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ABSTRACT

Our work is centered on the use of implicit surfaces in interactive applications (at least
10 frames per sec) running on high-end consumer architecture (modeling, simulation,
deformable body animation, games). We focus on the Marching Cubes algorithm that
we tried to implement in an optimized way. We restrict our work to blended iso-surfaces
generated by skeletons, since this kind of implicit surfaces is the most handy to use for
animations.

Our implementation optimizations deal with the following features: simplifying the field
function, accelerating its evaluation for each point (voxel-based technique), generating
automatically the triangles for any case of the Marching Cubes. Another point we have
considered concerns tesselation ambiguities often resulting in holes appearing in the sur-
face. We have coded a library which is very easy to use and can be downloaded freely.
All these optimizations allow us to sample implicit surfaces composed of 200 points in

45 ms on a 450 MHz Pentium II Xeon.
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1 Introduction

Implicit Surfaces have proved to be one of the
most powerful modelling tools to build complex
surfaces. They have become very attractive and
are widely used, especially for animation. How-
ever, they still suffer from the lack of a good al-
gorithm which could draw them in realtime (say,
at least 10 frames per second), with a high qual-
ity. Until now, few algorithms aim at display-
ing implicit surfaces. Either the surfaces are
ray-traced or have to be tesselated before raster-
isation. These methods are known to be time-
consuming, so the implicit surfaces have been re-

stricted to non real-time contexts (maybe except
in some very specific forms like quadrics for in-
stance). However, in a number of cases, implicit
surfaces are necessary. They can convincingly
represent fluids or highly deformable bodies. No
other comparable modeling tool can handle these
shapes as easily.

Since it is general-purposed, our algorithm is in-
tended to be practical even on high-end consumer
hardware: thus it might be useful for games for
instance. Anyway it can be used in a totally dif-
ferent context: replace a raytracing rendering,
render thousands of primitives, etc. We focus



on the tesselation of these surfaces, for graphics
cards can only display polygons.

Our work does not consist of a new method
to tesselate implicit surfaces, but rather studies
how to optimize the implementation of the well-
known Marching Cubes algorithm. Even if our
work shares the same topic and some basic ideas
with [Sha0Oa, Sha0O0b], it proposes further opti-
mization schemes and provides a faster method
to display fluids.

In our context, we have only dealt with the im-
plicit surfaces built with the blending of field
functions. The skeleton is supposed to be based
on points animated by physical laws [Gas93] but
it could be composed of more complex primitives
such as lines or planes with no real loss of speed.
One of our constraints is that our surfaces may
undergo important deformations: their shape and
topology may change a lot between two consec-
utive rendering (= tesselating) passes.

In the next section, we draw up an inventory of
the methods that allow the displaying of implicit
surfaces, in section 3 are listed the problems en-
countered when using a classical implementation
of the Marching Cubes algorithm. Section 4 de-
tails which improvements we applied, and the re-
sults are presented in the section 5.

2 State of the art

There are several methods to draw implicit
surfaces, they seperate in three classes: ray-
tracing, discrete rendering and projective render-
ing which requires to sample the surface.

2.1 Ray-tracing Implicit Surfaces

Ray-tracing produces high quality images. How-
ever, for each pixel to be rendered, we have to
do lots of calculations to determine whether the
ray intersects the surface or not. This method is
rather slow and depends a lot on the resolution
of the display unit. We’d rather benefit from the
graphics hardware we can now find on any per-
sonnal computer.

2.2 Discrete rendering of Implicit Sur-
faces

Discrete rendering consists in dividing space into
”small” cubes, determining whether they are in-
side or outside the surface and then render the
cubes lying on the surface. This method does not
provide a good rendering quality. That is why we
have turned to a polygonization method that will
provide a mesh of triangles and will take advan-
tage of graphics hardware.

2.3 Sampling of Implicit Surfaces
2.3.1 Seed-based methods

Andrew P. Witkin and Paul S. Heckbert [WH94]
proposed a particle-based approach to sample
and control implicit surfaces: they apply con-
straints to particles. There are two constraints:
one maintains the particles on the surface, and
the other, which is a repulsion force, makes them
move and recover uniformly the surface. The re-
sult of this algorithm is a cloud of points which
cannot be displayed as is. A mesh has to be built,
using a Delaunay triangulation which is a com-
plex task and is consuming too much time for our
purpose.

Another technique to place seeds is proposed by
Mathieu Desbrun et al. [DTG95]: their method
takes benefits from temporal coherence for ac-
celerating the sampling of a surface that progres-
sively moves and deforms. Their algorithm could
surely work in realtime but no efficient method
has been proposed to build polygons.

