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ABSTRACT

This paper introduces techniques of Riemannian geometry for processing and visualising volumet-
ric graphical objects. A family of non-linear high-pass filters, based on the curvature tensor, is
introduced and used to study the local redundancy on objects. It is shown how to reconstruct an
object from geometric non-redundant regions and applications are presented and discussed.
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1 INTRODUCTION

The output data for a great number of processes
are volumetric. Computer tomography, magnetic
resonance, seismic data and movies are impor-
tant examples of this class of data. Nevertheless,
most techniques from computer graphics are re-
lated to two-dimensional objects. This is in part,
due to limitations imposed by the hardware. To-
day, technical advances in memory and process-
ing capabilities of computers are favouring the
appearance of new methods of visualisation and
processing of volumetric objects.

In this work we introduce techniques from Rie-
mannian geometry in the analysis of volumetric
objects. This technique allows one to construct
a family of nonlinear filters which are scale in-
variant and allow for reconstruction. Although
some of the results in this paper could be ob-
tained by linear filtering, the use of geometry
is motivated by recent advances in human vi-
sion, [Koend87, Barth98]. The physical proper-
ties of our environment are related to strong geo-
metric restrictions in volumetric objects. Motion,
e.g., is related to zero Gaussian curvature. Differ-
ential geometry can be regarded as a strong tool
for analysis of redundancy in such objects.

2 VOLUMETRIC OBJECTS

A wolumetric graphical object is a pair (U, f),
where U is a tridimensional subset of R* called
the geometrical support for the object and f :
U — R" is an attribute function. The set U en-
closes the shape of the object, that is, its topology
and geometry, while the attribute function deals
with the other properties as, for example, colours,
density, temperature etc. The volumetric graph-
ical object is scalar if its attribute function takes
values in R.

2.1 Differential geometry and volumetric
objects

From a geometrical viewpoint, we can describe a
volumetric object as Monge surface:

8 =A{(z,y,2 f(2,9,2)) | (x,9,2) €U} (1)

When f is a differentiable function, the Monge
patch will be a differentiable surface whose
parametrisation F': U — § is given by

F(z,y,2) = (z,y,2, f(2,y, 2))- (2)

We will use this parametrisation to calculate
curvatures and other geometrical attributes, but



these attributes do not depend on a particular
parametrisation.

The attribute function f can be interpreted as a
singular immersion of § in R™. This provides an
alternative way to study the volumetric graphical
object by using differential geometry, not further
pursued here.

In the following we present some elements neces-
sary for the analysis and coding of a volumetric
object by using differential geometry. The classi-
cal notation will also be introduced. From here-
after, we denote the partial derivatives of f by f,,

fya f27 fxg,n etc.

2.2 The Gauss Map

The vectors Fy, F, and F,, given below, form a
basis for the tangent plane of 8:

Fz:(laoaoafw)a”'aFZ:(ana]-afZ)' (3)

An unit vector field N, normal to 8, that defines
an application from 8 to the unit sphere S is
called Gauss map.

A straightforward computation shows that, under
the canonical parametrisation, the Gauss map is
given by

N®) = (=for—fyo—F D/VIHIVEP - (4)

Equation (4) shows that the Gauss map is differ-
entiable. As usual, we indicate this derivative by
N). Since the tangent spaces T,8 and T, S®
are coincident, N, is a linear operator from T},8.

It is a well known and fundamental fact that the
differential N, of the Gauss map is selfadjoint.
Therefore, one can compute an orthonormal ba-
sis with eigenvectors {ei, ez, e3} and eigenvalues
A1, A2, Az such that Nj(e;) = Aje; for i =1,2,3.

The eigenvectors e; are called main directions and
the eigenvalues \; are the main curvatures. The
symmetric functions of Ay, A2, A3 have also spe-
cial names: K = A\ A2)\3 is the Gauss-Kronecker
curvature; H = Ay + Ao + A3 is the mean curva-
ture; and S = A\ Ao + A1 A3 + A2 A3 is called scalar
curvature.

Of course, the matrix of N, with respect to the
basis {e1, ez, e3} is given by D = diag(A1, A2, A3).

Let A = (a;j) be a matrix for N, with respect to a
given basis in T},8. It is a fact from linear algebra
that the polynomial P(z) = Det(A—=xI), (where

I is the identity matrix) does not depend on a par-
ticular matrix representation of N,. Therefore,
after computing and comparing this polynomial
for both matrix A and D, we have:

K = |A|
aip  aiz|  |air aig| | |azz  ass
S = + (5)
a1 azp| |azi asz| |asz ass
H = a1 +ax +ass
where | . | denotes the determinant.

