknown image. From the observation that in natural
images the colour is nearly constant over smathdiges
follows that some pixels have a negligible influeran
P(k). To achieve a viable computation time we exclude
these pixels from the recognition process and lienef
more from the information contained in the geongetri
relationship between the remaining pixels. In théper
the notion of a prototype is used to refer to sacdet of
pixels. More abstractly, a prototype is regarded Bst of
local featuresF={f,, f,,....f}. Each featurd = {x,y,T,v}
describes an object with regard to the the positigy) of

the feature measured in pixels, the typef the feature
and the discrete numbergiving the value of the feature
up to a sufficient accuracy. In this paper the mgaen
and blue component of a pixel, as well as the gradi
orientation serve as features.

The comparison of a prototype with an unknown imiage
executed using special thresholgd, ts, t, according to
the type of the feature. We obtain the box clagsifie

1,|f ‘ny _V‘ < tR,G,B

0, otherwise

box(x,y) =

for RGB-features and an analogous classifier fa th
gradient direction which takes care of the fact e
domain ofv is a modulo ring here. With the number

n
M feat = Elbox(xi *+Xofts' Yi * Yofis)

of positive classifications for the featuréf, f,,...,f}
shifted by the offsefXonsYorrs) relatively to the image we
obtain a matching function

Liftn =M goqt

matcr({ fl,..., fn}, XOffs: yOffs) = {

0, otherwise

which returns one if a prototype matches to thatined
image position(XofsYorrg With regard to a number of
fixed thresholds.

Genetic Feature Selection

After creating an initial set of prototypes a numioé
training cycles are executed which consist of aegeion
and a mutation operation. After each operation asuee
of fitness is computed for every new prototype. Diest
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prototypes are kept for further processing, whikeworst
prototypes are discarded. They will be replacechew
ones during the next generation or mutation step.

2.1.1 Prototype Generation

New prototypes are initialised with a random numbfer
features at random positions. If the gradient &adure
position is above a certain threshold, the directib the
gradient is used as feature. Otherwise the reeéngaad
blue component of the pixel serve as features.0/%[-1
0 +1 +0.5] filter matrix is used to compute theihontal
and vertical gradient. The orientation is computidthe
arc tangent. Since the box classificator is sesgsitd
impulsive noise, the sample images are first fitewith
the known olympic filter.

2.1.2 Selection

The fitness of prototypes is measured in terms of
selectivity and generalisability. A high selectyvineans
that a prototype matches only the desired class and
produces few false positive results. A high
generalisability on the other hand means that topyee
matches many sample images from one class. To
determine the generalisability the number of maighi
relative positions

M = > matcKF,Xx,
prot %31 K y)

between an imagk and the prototyp& from classk is
determined. An image is covered Byif there is at least
one match. Denoting the number of images in class
covered byF with M, the generalisabilitg is computed
according to the equation

Mcov
classsizgk)

@

The division by the class size is used to normatiee
result to the interval [0 1]. To determine the stildty
the total number of matches Bfto images from other
classes thakis computed according to the equation

H= tch(F, X, y) .
I%kx,%Dl matcr(F, x.¥)

To speed up the computation a upper likhify, of total
matches is introduced, so the matching procedurebea
stopped early for non-selective prototypes. Thecsiity
sis then computed as

—q- log1l0(L+ H)

10910(H g0, @)
The logarithm expresses that the selectivity is enor
interesting for lower numbers of matches. Like the
generalisability the selectivity is normalized tbet
interval [0 1]. The fitness is then computed aspieduct
of the selectivity and the generalisability.



2.1.3 Mutation consisted of 899 training cycles. The number of
Mutation is carried out here by adding zero-mean prototypes obtained by a generation and mutation
gaussian noise of a certain standard deviationhéo t operation in every cycle was set to five.

feature coordinates. If an edge feature moves @to

homogenous region or vice versa, the type of taaufe o =" er————
is adapted. Features are discarded if their coaten . — o mem———
leave the image borders. The prototypes are randoml .|~~~