2.3.2 Marching Cubes method

This is a well-known method to tesselate im-
plicit surfaces. It was proposed by William E.
Lorensen and Harvey E. Cline [LC87]. It con-
sists in dividing the space into cubes, evaluating
the field function at all the vertices of the ob-
tained grid, and then in building the polygons in-
side each cube according to the relative position
of the vertices regarding the surface.

We chose to base our real-time algorithm on this
method since it provides directly the polygons we
want to display.



3 Time cost of a classical Marching
Cubes algorithm

Our purpose is to test how fast the Marching
Cubes algorithm can be. The algorithm Jules
Bloomenthal proposed [Blo94] is already opti-
mized in one important way: his program deals
only with the useful” cubes (those that intersect
the surface). However, this program was aiming
to show how the Marching Cubes algorithm was
working and it could not really be used on its own
in a real time context (see section 5).

When we analyse what is costing calculation
time in the basic Marching Cubes algorithm, we
find that there are two classes of improvements
we can carry out. On one hand, some calcula-
tions are redundant and should be avoided, on the
other hand some other steps (which are required)
are not optimal and should be accelerated.

Some calculations are done repeatedly:

e most of the points on the marching cubes
grid are shared by eight cubes, when we
treat cubes sharing a same vertex we evalu-
ate the field function at this vertex for each
cube. This is not true if we have the whole
grid filled with the values of the field func-
tion, anyway this requires the algorithm to
fill the whole grid which can be useless for
a lot of nodes (see 4.4),

e asimilar problem occurs when the position
of the intersection points between the sur-
face and the edges of our cubes is deter-
mined (since these edges are shared by four
cubes, we do the same computations four
times).

Some great improvements can be applied to the
computation of the field function:

o there are different expressions of field func-
tions, some of them are more or less com-
plex to evaluate,

o for the field functions, we chose finite po-
tentials which allow us to precisely model
our surfaces: in this model the potential of
a source decreases and drops to zero when

the distance is larger than the radius of in-
fluence of the source. Thus, the potential
of a given point is only determined by the
surrounding skeleton points and the move-
ment of a primitive only affects the shape
of the surface locally.

4 Our optimizations

In this section, some improvements of the
Marching Cubes method are presented in detail.

4.1 Timestamping results

At each step we avoid doing the same compu-
tations several times. Any computed value is
tagged with a counter which is incremented each
time we call the whole algorithm. This times-
tamp tells whether a value (field function evalu-
ation, intersection points, etc.) has already been
computed or not for the current tesselation: if one
certain value has already been calculated (in the
current polygonisation), then it has been stocked
and timestamped. We just have to check whether
itis in our table. In this case we just pick it up and
avoid calculating it twice. Any value that could
be computed twice benefits from this method.

4.2 The field function

We use a field function with limited area of influ-
ence [WMW86, NHK*85]. Our field function is
based on an expression proposed by Blanc and
Schlick [BS95] but has been slightly modified:
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Our field function has a very low calculation cost:
we only use simple operations (multiplications
and additions). Indeed any exponential function
or square root evaluation should be avoided in
real-time applications. The shapes obtained in
the resulting blended surfaces are satisfying.

4.3 Accelerating the computation of the
blending function

A classical way to compute the potential of
a given point in space is to sum the Fj val-
ues associated with all the primitives: F(p) =

Zg\; Fi(p).

The influence of a primitive on a point requires
the computing of the distance between this point
and the skeleton. However, beyond a certain
distance (the ray of influence) a primitive does
not affect the potential of the point any longer.
We have found a way to take this property into
account for the evaluation of the potential of a
point.

In our method, the space is divided into voxels
containing a list of all the primitives which influ-
ence this area. Before sampling the iso-surface
we run through the list of primitives (composing
the skeleton of the surface we have to sample).
Each primitive is added to the lists of the voxels
which are covered by the sphere defined by the
ray of influence of its field function. It is a well-
known technique for accelerating the ray-tracing
on implicit surfaces.

To evaluate the potential of a point we just have
to peek at the list of primitives stored in the corre-
sponding voxel: we thus consider only the local
primitives.

The size of the voxels has to be chosen judi-
ciously since the ratio between the size of the
voxels and the size of the Marching Cubes highly
influences the performance of the improvement.
Anyway it also depends a lot on the ray of influ-
ence of the primitives we tesselate .