The above formulas enables one to compute the
curvatures K, S and H from any matrix represen-
tation of IV}, and will be used for the applications
presented in this work.

2.3 The Gauss Map and the Hessian

The differential of the Gauss map plays a funda-
mental role in the calculus of redundant regions
of a volumetric graphical object. In this work,
we use the rank of the Gauss map differential to
classify the points of a volumetric object. This
classification enables one to distinguish different
kinds of redundancy.

Now, we show how to compute the matrix A =
(ai;) of the Gauss map’s differential with respect
to the basis given in (3). For this particular basis
we can write:

Ny, =anFy +annFy + aisF;
Ny = an F} +a22Fy+a/23Fz (6)
N, = a3 Fy + aza Fy + azzF,

where, e.g., N, = N, (Fy),. ..

The derivative of (N, F,) = 0 with respect to z,
gives us (N, F,) + (N, F,,) = 0. Proceeding the
same way for y and z, we have:

<NwaFw> = —(N, Fzz)
<Nw’Fy> :_(NaFyZ) (7)
<N27F2> = _<N7Fzz>

From the above equalities and the expressions of

F,, Fy, F, and N, we can write once more equa-
tion (6):

Hess(f) = AM (8)
where M = \/1+||VfI’(I + VfTVf) and
Hess(f) = (fuows---3---5--- f2z) is the symmet-

ric matrix associated to the second derivative f"
with respect to the canonical basis of R3.



In this way, we have a relationship between the
differential of the Gauss map and the second
derivative of f. Since M is invertible because
Det(M) = (1+||V£|I*)3/2 # 0, we can compute
the matrix for the Gauss map differential. In
particular, this matrix and the Hessian have the
same rank, and consequently the same number of
nonzero eigenvalues.

3 NON-LINEAR FILTERS

In this section, we present some non-linear geo-
metric filters. These filters are derived from the
classification of the points of a volumetric object
given by the rank of the Gauss map differential.

3.1 Geometric classification

Given a scalar volumetric object (U, f), we clas-
sify the points in the geometric support U be-
tween four possible kinds accordingly to the rank
of N'.

Definition 1. We say that p is of type gnD if
rank(N,) = n.

We call the above classification of geometric clas-
sification. Accordingly to the classic notation of
differential geometry, the points of kind g0D are
also called planar points. The concept of pla-
nar point is related to the concept of flat point
in mathematical morphology [Serra93]. This
classification has been use by Barth, Caelli &
Zetzsche for perceptual studies [Barth93], see
also [Mota99].

There is one more important thing to salient con-
cerning the rank of the Gauss map differential. To
compute it, we do not have to explicitly show the
eigenvalues for N). The knowledge of the curva-
tures K, S and H together gives the geometrical
classification for the points of a volumetric object.

That is what the following proposition states.
Proposition 1. For any hypersurface $ in R?,
we have:

1. N, has rank 0 <= H =K =S =0;

2. Ny has rank 1 <= K =S=0e¢ H#0;

8. N, has rank 2 <= K =0¢S #0;

4. N, has rank 3 <= K #0.

The demonstration follows immediately from the
definition of the curvatures H, K, S and from
the fact that the rank of a diagonalisable matrix
is equal to its number of non-zero eigenvalues.

Regarding implementation, we shall remark:

e The equalities in (5) give formulas to cal-
culate the curvatures K, S and H from
the matrix of IV, in any basis of T,,8. By
proposition 1, one can compute the rank of
the Gauss map differential from these cur-
vatures.

e Equation (8) shows that the Gauss map’s
differential and the Hessian have the same
rank, and therefore the same number of non
zero eigenvalues. It follows that the geomet-
ric classification can be done in function of
the Hessian instead of the Gauss map dif-
ferential.

Although both the Gauss map differential and
Hessian should give the same result, for a matrix
representation of a volumetric graphical object,
the Hessian appears to produce a more stable ge-
ometric classification.

3.2 Filtering

For a scalar volumetric graphical object (U, f)
with Monge surface 8, the variation of the Gauss
map along § is related to the variation of the at-
tribute function f.

Let p be a point in §, A an eigenvalue for N,
and v an eigenvector in 7,8 associated to A. If
A # 0, then Nj(v) = Xv # 0, that is, the
Gauss map varies along the direction of v and,
therefore, the attribute function has a non-linear
variation along the direction u = w(v). Here,
7 : R* — R? is the canonical projection given
by m(z1, 22, 23,24) = (21, T2, T3).