chosen for mutation. The probability of a prototypeie - 7

chosen depends linearly on its position in the dift g

prototypes sorted by fitness. 112678 701 M6 0531 24028 518661310 844611 206 620473 1 14746 i et
Figure 3.2. Learning rate during training: mean
Classification via Decision Trees selectivity (upper curve), mean generalisability (mid),
After training the prototypes are converted intonare mean fitness (lower curve)
compact decision tree representation which allaviesst Figure 3.2 shows the learning curves for the geneti
image recognition. The tree structure is vaguebted to feature selection algorithm. The learning rate e&asured
Quinlan's C4.5-Algorithm [Qui93]. The decision trise in terms of mean selectivity and mean generaliggbil
used to classify all pixel positions of an imagéd)ick over all prototypes. It can be seen that the custeadily
corresponds to adding an offset to the positiom\wary increase during the first 300 training cycles aated
feature{x,y,T,v} of a prototype. Since single non-selective converge to fixed values. The theoretical maximtirh.0
prototypes have a strong influence on the seamiitre resulting from the equations 1 and 2 is not readhed
further threshold is introduced to exclude bad qisgies practice. From figure 3.3 it can be seen that fame

from the tree generation. classes no optimal set of prototypes can be deterdni
3. EXPERIMENTS wif
Data Base "

The experiments were conducted on a data basg0ff 1 ;
car images and 120 images of highway scenes without /="
cars. The car images stem from different highwalees 1 e A e
and were cut out by hand and classified by a hurfian. Figure 3.3. Mean fitness separated by classes

make the object recognition process independerthef  1he reproduction of prototypes by mutation redutes
context, the background of the car images was rechov variety of sample images whose features are repese
manually. Figure 3.1 shows four cars from the d@se  py the prototypes. Figure 3.4. illustrates thiseeff

in different positions, sizes and lighting condiio showing the number of different sample images used
form the prototypes of one class averaged ovelagkes.
This observation has lead to the fixed assignment
between classes and a set of prototypes.

—
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Figure 3.4. Variety among prototypes

Figure 3.5 shows the coverage of the training sespy
the prototypes. The rate of recognized training dam
stays between 92 and 100 percent during the tginin

Figure 3.1. Examplesfrom the car data base process. The curve does not approach 100 percent
because the set of prototypes is not trained famaplete
The Learning Process coverage of the sample images as a whole. Instead t

algorithm searches for single prototypes which esent

For the experiments the number of prototypes wasose X - X
P P P good features to recognize different classes adaibj

35 per class. Initial experiments on a two classlam
showed that the number of prototypes is uncritical
values between 20 and 200. The learning process
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Figure 3.5. Coverage of thetraining samples

Classification Results

The classification results for the trained protetypare
shown as confusion matrices. To facilitate the
computation of confusion matrices objects and
background were treated separately. All samplegéna
were classified giving one vote to every image, the
distribution of positive results was normalisecaitsum of
1.0 for every image. The background images werd tese
compute the classification rate for the rejectidass.
Here both positive and negative results are coufiable
3.1 shows the proportion of true positives and ttital
number of predictions (from another training praces
with identical parameters). A classification rate93.1
percent is reached after 25 training cycles, whéclan
improvement of 6.8 percent over the untrained pyp®
set. For the following training cycles the resutse
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Figure 3.6. Confusion matrix for the test samples

As our experiments show, the structure of protatyjse
capable of recognizing complex objects without a
previous segmentation step and an explicit higbee
model. The problem of model construction and
comparison to noisy segmentation results is avoidbd
analysis of the learning process shows that single
prototypes can be trained successfully to generalizer
one class and at the same time to distinguish legtwe
objects of different classes. The experiments shise a
certain potential for improvements concerning the
coverage of the samples by the prototypes. Thueuin
future work we will investigate how whole sets of

worse, which seems to be a result of the decreasingprototypes can be trained instead of single protesy

variety among the prototypes. For later trainingley the

accuracy increases again as a result of the growingSI REFERENCES

generalisability. The similarity for the trainingnch test
samples indicates that the results are representati

Training cycles Training samples Test samples

0 0.883 0.863

25 0.926 0.931

50 0.848 0.859
100 0.870 0.874
200 0.850 0.847
400 0.890 0.894
800 0.927 0.908

Table 3.1. Accuracy of the object recognition

Figure 3.6 shows the confusion matrix after 80thing
cycles. Row 1 represents the rejection class. Asramt

from the pictures the false matches are not evenly

distributed over the confusion matrices but cadibEled
into objects which are not recognized at all arabsts
which are often misclassified as one single othassc
The first group results from the training of single
prototypes rather than sets of prototypes. Thergbkind

of error is caused by single ambiguous prototypes.

4. CONCLUSION, FUTURE WORKS

The object recognition method presented in thisepap
employs trained prototypes to find and classifyeoty by
their appearance. The training is conducted witjecib
from real world images using their natural backgubas
rejection class.
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