Lwe still do not know, for a given surface and a
given grid, what voxel size will be the best and we
have to test it

4.4 Tracking of the surface

Our implementation only deals with the “useful”
cubes (those that intersect the surface). We start
our work in one of those cubes and go on only
to the "useful” neighbours. Our program pushes
and pops cubes in a stack, it ends when the stack
gets empty. Since a cube may be pushed sev-
eral times (average of 4 times), the timestamp
described in section 4.1 is used to know whether
it has already been considered or not. Thus, we
only need to compare two integers to verify that
a cube has already been treated and we do not
evaluate the field function.

Since our surfaces may be composed of several
disconnected pieces, we have to find a starting
point on each of them. Our method is not really
neat but always works and does not require too
much time: we start our search from each primi-
tive lying inside the surface (i.e. on the skeleton)
and search in an arbitrary direction for a cube cut
by the surface (we get outside of the surface), we
then push these cubes for further use. The fig-
ure 1 shows an example of a multi-piece surface.

Methods tracking the surface have already been
proposed [Blo88], however they are rarely toler-
ant to non-connective surfaces. Our solution to
this problem is trivial yet efficient and can ma-
nipulate identicaly any kind of surface.
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Figure 1: Finding starting points on
the surface consists, for each primi-
tive, in searching in a given direction
for a cube cut by the surface.

4.5 Incorrect tesselation

There is an important problem which is inherent
in the Marching Cubes algorithm: the position



of the vertices relative to the surface is not al-
ways sufficient to determine the local topology
of the surface inside a cube and thus to generate
triangles fitting to the local topology of the real
surface. Figure 2 shows a typical case of a such
ambiguity.

Figure 2: Ambiguous cube with
two different possible tesselations and
thus two different topologies.

The main problem consists in choosing the cor-
rect set of triangles within the cube to avoid
topology problems (see figure 3). Guaranteeing
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Figure 3: Figure a shows two adja-
cent cubes where the respective tesse-
lations are not coherent and exhibits
discontinuities. Figure b shows a bet-
ter choice providing C° continuity.

the C° continuity of the surface between two
neighbouring cubes relies on the fact that the tri-
angles share common edges and not only ver-
tices. Whatever the configuration cube, a given
kind of cube face configuration will always gen-
erate the same edges. If two cubes are adja-
cent, by construction, the associated triangles
will share edges on the common face. Thus it
is not possible to generate an edge belonging to
only one triangle (like in figure 3a).

The problem consisting in choosing “a good”
tesselation arrives when the considered cube

presents at least a face where two diagonaly op-
posed vertices are inside the surface and the two
others are outside (see figure 4). The choosen tes-

(a) Separation (b) Connec-
of tion of the
the surfaces is surfaces s
privileged. privileged.

Figure 4: The black vertices are inside
the surface and the white ones are out-
side.

selation will either privilege the separation (fig-
ure 4a) or the fusion (figure 4b) of the surfaces.
Thus, the only constraint is to be coherent and to
make always the same kind of choice (which was
not done in the figure 3a). We choose to let the
user decide whether separation or fusion is to be
prefered.

This choice is directly coded in the table (see sec-
tion 4.6). This solution does not require any ad-
ditional computations such as in [PPP88, HR95]
for example. Should our global approach be too
restrictive, such methods could be used to im-
prove local approximation of the surface.

Our way to build the triangles ensures C° con-
tinuity. However it does not ensure to obtain a
correct approximation of the surface (in terms of
topology). This is a well-known problem of the
Marching Cubes algorithm and can be reduced
by increasing the grid resolution (= decreasing
the cubes size). The figure 5 shows a typical case
where the topologies of the approximated and the
real surfaces can be very different: in figure 5(a)
the obtained surfaces are disconnected although
the real surface is composed of only one part.

4.6 Descriptive table

In the light of all these improvements, when we
treat a cube, we have to do the following pro-
cesses:



real surface interpolated inside of the real surface  intérpolated  inside
surface surface surface of the surface

(a) The approx-
imated and real sur-
faces do not match

(b) The approx-
imated and real sur-
faces match

Figure 5: Differences between the
topologies of the approximated and
real surfaces (see also figure 4).

e determine the coordinates of the intersec-
tion points between the surface and the
grid,

e generate the triangles inside a cube,

o follow the treatment for the useful” neigh-
bours only.

For that purpose, we use a table which con-
tains all the informations we may need, this table
is composed of 256 entries and addressed by a
byte? built like this: if a vertex is outside of the
surface (its potential is lower than 0), the asso-
ciated bit is cleared, in the other case the corre-
sponding bit is set. For each entry of our table we
get:

the number of triangles to be generated,

the description of each of these triangles,

the number of the “useful” neighbours of
this cube,

the list of these cubes.

This table is built using the 20 base cube configu-
rations we obtained by adding 6 new cubes to the
14 proposed by Lorensen and Cline [LC87] (see
figure 6).