Let v; and vy be two orthonormal eigenvectors
for N, associated to the non zero eigenvalues \;
and Ay. Then, the Gauss map varies along all
directions in the plan determined by p and by
the vectors vy, vo. In fact, given a non-zero vector

v = pv1 + vvs in T8, we have
N;,(v) = N;,(;wl + vug) = pAvr + vAgvg # 0.

Consequently, the attribute function f has a
non-linear variation along the direction w(v) =
pm(vy) + vr(ve). We can continue in this way
and conclude that if all eigenvalues of N, are non



zero then f has variation along all directions pass-
ing through 7(p). Therefore, the regions ¢g0D is
an union of patches where the Gauss map is con-
stant. It means that the attribute function has
linear variation in these regions. The components
g1D, g2D e g3D are regions where the volumetric
object has non-linear variation.

The number of directions where the object varies
increases with the index of the regions. Strong
variations in the Gauss map are related to
strong variations in the volumetric graphic ob-
ject. Therefore, the geometric classification in-
troduced in section 3.1 enables one to construct
non-linear filters for detection of high frequency
regions in a volumetric graphical object. Now, we
define the filters to be used in the processing of
volumetric objects in this work.

We denote by Fy the filter that makes correspond
to every object (U, f) the object (U, Fof) given by

if p is of kind g0D;
otherwise

sof)={ 190 0
where med(f) is the mean of the attribute func-
tion along U.

The filter Fy preserves the values of the attribute
function along planar regions. In a similar way,
we can define filters 1, F5 and F3, which preserve
the values of the attribute function along gI1D,
92D and g3D, respectively.

It is possible to use combinations of the regions
in the geometric classification to construct others
filters. For example, 123 given by

_ med(f), ifpis of type g0D;
F123f(p) = { f(p), otherwise (10)

This filter will be used in section 4, where we
deal with the coding and reconstruction prob-
lems. The filter F193 preserves values of the at-
tribute function along the components g1D, g2D
and ¢g3D. Planar points are changed to the mean
of the attribute function.

Consider now the filter G123 given by

0, if pis of type g0D;

1, otherwise (11)

S123f(p) = {
The filter G123 is called planar discrimination fil-
ter. It discriminates between planar and non-
planar regions of the volumetric graphical object.

The geometric classification introduced in sec-
tion 3.1 do not depend on a particular system
of coordinates. The same is true for the geomet-
ric filters presented. This guarantees that these

are isotropic filters. They find high frequencies in
any direction of the volumetric graphical object.

3.3 Examples

In the following we show two examples of geo-
metric filtering. We will use the geometric filter
G123 introduced in (11). In these examples the
number 1 means black while the number 0 means
white. By the definition of the planar discrimina-
tion filter G123, the white colour corresponds to
planar regions and the black colour to non-planar
regions.

(a) view zy (b) view zz

Figure 1: A volumetric graphical object
constructed moving a disc along a curve

Example 1. The body in figure 1 was con-
structed moving a disc along a curve which con-
nects two points in opposite faces of a cube. Fig-
ure 2 shows eight consecutive transversal sections
of the original object (first row). Down in the
same figure, we can see the high frequencies re-
gions detected by the filter G123 (second row).

oll ol o] o[ o] [ ©

o (o)

Figure 2: Transversal sections: the original
object and its filtered version.

Example 2. A wvideo is a one-parameter fam-
ily of images f; : U — R*, where U is a two-
dimensional subset of R? and the time variable
t belongs to the unit interval. Therefore, video
can be interpreted in the volumetric graphical
object paradigm, the geometric techniques de-
scribed provides a tool for video processing. In
this way, the video is seen as whole body instead
of simply as an image sequency. Figure 3.3 shows
a video segment (first line) jointly with its filtered
version (second line). Filtering was done with the
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Figure 3: A video segment and its geomet-
ric filtered version.

,

geometric filter G153. We can see, in the filtered
version, the high frequencies regions of the video
segment. The geometric processing of videos has
been used in [Silva99] to study the video cut de-
tection problem. In that work, the authors show
that the number of planar points for continuous
segments of video is almost constant and changes
subtly at edition points. The resulting algorithm
was shown to be very robust and performs in real
time.

3.4 Scale invariance

An important property for a decomposition of an
object is scale invariance. In this section we show
that the geometric classification has this property.

Given a volumetric graphical object (U, f) and
A = (A, p,v) positive, let 15 be the transforma-
tion given by Ya(z,y,2) = (Az,py,vz), Upn =
d)Xl(U) and P, the scale operator, that is,

Paf=foia. (12)

Proposition 2. The scale operator preserves the
geometric classification. That is, given a geomet-
ric graphical object (U, f) and its scaled version
(Un, f o9pp), then p and Y (p) are of the same
geometric type.

