
Minimization of the mapping error using coordinate 
descent 

 
Gintautas Dzemyda 

 
Institute of Mathematics 

and Informatics 
Akademijos St. 4 

Vilnius 08663, Lithuania 

Dzemyda@ktl.mii.lt 

Jolita Bernataviciene 
 

Institute of Mathematics 
and Informatics 

Akademijos St. 4 
Vilnius 08663, Lithuania 

JolitaB@ktl.mii.lt

Olga Kurasova 
 

Institute of Mathematics 
and Informatics 

Akademijos St. 4 
Vilnius 08663, Lithuania 

Kurasova@ktl.mii.lt

Virginijus 
Marcinkevicius 

Institute of Mathematics 
and Informatics 

Akademijos St. 4 
Vilnius 08663, Lithuania 

VirgisM@ktl.mii.lt
 

ABSTRACT 
Visualization harnesses the perceptual capabilities of humans to provide the visual insight into data. Structure 
preserving projection methods can be used for multidimensional data visualization. The goal of this paper is to 
suggest and examine the projection error minimization strategies that would allow getting a better and less 
distorted projection. The classic algorithm for Sammon’s projection and two new its modifications are examined. 
All the algorithms are oriented to minimize the projection error because even a slight reduction in the projection 
error changes the distribution of points on a plane essentially. The conclusions are made on the results of 
experiments on artificial and real data sets.  
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1. INTRODUCTION 
Objects from the real world are frequently described 
by an array of parameters (multidimensional data). 
Data understanding is a difficult task, especially 
when it refers to a complex phenomenon that is 
described by many parameters. One of the ways in 
analyzing data is visualization. It involves the 
constructing of a graphical interface that enables to 
understand complex data. Visualization is also used 
to display the properties of data that have a complex 
relation – possibly patterns not obtainable by the 
current computation methods. 

In this paper, we discuss visualization of 
multidimensional data by using structure preserving 
projection methods. These methods are based on the 
idea that the multidimensional data points can be 
projected on a lower dimensional space so that the 
structural properties of the data are preserved as 

faithfully as possible. Examples of such techniques 
are principal component analysis [Tay03a], 
multidimensional scaling [Kas97a], [Bor97a], 
Sammon’s mapping [Sam69a], and others. 

This paper deals with Sammon’s mapping. 
Sammon’s mapping comes from the area of 
multidimensional scaling. The only difference 
between both methods is that the errors in distance 
preservation are normalized with the distance in the 
original space. Because of the normalization, the 
preservation of small distances will be emphasized 
[Kas97a]. The analysis of relative performance of 
the different algorithms in reducing the 
dimensionality of multidimensional vectors, starting 
from the paper by Biswas [Bis81a], indicates 
Sammon’s projection to be still one of the best 
methods of this class (see also [Fle97a]) and finds 
new applications (see, e.g. [Dze01a]). When 
visualizing the multidimensional data using the 
nonlinear projection, the projection errors are 
inevitable. The goal of this paper is to suggest and 
examine the projection error minimization strategies 
that would allow getting a better and less distorted 
projection. 

2. STRATEGIES FOR PROJECTION 
ERROR MINIMIZATION 
Let us have s objects (points, vectors) 

),...,( 1 ni xxX = , si ,...,1=  from an n-dimensional 
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space nR . The aim of this method is to find s points 
in an m-dimensional space ( nm < , usually m=2) 

m
mi RyyY ∈= ),...,( 1 , si ,...,1=  so that the 

corresponding distances of m-dimensional points 
approximate the original ones as well as possible. 
Sammon’s mapping [Sam69a] is one of such 
methods. It tries to minimize the projection error: 
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Here *
ijd  is the distance between two n-dimensional 

points; ijd  is the distance between two points in the 
two-dimensional space. Even a slight reduction in 

sE changes the distribution of points on a plane 
essentially. This proves the necessity to make every 
effort for minimizing the distortion of projection 

sE . In this paper, three strategies for projection 
error minimization are investigated: (1) classical 
Sammon’s algorithm [Sam69a] (S1); (2) applying 
the Seidel coordinate descent for Sammon’s method 
(S2); (3) applying the noise for S2 method (S3). 
Classical Sammon’s algorithm (S1). In this 
method, the coordinates iky , 1,..., ,i s=  1, 2k =  of 
two-dimensional vectors ),( 21 iii yyY =  are 
computed by the iteration formula:  
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Here 'm  denotes the iteration order number; α  is a 
step length, also called a „magic factor“, because 
the obtained projection error depends on it. 
One iteration of the algorithm contains calculations, 
where both components of all the points iY , 

si ,...,1=  are recalculated. These components are 
recalculated taking into account the coordinates of  

iY , si ,...,1= , obtained in the previous iteration.  

Seidel-type coordinate descent for Sammon’s 
mapping (S2). Seidel-type coordinate descent 
method is used for solving linear equation systems 
and in optimization [Kar03a]. We suggest applying 
coordinate descent for Sammon’s mapping. The 
coordinates of two-dimensional vectors iY  are 
recalculated, taking in to consideration not only the 
coordinates, obtained in the previous iteration, as in 
classical Sammon’s algorithm, but also the new 
coordinates, obtained in the current iteration: the 
coordinates )1( +′my jk , if 1,...,1 −= ij , and 

)(my jk ′ , if sij ,...,1+= . 

