B?’LIC: an algorithm for mapping two scalar values
on texture-based representations of vector fields

A. Sanna B. Montrucchio P. Montuschi

Dipartimento di Automatica e Informatica,
Politecnico di Torino
corso Duca degli Abruzzi 24,
10129 Torino (Italy)
email: {sanna,montru,montuschi}@polito.it

ABSTRACT

Visualization of vector data produced from application areas such as computational
fluid dynamics (CFD), environmental sciences, and material engineering is a chal-
lenging task. Texture-based methods reveal to be effective, versatile, and suitable
for a large spectrum of applications since they allow to obtain high resolution output
textures where direction, orientation, and magnitude of the flow can be displayed.
In this paper we present a new method called B2LIC, which allows both to char-
acterize and visualize interesting structures in the flow and to map two additional
scalar values in output textures by bumps, depressions, and shadows, leaving colors
for further information mapping. B2?LIC is the natural and direct evolution and
the improvement of the BLIC (Bumped LIC) algorithm, which is able to map just
one scalar value by the bump mapping technique. Some examples show how the
proposed method can effectively allow to map two additional scalar values such as:
temperature, vorticity, pressure, and so on, adding new and additional representa-
tion capabilities to dense texture-based visualization methodologies.

Keywords: Scientific visualization, multivariate visualization techniques, texture-
based methods, LIC.

INTRODUCTION

plot). Indeed, while a scalar can be visu-

Vector field visualization is fundamental
for a large spectrum of disciplines where
the data obtained by experimental obser-
vations and theoretical elaboration need
to be graphically displayed.

Texture-based methods were introduced
to solve the problem of traditional ap-
proaches that use too many pixels in order
to visualize a vector (for instance arrow

alized by varying the color of a pixel, the
use of a segment (or an arrow) to visual-
ize a vector may need much more pixel-
s. In addition this can lead to a loss of
resolution and of level of detail, thus pos-
sibly preventing, in some cases, an effec-
tive comprehension of the vector field un-
der analysis. The elegance and the effec-
tiveness of texture-based techniques were
the starting point for new and interest-

ing research in the visualization of vector
fields. Although several works have been
published in the literature (among al-
1 [Wijk91] [Cabra93] [Stall95] [Wegen97al,
tackled. In particular, research is involved
in improving the quality of the output tex-
tures, in order to allow a better under-
standing of the vector field under analysis.
Moreover, in a large spectrum of applica-
tions it is required to map in the output
texture more information than direction,
orientation and magnitude of the flow; for
instance, CFD applications may require to
map several scalar values like: tempera-
ture, pressure, vorticity, and so on.

This last problem can be partially tack-
led using colors by dye advection [Shen96],
but multivariate visualization is still an
open problem. The proposed technique
improves and extends the BLIC algorith-
m presented in [Sanna0Oa]; BLIC employs
the bump mapping technique in order to
add a scalar value to a texture, generat-
ed by a traditional texture-based visual-
ization method such as LIC. The scalar
parameter is represented on the resulting
texture as bumps and depressions, accord-
ing to the value to be mapped. The B2LIC
algorithm tackles the limitation of BLIC
to be able to map just one scalar value
using the second free parameter present
in the bump mapping algorithm: the az-
imuth, that is the position of the light. By
varying the position of the light that pro-
duces the shadows, we can change the ap-
pearance of bumps and depressions, thus
showing the second scalar value.

The paper is organized as follows. Section
2 reviews the main texture-based tech-
niques and the BLIC algorithm; Section
3 presents goals and basic idea of the new
method, while the B?LIC algorithm is de-
scribed in details in Section 4. Finally,
examples, results and remarks are shown
in Section 5.

2 BACKGROUND

2.1 Texture based visualization

techniques

Texture-based methods attempt to repro-
duce techniques known from experimental
flow visualization such as the observation
of randomly dispersed particles or dye in-
jection patterns. The common goal is to
produce high resolution images revealing
the flow field characteristics: direction,
orientation, magnitude, and so on.

Van Wijk [Wijk91] proposed to convolve
a random (white noise) texture along a s-
traight segment whose orientation is par-
allel to the direction of the flow. This
method (called spot noise) was then ex-
tended by bending spot noise, filtering the
image to cut low frequency components,
and using graphics hardware methods, al-
so on grids with irregular cell sizes (De
Leeuw and Van Wijk [Delee95]).

Cabral and Leedom [Cabra93] introduced
the Line Integral Convolution (LIC) algo-
rithm, which locally filters a white noise
input texture along a path of vectors tan-
gent to the field, denoted as streamline.
Given a steady vector field defined by a
map v : R? — R% 1 — v(z), its di-
rectional structure can be shown by the
integral curves, or streamlines, where an
integral curve is a path o(u) having tan-
gent vectors coincident to the vector field
(that is 2o (u) = v(o(u))).