Proof. Let ¢ = Ppf. By definition, for every
point p = (z,y, 2z) in Uy we have
g(w,y,z) = f O"pA(l’?yaz) = f()\x,py,z/z)

The above equality gives us

rank(Hess(g)(p)) =

)‘Qfxx (Q) )‘:u'fxy (Q) AV foz (q)
rank | Aufya(q) 12 fyy(a) wofy(a) | =
v f..(q) Nszy(Q) VQfZZ(Q)

)\fxx(Q) foy(Q) foz(‘])
rank | Afy.(q) wfyy(q) viy:(q) | =
Mea(q) pfey(a) viez(q)

rank(Hess(f)(q)).

By definition, the geometric classification of a
point in an object is given by the rank of the
Gauss map differential at this point. We have
seen in section 3.1 that the Hessian of the at-
tribute function of an object and the Gauss map’s
differential of its associate Monge surface have
the same rank. Since the matrix Hess(g)(p) and
Hess(f) (A (p)) have the same rank, it follows
that p and ¢4 (p) have the same geometric clas-
sification. But p can be any point in Uy, which
shows that the scale operator P, preserves the
geometrical classification. O

The above result can be used to show that the
percentage of planar points in a photogram does
not depend on a particular resolution of a video,
see [Silva99].

4 EXACT RECONSTRUCTION

In this section, we deal with the issue of coding
and reconstruction of a volumetric graphical ob-
ject using differential geometry techniques. We
show how to reconstruct an object from its Fio3
filtered version.

A proof of the redundancy of points of kind g0D
and g1D as well as an algorithm for reconstruct-
ing from the remaining g2D points has been pre-
sented in [Mota00]. Since the math used in that
proof is too technical, we present here a simpli-
fied proof that applies only to the redundancy of
points of kind g0D.

Theorem 1. A hypersurface in R* is completely
determined by its set of non-planar points.

Proof. The set of non-planar points is a collection
of connected plan patches. If 8' = {p € § | N}, #
0} and p € 98', the plan patch 7, that has a
common border with 8 at p has N(p) as normal

vector. But 7, is completely determined by p and
N (p), follows that 8 is determined by §'. O

4.1 A reconstruction algorithm

The difficulty in reconstructing a volumetric ob-
ject from its filtered version comes from the non-
linearity of geometric filters. This problem for lin-
ear filters is more easy since one only has to solve



a system of linear equations. To reconstruct a vol-
umetric object from its filtered version (U, F123f)
we have to reconstruct the planar regions. In
principle, one can think of a simple scan line al-
gorithm to reconstruct the object. But, this is
not exactly the case because in the classification
process we have to use some threshold and not
exactly planar regions may be classified as pla-
nar ones. This with the natural noisy present in
objects prevents a pure scan line algorithm from
correctly reconstruct the surface. The key to a
better reconstruction algorithm resides in seeing
planar patches as harmonic functions. We de-
scribe now an algorithm for reconstruction.

Let [f;jx] be a matrix representation of the object.
If a voxel (i, j, k) belongs to the planar regions of
the object, the attribute function must satisfy the
equation

1
fijt =6{fi—1jlc + fiv1jk + fij+k
+ fij—1k + fijes1 + fijp—1}

(13)

The above equality is the main motivation for the
reconstructing algorithm we present below.

Let g = F123f be the filtered version of f. Using
the geometric classification of the points in the
support of (U, f), the following operation is done
for each voxel in the matrix representation of g:

1. Proceed with a scan line reconstruction to
obtain a first version of g.

2. If the voxel (4,7, k) is planar, then change
gij, according to equation 13.

3. If the voxel (i, 4, k) is not planar, keep the
value for g; ;.

4. Go to step 2.

This algorithm reconstructs the attribute func-
tion of a geometric graphical object along planar
regions. For each iteration, the algorithm recon-
structs the object from the border to the inner of
missing regions. It is a interpolation process that
makes reconstructed regions with variation close
to linear along regions classified as planar.

4.2 Convergence of the algorithm

Now, we will show that the previous algorithm is
convergent and consequently it reconstructs the
volumetric graphical object.