The coordinate descent method with noise (S3). 
It has been noted that the 1st derivatives of sE  are 
smooth enough in algorithm S1 (Fig. 1), but the 2nd 
derivatives are alternating (Fig. 2). Iris data set is 
analyzed. The 1st and 2nd derivatives of sE  were 
measured in each iteration, when new coordinates 
of the 4th data point were determined. Numerous 
experiments allowed us to see that the disperse of 
two-dimensional points from the line (initialization 
rule of two dimensional points) increases with an 
increase in fluctuation of the 2nd derivatives. We 
decided to apply artificial fluctuation to the 2nd 
derivatives (to apply noise) in algorithm S2. In such 
a way a new algorithm S3 has been created. 
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Figure 1. Fluctuation of the 1st derivative in S1. 
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Figure 2. Fluctuation of the 2nd derivative in S1. 
The first idea was to add random noise to the 
second derivative as follows:  
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Here ξ  is a random number. However, the 
problems arose to schedule the level of noise 
depending on the value of the second derivative and 
the order number of the current iteration. Therefore, 
a more effective way has been found to define noise 
by some heuristic rule:  
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Here βλ,  are some constants, selected 
experimentally, τ  is the total number of iterations, 

'm  is the order number of the current iteration. 

3. RESULTS OF THE ANALYSIS 
Experiments were carried out with real and artificial 
data. The dependence of sE on different factors is 



investigated on: the computing time, the number of 
iterations, and the value of “magic factor” α . 

Data for analysis. Artificial data sets: 
1. Uniformly distributed data: 100 10-dimensional 

points generated at random in the interval [-1; 1]; 
2. Uniformly distributed data: 500 points generated 

at random, as No1. 
3. Clustered data: ten 10-dimensional points are 

generated at random; in the area of each point, 
nine 10-dimensional points are generated by 
normal distribution. 

The experiments have been repeated for 100 times 
with different sets of 10-dimensional vectors 
generated as given above (data sets No1-No3). The 
average results have been calculated.  

Real data: 
• The classical Fisher iris data set [Fis36a].  
• The Wood data set [Dra66a].  
• The HBK data set [Haw84a].  

Dependence of the projection error on 
computing time 
The advantages of algorithm S3 in comparison with 
algorithm S1, S2 have been shown by analyzing 
data No2 ( 25.0=α ). A lower projection error and 
its faster convergence to optimal value have been 
obtained using algorithm S3. In order to get a lower 
value of sE , it suffices to perform less iterations, 
i.e. the computing time is saved (Fig. 3). 
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Figure 3. Dependence of the projection error on 

time. 

Difference between projection errors in the whole 
iteration process of algorithms S2 and S3 is rather 
small, but in most cases, the final results obtained 
by S3 are better (see Table 1). 

Dependence of the projection error on 
the “magic factor” 
While examining the dependence of projection error 
on the value of α , artificial data No1 are analyzed 
with different values of α  (0.1; 0.11;…;1.45; 1.5). 
In Fig. 4, the mean value of the projection error is 
presented. It is shown that dependence on the 
“magic factor” α  is less using the Seidel-type 
coordinate descent method (S2). Applying noise 
(S3) does not influence the dependence on α . 
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Figure 4. Dependence of the projection error on 

the value of “magic factor”. 

Strategies of sE minimization 
(S1) (S2) (S3) 

Data 

0.1209452 0.1201307 0.1203316 artificial (No1) 
0.0710200 0.0711317 0.0695346 clusters  
0.0058476 0.0045259 0.0040088 Iris 
0.0243263 0.0257550 0.0256691 Wood 
0.0112111 0.0113962 0.0049657 HBK 

Table 1. Projection errors 

Analysis of mappings 
The minimal projection errors have been found for 
each real data set. After examining the artificial data 
No1, the average values of minimal projection 
errors have been calculated over 100 experiments 
( 25.0=α ) (Table 1). The largest distortion of 
projection has been obtained using by algorithm S1 
in all the cases. The smallest projection error has 
been obtained using algorithm S3 in most cases. 

In Figures 5-6, the mappings of the real data are 
presented. They have been obtained using 
algorithms S1 and S3 that gives the smallest 
projection error with the real data (see Table 1). 
The figures show that, if a smaller projection error 
is obtained, the preserving data structure is more 
precise. When analyzing the iris data, three flower 
types are separated more precisely by using 
algorithm S3 (see Fig. 5b); when investigating the 
HBK data, classical Sammon’s mapping (S1) is able 
to separate point groups (see Fig. 6a), but all the 
three groups are separated more exactly when 
algorithm S3 is used (see Fig. 6b). 

4. CONCLUSIONS 
In this paper, the new opportunities for minimizing 
the multidimensional data projection error sE  (1) 
are suggested and examined experimentally. 
Classical Sammon’s mapping S1 is compared with 
two new algorithms S2 and S3. 

Smaller projection errors are usually obtained by 
using algorithms S2 and S3 compared with the 
errors by classical Sammon’s algorithm S1. Another 
advantage of the new algorithms is that small errors 
are obtained after a smaller number of iterations and 



sooner. Therefore, the projections of 
multidimensional data on a plane are more 
faithfully; lower dependence of the projection 
quality on the value of α  is obtained. 
Applying noise to the 2nd derivatives in first 
iterations of the projection error minimization 
process (algorithm S3) speeds up the moving of the 

initial two-dimensional points from the line. This 
improves the quality of visualization, because the 
smaller projection errors are obtained. 

Finally, the discovered new ways for minimizing the 
projection error allow a better perception of the 
Sammon-type projection and make a basis for 
further research. 

a)    b)  
Figure 5. Projections of the iris data: a) S1 ( 0059.0=sE ); b) S3 ( 0040.0=sE ). 

a)    b)  
Figure 6. Projections of the HBK data: a) S1 ( 0.0112E s = ); b) S3 ( 0050.0=sE ). 
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