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ABSTRACT

In this paper we address the problem of measuring the visibility complexity of
scene animation in flatland. In our previous work we proposed a complexity mea-
sure which quantifies the information transfer in a static scene. Here we introduce
two measures to capture the complexity of movement. The first approach measures
the dissimilarity between successive frames of an animation using the variation of
information exchange between each pair of patches. The second one is the eu-
clidean distance between form factor distributions. We present preliminary results
which show that both approaches attain a satisfactory and very similar animation
classification.
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1 Introduction

Complexity is an active research area, and
in the two last decades many complexity
measures have been proposed from differ-
ent fields [1, 9]. But what is complexity?
In the majority of cases complexity is re-
lated to difficulty: “The meaning of this
quantity should be very close to certain
measures of difficulty concerning the ob-
ject or the system in question: the diffi-
culty of constructing an object, the diffi-
culty of describing a system, the difficulty
of reaching a goal, the difficulty of per-
forming a task, and so on” [11]. In the
particular case of a 3D scene, the com-
plexity measure that we have proposed in
our previous work [7, 8] is scene mutual
information, which can be interpreted as
the difficulty of computing accurately the

visibility and radiosity in a scene. Scene
mutual information, which is an informa-
tion theory measure, quantifies the infor-
mation transfer in a scene, and also the
correlation or dependence among all their
points or patches. Note that our approach
to complexity is different from the ones
based on integral geometry results [4] and
reachability graph [12].

Here we apply mutual information and eu-
clidean distance for studying the visibil-
ity complexity in dynamic environments,
such as the ones considered in [2, 6]. Al-
though we only deal with the flatland case,
the results obtained can straightforwardly
be extended to 3D scenes. Some of the
most important applications we envisage
for animation complexity are cost predic-
tion for visibility and radiosity recompu-



tations and the development of meshing
strategies to obtain an accurate discretiza-
tion. The study of 2D animation complex-
ity has also potential applications in fields
such as robot motion and architectural de-
sign.

In this paper we measure the animation
complexity of several 2D scenes, and we
analyze its behaviour in relation to posi-
tion, quantity, and size of the moving ob-
jects.

The organisation of this paper is as fol-
lows: In section 2 we present the frame-
work for studying animation visibility
complexity in flatland. After considering
different alternatives, we define in section
3 two animation complexity measures. In
section 4 we compute the complexity of
different sequences of frames and analyze
the main reasons for the growth in com-
plexity.

2 Framework

The most basic information theory defini-
tions [3, 5] applied to 3D scene visibility
were presented in [7]. In this section, mu-
tual information is adapted to flatland by
only changing the area of each patch with
its length and the total area with the to-
tal length (see [14] for details). Flatland
visibility and form factors are studied in
[10, 13].

Thus, discrete scene wvisibility mutual in-
formation is defined by
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where n, is the number of patches (2D
segments), F;; is the form factor between
the patches 7 and j, L; is the length of
patch ¢ and Ly is the total length of the
scene (the sum of segment lengths). Dis-
crete mutual information can be inter-
preted as the average information transfer

in a scene. Moreover, it can be expressed
as the Kullback-Leibler “distance” [3, 5],
or discrimination, between the scene prob-
ability distribution {£72} and its inde-

pendence distribution {ﬁl} [7].

On the other hand, continuous scene vis-
wbility mutual information is defined by
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where L is the set of segments that forms
the environment, z and y are points on
segments of the environment and F'(z,y)
is the differential form factor between x
and y. This integral can be solved by
Monte Carlo integration. Similarly to [7],
the computation can be done efficiently by
casting global lines uniformly distributed
upon segments. Thus, continuous mutual
information can be approximated by
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where 0,, and 0,, are the angles which the
normals at x and y, form with the seg-
ment joining xp and yg, d(xg,yx) is the
distance between x; and y,, N is the to-
tal number of pairs of points considered,
which is equal to the total number of in-
tersections divided by two, and the value
of F(x,y) is w‘i for mutually visible

: 2d(z,y)
points and zero otherwise.