We justify the algorithm’s convergence by the
analysis of the unidimensional case. In this case,
the problem consist in reconstructing a linear

function L : [0,n] — R at nodes 1, ..., n — 1,
from g : [0,n] — R with values ¢g(0) = L(0) = a,
g() =~ =gn—-1) =cegn) = Ln) =1,

using the pseudo-code below, see figure 4.

while( Number_of_Iteration-- )

{
for(i=1; i<m; ++i)
glil = ( gli-1] + gli+1] )/2;
}
Figure 4: The graphic for L and g.
Given the finite sequence y° = (a,c,...,c,b), let

for every k > 1 the finite sequence y* be given by

yo =a

k k—1
ygc:iyi—l;yi“ i=1,...,n—1 (14
yp="0

Figure 5 shows how these sequences are built
for ¢ = 0 and n = 5. To proof that the algo-
rithm converges, we have to show that, for ev-
ery i, the infinite sequence y¥ converges to L(i),
when k goes to infinity. Let g% :[0,n] — R
be the function given by linear interpolation of
(0,5), ., (k).

One can easily proof that y¥ converges to L(i), for
all 4, if and only if the sequence of functions g*
converges to the linear function L on the interval
[0,n].

Proposition 3. The sequence of functions g* :
[0,n] — R converges to the linear function
L:[0,n] — R.

Proof. We can suppose without loss of generality
that ¢ = 0. We first show that, for every 4, the se-
quence y¥ defined in (14) converges, that is, there

Figure 5: Building of ¢!, ¢2, ... .



exist y; such that y¥ — y; when kK — oo. To
accomplish this, it is sufficient to proof the con-
vergence for the cases a = 0 or b = 0. In fact, Let
u* and v* be the sequences, as in (14) with a = 0
and b = 0, respectively.

Figure 6 shows the construction for sequences u*
when n = 5. It is not hard to see that, for every i,

@
u 1

k

i

Figure 6: Sequences u

u® e v} are bounded monotone sequences. There-

fore, they are convergent. Let u; = limy_, o u?
and v; = limy_,  vf.

From the definition of u¥, v¥ and y¥, we have
Bk ok
Yi; = u; +v;.

Thus, for every i, the sequence y¥ is the sum
of two convergent sequences and consequently
is itself a convergent sequence. Let be y; =
limy,_, y¥, to complete the proof, we need only
to show that y; = L(4).

For every k> 1and i =1,...,n — 1, we have by
definition

k k-1
e Yio1t Yy
A S

Going to the limits in the above equality results
in

_ Yi—1 FYit
=Ty
for every i = 1,...,n — 1. Therefore, we have
Aa—Yy1=Y2—Y1="""=Yn—1 — Yn—2=b—y1,

from where one concludes that the points
(0,%0),-..,(n,yn) belong to the same straight
line. Consequently,

yi=L@#) fori=1,...,n—1

and this concludes the proof. O
One can easily derive, from the above proposition,

the convergence of the reconstruction algorithm
for the three dimensional case.

Figure 7: Reconstruction (40 iterations).

4.3 Examples

In this section we present some example of fil-
tering and reconstruction of volumetric graphical
objects from their non-planar regions. The algo-
rithm described in the previous section was used
for reconstructing the objects. For illustrating
purposes, we have used the discriminating planar
filter Gyo3 in figures 7 and 8, that is, 0 (white) for
planar points and 1 (black) for non-planar ones.
The reconstruction was done with the geomet-
ric filter F123. This filter preserves the attribute
function along non-planar regions.

4.3.1 Video

Consider the image sequence shown in figure 7.
Second row shows the filtered sequence computed
using the discriminating planar filter Gi23. The
derivatives were estimated with quadratic recon-
struction and points were classified using the Hes-
sian instead of the Gauss map differential. Third
row shows the reconstructed object after 40 iter-
ations.

4.3.2 Medical data

The first row of figure 8 presents consecutive
transversal sections of a volumetric object origi-
nated from computer tomography [Avila96]. The
attribute functions for this kind of object is highly
non-homogeneous. Second row shows the Gy23 fil-
tered version of the object. Note the presence of
planar regions (white). The reconstruction is pre-
sented in third row.



Figure 8: Reconstruction (40 iterations).

5 FUTURE WORK

In this section we will discuss some possible ex-
tensions of the work presented in this paper and
some interesting potential applications of the ge-
ometric filters introduced here.

5.1 Multi-scale reconstruction

Since geometric filters are invariant by scale
change, we have the possibility to explore a multi-
scale reconstruction algorithm. Thus, with a
given representation using the geometric filter, we
can reconstruct the original volumetric object in
different scales. Besides the possibility of obtain-
ing a more efficient reconstruction algorithm, the
multi-scale reconstruction can be useful for appli-
cations where decisions could be made based on
coarse scaled copies of the object.

5.2 Mesh refinement and simplifications

We can use the geometric filters introduced in this
work to make the simplification and refinement of
surface triangulation and, as a extension, the con-
struction and simplification of volumetric object
triangulation.
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