By doing a re-parameterization of o(u) in
terms of the arc-length s, we can calculate
the line integral convolution (LIC) for a
pixel located at xo = o(sg):

so+L
I(x0) :/SO k(s = so)T(o(s))ds. (1)
where T'(x) is an input white noise tex-
ture, k(s) is the filter kernel (normalized
to unity), and the filter length is 2L.

Stalling and Hege [Stall95] improved the
speed of LIC (fastLIC) more than ten
times, by observing that the LIC value
computed for one pixel can be re-used,

with small modifications, by its neighbor
pixels; in this way, the computation be-
comes streamline oriented and not pixel
oriented as in the conventional LIC.
Zockler et al. [Zockl97] showed a parallel
implementation of fastLIC which is able
to run in real-time on particular parallel
architectures.

Wegenkittl et al. [Wegen97a] introduced
OLIC (Oriented Line Integral Convolu-
tion) and then Wegenkittl and Groller
[Wegen97b] FROLIC (Fast Rendering
OLIC). OLIC simulates the use of drops of
ink smeared to the underlying vector field.
The algorithm speed can be improved by
positioning small and overlapping disks
(FROLIC) in order to simulate the con-
volution. Besides direction, the length of
the pixel traces shows vector orientation
and local magnitude of the field. Howev-
er, OLIC and FROLIC employ sparse tex-
tures, therefore, small details of the field
may be lost in the visualization. Furlike
textures are used in [Khous99], where the
technique is based on a non stationary t-
wo dimensional AutoRegressive synthesis
(2D AR). The texture generator allows lo-
cal control of orientation and length of the
synthesized texture (the orientation and
length of filaments). This texture model
is then used to represent 2D vector field-
s. Orientation, length, density and color
attributes of furlike textures can be em-
ployed to visualize local orientation and
magnitude of a 2D vector field.

A survey on texture-based methods can be
found in [SannaOOb].

2.2 The BLIC algorithm

The proposed work extends and improves
the algorithm called BLIC presented in
[Sanna00a], which is here briefly reviewed
for sake of completeness. BLIC can ad-
d a scalar value to a texture produced
by a method such as LIC with the use
of the bump mapping technique proposed
by James Blinn [Blinn78] in 1978. Bump

mapping simulates bumps and wrinkles in
a surface without the need for geometric
modifications to the model. The surface
normal of a given surface is perturbed ac-
cording to a bump map (also called al-
titude map), and the perturbed normal
is used instead of the original one when
shadows are computed using the Lamber-
tian technique; this approach provides the
appearance of bumps and depressions in
the surface. Given a point on a surface pa-
rameterized by the function O(u,v), the
normal n at that point is computed by:

n=Q,®Qy (2)

where Q, and Q. are the partial deriva-
tives in the parameter directions u, and v,
and ® denotes the outer product. A new
displaced point can be defined by adding
some amount along the normal at that
point:

n

Q,(uv V) = Q(u7 V) + P(U, U)T| (3)
where P(u,v) is a perturbation function.
The new perturbed normal can be com-
puted as: n' = @, ® Q,. Under the as-
sumption of P small, n' can be reduced
to:

/ P,(n®Qy)

P’U u
n =n-+ + (Q ®n)

|| ||

(4)

The value of the new (perturbed) normal
is based both on the original normal and
on the perturbation function, which can
be defined mathematically or by a two di-
mensional lookup table.

BLIC considers the scalar value to be
mapped on the texture in order to pro-
duce the bump map. In a first step a
dense texture is computed by a tradition-
al technique such as LIC; then, the bump
mapping process is performed by using as
input values both the texture and the alti-
tude map related to the scalar value; the
algorithm is shown in Fig. 1, while Fig.
2, Fig. 3, and Fig. 4 show an example of
BLIC application. Fig. 4 shows the result

and it can be noticed as some vortices ap-
pear bumped and other depressed in the
surface according to the bump map; there-
fore, a better characterization of the vor-
tical structures has been obtained and an
addition scalar value has been mapped.

LIC BUMP BLIC
texture mapping texture

BLIC Algorithm

Figure 1: The BLIC algorithm.

Figure 2: A texture produced by LIC.

N\

Figure 3: The bump map.

3 GOALS AND BASIC IDEAS

BLIC can show the vector field and one s-
calar value (without using colors). Now

Figure 4: Result obtained by BLIC.

we study the possibility of showing an-
other scalar value, always without colors
(that can be used for a further scalar val-
ue).

In the bump mapping algorithm we can
control many free parameters; the depth
of bumps or depressions, and the position
of the light, with elevation and azimuth
see Fig. 5 (we can assume that the light is
at infinite distance).