28 bits corresponding to the 8§ vertices of the cube

Figure 6: Our table consists of 20 cubes

4.7 Memory considerations

Our main goal is the real-time display of mov-
ing implicit surfaces. We first did not take into
account memory problems and we allocated the
memory for each cube of the whole marching
cubes grid. However, the amount of necessary
memory can quickly get prohibitive®. Since this
grid is the biggest structure in the program and
its size depends on the rendering quality the user
wants, we were highly limited.

A good improvement avoids storing the whole
grid in memory since all cubes are not useful at
the same time. Instead, we propose to take bene-
fit of this property by allocating an entire grid of
more simple cube structures. These cubes con-
tain an index to the corresponding complex cube
structures which are allocated only if necessary
(this index is time-stamped as described in 4.1).
This improvement requires about a half of the
memory needed by the previous implementation.

An other way to allocate only the necessary
cubes structures consists in using a hash-table in-
stead of our look-up table. This method requires
even less memory than ours but is slightly slower
since accessing a cube requires to scan a chained-
list. Thus, though it is compatible with our algo-
rithm we choose not to implement it yet.

5 Results

We modified a little bit the implementation Jules
Bloomenthal proposed [Blo94] to be able to

3about 64MB for a 100 * 100 * 100 grid



compare it to our work: we changed the field
function and some tesselation parameters in or-
der to obtain the same tesselation from the two
programs. We get more or less the same num-
ber of triangles (for 1000 triangles generated the
two tesselations vary of one or two triangles).
The graph of the figure 7 compares the tessela-
tion times of two implementations of the March-
ing Cubes method. It shows Bloomenthal’s im-
plementation (without any of our improvements)
and the first implementation we coded (without
using the voxels’ optimization). We can see that
our code is already more than 6 times faster than
Bloomenthal’s. Figure 8 compares Bloomen-
thal’s implementation benefiting from our ac-
celeration of the blending function computation
(see 4.3) to our two implementations (the ”Clas-
sical” one* and ”Our” implementation®). The
“classical implementation” follows the surface
but does not benefit from voxel-based evaluation
of the blending function and the problem of re-
dundant computations is not dealt with (no time-
stamping).

This figure shows that our voxel-based improve-
ment divides the tesselation time by 5 or 6.

“Bloomenthal without voxels' -
*Classical implementation’.

(ms)
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Figure 7: Tesselation times

These results have been measured on a 450 MHz
Pentium II Xeon for a 20 * 20 * 20 Marching
Cubes grid. We can see that the tesselation time
is linear with respect to the number of primitives.
We can expect to animate one or more surfaces
where the overall number of primitives is less
than 200. Naturally, the number of primitives can
be much higher for more powerful processors.

4with some of our improvements
Swith all the improvements we implemented
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Figure 8: Tesselation times

We have managed to display a surface of 150
primitives at a 15 Hz framerate on a Titan II
graphics card (but this framerate highly depends
on the graphics hardware). However these re-
sults show that the display of complex implicit
surfaces on a personnal computer is possible.

Figure 9: Screenshots: 80 primitives
sampled whithin a 80 x 80 x 80 March-
ing Cubes grid

We are using this library to display organic bod-
ies and fluids in surgical simulators. This method
enables us to display blood flow realistically.

Besides, our work is presently experimented at
the LERI in Reims (France) for the rendering of
about 7000 primitives. The tesselation requires
about 1 second on a general-purpose PC which is
sufficient for previewing before raytracing. This
shows that our library has a very general purpose



and can be used in very different contexts, for
interactive but non real-time applications.

The whole code has been implemented as a li-
brary which can be downloaded at the following
URL: www.lifl.fr/ triquet/implicit.

6 Further Work

We are working just now on some of the following
topics.

Another improvement we will soon take an interest
in is avoiding unwanted blending, our voxel structure
will give us important informations on the local topol-
ogy of the surface.

Our whole program has been coded in C language,
some parts of the code could attractively be written in
assembly language.

At least we intend to apply texture mapping to our
surfaces, which is a delicate problem since they may
move, deform, and even change of topology at any
time. For now we just display our surfaces with an
environment mapping to apply a specular effect.

One improvement which is often taken an interest in
consists in taking an advantage of the previous tes-
selation to build the next one. This improvement is
based on temporal coherency of the surfaces. We did
not take this into account at all since this did not im-
prove enough our results: our surfaces may move and
deform a lot between two frames. Moreover, even if
we manage to find parts of the surface that did not
move too much, we still have to perform all the com-
putations we presently do.
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