In the BLIC algorithm the depth has been
used to map a scalar on the vector field,
while elevation and azimuth are fixed.
The basic idea is now to use azimuth
and/or elevation to map a further scalar
value. Note that elevation and depth pro-
duce a similar effect on the final image,
while an azimuth variation can strongly
change the aspect of the result.

A simple example of the effects of chang-
ing azimuth in different parts of the im-
age is reported in Fig. 6. Each quarter of
the image has been computed for different
azimuth values, which results in different
shadows of the four bumps.

The main problem is how to map the
scalar value on the azimuth coordinate;
in fact, the additional scalar value visual-
ized by means of the azimuth coordinate
can be viewed only where bumps or de-
pressions in the BLIC image there exist
(bumps and depressions depends on the
first scalar). This problem will be ad-
dressed in the next Section.

4

Light

source
y

W

Figure 6: Different values of az-
imuth for each quarter of the exam-
ple.

4 THE ALGORITHM

The schema of the B?LIC algorithm is re-
ported in Fig. 7. The problem addressed
in Section 3 is solved by verifying that a
bump or a depression exists where the sec-
ond scalar is used to change the azimuth
value. In particular, we use a simple re-
cursive quadtree-like (see [Samet84] for a
comprehensive survey on quadtrees) algo-
rithm to verify the presence of a bump or
a depression.

At first we sign bumps and depression-
s thresholding the image of the first s-
calar; this produces a B/W image where
black pixels denotes bumps or depressions.
The thresholded image is then divided in
squares, each one with a number of black
pixels able to identify a bump or a depres-
sion. In our implementation we have set

the condition that each square must con-
tain at least (di/16)?, where di is the im-
age dimension (without loss of generality
we can suppose power of 2 square images).
Both the threshold values and the number
of black pixels have been experimentally
tuned. The final image is then created
by computing the mean azimuth for each
square (using the second additional scalar
value). Note that the azimuth can change
only between 0 and 7, since for larger val-
ues of the azimuth bumps become depres-
sions and vice versa.

5 EXAMPLES, RESULTS AND
REMARKS

In this Section the results of the proposed
algorithm are shown by means of two ex-
amples.

The first example (the sinusoidal example)
shows a sinxsiny vector field (see Fig. 8
for a texture based representation). The
two scalar values added are in Fig. 9 and
in Fig. 10. The BLIC result (with only
the first scalar value added) is in Fig. 11,
while the B?LIC result is in Fig. 12. The
white lines in Fig. 12 have been added only
to show the domain of the different subdi-
visions. The impact of mapping the sec-
ond scalar value can be noticed in the cen-
tral part of the resulting image; compar-
ing BLIC (Fig. 11) and B2LIC (Fig. 12)
it can be seen how shadows are differently
casted on bumps and depressions. Arrows
in Fig. 12 show areas where major differ-
ences between BLIC and B2?LIC can be
noticed; looking at Fig. 10 it can be seen
that areas pointed out by arrows in Fig.
12 correspond to the zones where the sec-
ond scalar value varies (for the other parts
of the image the second scalar is constan-
t and hence no differences can be noticed
between BLIC and B?LIC).

The second example (the exponential ex-
ample) is based on the vector field of Fig.
13, but inverting the scalar values in re-

spect of the first example, that is the first

// B2LIC scalar in Fig. 10, while the second is in
image_dimension di; Fig. 9. The B2LIC result is in this case
main() { very similar to the BLIC one (reported in

// declare variables
vector_field v;

scalar_1 si;

// sl strongly correlated with v
scalar_2 s2;

// s2 loosely correlated with v

// produce LIC-like image
v_LIC = LIC-like applied on v;

// sign bumps and depressions in black

sl_t = threshold sl between 25 and 230;

// apply quadtree algorithm to divide
// square, and retain square in memory
divide(si_t, di);

// produce final image
for each square previously stored
{
value = pixelize the whole square,
but in s2;
a = value * 180 / 255;
apply BLIC on the square using v_LIC,
sl with azimuth a

divide (image, n){
if n==di / 8
{
store square; return;// max 3 steps

}

if for each of four sub squares
(value = pixelize whole sub square)

<(((n/2)"2-(di/16)"2)/((n/2) ~2)*255)

// at least (di/16)°2 black pixels
// are required in each sub-square
{
for each of sub-squares of quadtree
divide(square, n/2);
}

else store square; }

Figure 7: Pseudo-code for B2LIC.

Fig. 14). In fact the second scalar val-
ue changes too quickly in comparison with
the first one; the B2LIC algorithm avoids
errors in the visualization, but the infor-
mation shown is very poor. The carrier
frequency is too low.

Using B2?LIC direction, orientation and
magnitude of the vector field are shown,
plus two scalar values, and one further s-
calar value can be added using the H com-
ponent of the HSV color coding method.
As said before, not all scalar values can be
added with good results. In fact the first
scalar value should be strongly correlated
with the vector field, while the second s-
calar can be loosely correlated, but it must
change slowly. For the former (strong cor-
relation) there are usually no problems,
since in many cases vorticity or other s-
calar values are tightly coupled with the
underlying vector field. And even for the
latter it is often not difficult to find a slow-
ly varying value. An eventually quickly
varying scalar can be mapped using col-
ors, that retain full resolution, even with
B2LIC, leaving the second position to an-
other value.

Figure 8: Vector field (texture-
based method) of the sinusoidal ex-
ample.

. .

Figure 9: First scalar in the sinu-
soidal example.

N

Figure 10: Second scalar in the si-
nusoidal example.

6 CONCLUSION

This paper presents a new texture-based
method to display vector fields and corre-
lated scalar values, that is a common re-
quirement in scientific visualization. The
bump mapping method is used to show
two additional scalar values, leaving col-
ors for the visualization of a third scalar
value. The whole process can be done in
hardware with usual graphics cards. The
technique seems to be effective, and a real
gain in multivariate visualization is per-
ceived, even if not all scalar values can be
represented well.

We thank Dr. Marco Tarini of the Univer-
sity of Pisa for useful discussions.

Figure 11: BLIC algorithm on the
sinusoidal example.

Figure 12: B2LIC algorithm on the
sinusoidal example.

REFERENCES

[Wijk91] van Wijk, J.J.: Spot noise-
texture synthesis for data visual-
ization, ACM Computer Graphics
(Proc. of SIGGRAPH ’91), Vol. 25,
pp. 309-318, 1991.

[Cabra93] Cabral, B. and Leedom, L.C.:
Imaging Vector Fields Using Line
Integral Convolution, ACM Com-
puter Graphics (Proc. of SIG-
GRAPH ’93), Vol. 27, pp. 262-270,
1993.

[Stall95] Stalling, D. and Hege, H.C.:
Fast and resolution independent line
integral convolution, ACM Comput-
er Graphics (Proc. of SIGGRAPH
'95), pp. 249-256, 1995.

-2 -15 -1 -0.5 0 05 1 15

Figure 13: Vector field of the expo-
nential example.

Figure 14: BLIC algorithm on the
exponential example.

[Wegen97a] Wegenkittl, R., Groller, E.
and Purgathofer, W.: Animating
Flowfields: Rendering of Orient-
ed Line Integral Convolution, In
IEFEFE Visualization’97 Proceedings,
pp. 15-21, 1997.

[Wegen97b] Wegenkittl, R. and Groller
E.: Fast oriented line integral con-
volution for vector field visualization
via the internet, In IEEFE Visual-
ization’97 Proceedings, pp. 309-316,
1997.

[Shen96] Shen, H-W., Johnson, C.R., and
Ma, K.L.: Visualizing vector fields
using line integral convolution and
dye advection, Proceedings of the
ACM Symposium on Volume Visu-
alization’96, pp. 63-70, 102, 1996.

[Sanna00a] Sanna, A. and Montrucchio,
B.: Adding a scalar value to 2D
vector field visualization: the BLIC
(Bumped LIC), Eurographics’2000
Short Presentations Proceedings, p-
p. 119-124, 2000.

[Delee95] De Leeuw, W.C. and van Wijk,
J.J.: Enhanced spot noise for vector
field visualization, In IEEFE Visual-
ization’95 Proceedings, pp. 233-239,
1995.

[Zockl97] Zockler, M., Stalling, D. and
Hege, H.C.: Parallel line inte-
gral convolution, Parallel Comput-
ing, Vol. 23, pp. 975-989, 1997.

[Khous99] Khousas, L., Odet C. and Fri-
boulet, D.: 2D Vector Field Visu-
alization Using Furlike Texture, In
Proceedings of the Joint Eurograph-
ics and IEFE TCVG Symposium on
Visualization, pp. 35-44, 1999.

[Sanna00b] Sanna, A. Montrucchio, B.
and Montuschi, P.. A survey
on wvisualization of vector fields by
texture-based methods, Recebt Res.
Devel. Pattern Rec., 1, pp. 13-27,
2000.

[Blinn78] Blinn, J.: Simulation of wrin-
kled surfaces, ACM
Computer Graphics (Proc. of SIG-
GRAPH ’78), Vol. 12, pp. 286-292,
1978.

[Samet84] Samet, H.: The Quadtree and
Related Hierarchical Da-
ta Structures, ACM Computer Surv.
Vol. 16(2), pp. 187-260, 1984.