In [7, 8] continuous scene visibility mutual
information has been proposed as an ab-
solute measure of the complexity of scene
visibility and discrete mutual information
as a complexity measure of discretised
scene visibility. We have also shown that
when a patch is refined into m subpatches
discrete mutual information increases or
remains the same, and continuous mutual
information of a scene is the least up-
per bound to discrete mutual information:



I, < I{ . We also established two pro-
posals which show a close relationship be-
tween complexity and discretization: (i)
the greater the complexity the more dif-
ficult it is to get a discretization which
expresses with precision the visibility or
radiosity of a scene and (ii) among differ-
ent discretizations of a scene the best is
the one with the highest discrete mutual
information. Thus, while continuous mu-
tual information expresses how difficult it
is to discretise a scene to compute accu-
rately the visibility, discrete mutual infor-
mation gives us a measure of how well it
has been discretised.

We also introduced [15] a measure that
quantifies the visibility complexity of a
scene region. Given a point x in a re-
gion, we can compute the complexity at
this point by casting random lines from it
in all directions. The complexity at point
x is expressed by
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where N is the number of lines cast, 0,,
is the angle which the normal at y; forms
with the segment joining x and y, and
d(z,yg) is the distance between z and yj.
It can be interpreted that in a more com-
plex region it will be more costly to in-
sert an object than in a less complex one.
From the complexity of each point we can
obtain a complexity map of a region [15].

3 Animation visibility complexity
measures

A scene with moving objects is a dynamic
system. The relationship between their
points changes at each step, and conse-
quently its complexity. Since each move-
ment is modelled as a collection of small
movements, the animation complexity will
be given by the sum of the complexities
of each step, and obviously the bigger the

number of frames, the higher the anima-
tion complexity. This complexity (or dis-
similarity between two frames) is a mea-
sure of the degree of recomputation re-
quired.

An animation complexity measure has to
capture the variation of interactions be-
tween all the points or patches of a scene.
With this aim we will analyze four possible
dissimilarity measures: the first two will
be rejected and the other two will show
good behaviour. In order to compare two
frames, a restriction is imposed: the dis-
cretization should not be changed. And,
obviously, the finer the discretization the
finer the measures.

3.1 Difference between complexi-
ties

As I represents the complexity of a frame,
we could try to define the animation com-
plexity between two successive frames as
the absolute value of the difference be-
tween the respective continuous mutual
information I¢. But the difference be-
tween complexities does not express the
cost of movement. For example, it is easy
to imagine a scene in which the movement
of an object does not change the complex-
ity and, despite this, the transformation
can have a high cost. This subtraction
of complexities does not contain dynamic
information. In fact, I, or I{ express a
global property of a system but there is
a loss of information with respect to the
diversity of the relationships between the
pairs of points or patches of a scene. In
conclusion, this proposal is not appropi-
ate.

3.2 Kullback-Leibler distance

In the context of information theory,
the most used discrimination measure
between probability distributions is the



Kullback-Leibler distance. The relative
entropy or Kullback-Leibler distance be-
tween two probability distributions p =
{p;} and ¢ = {¢;}, which are defined over
the same set of states S = {1,...,n}, i

defined by Dy, = 32, p; log 2 and mea-
sures the inefficiency of assummg that the
distribution is ¢ when the true distribu-
tion is p. In our case, it should be given

by
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where p = {%L} and g = {%ﬂ} are the
probability distributions of two successive
frames. It is easy to see that some prob-
abilities can be zero, those corresponding
to pairs of non-visible patches which, in
another frame, can become visible to each
other, and then p;log & = oco. In conse-
quence, this measure fails in the majority
of cases.

3.3 Animation complexity

As we have seen, discrete scene visibility
mutual information is given by
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Moreover, we can consider that the terms
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form part of a symmetric mutual informa-
tion matrix (I;; = I;;), where each term
represents the exchange (or transfer) of
information between the patches i and j.
We observe that negative values appear
when Fj; < % This situation reflects
a very low interaction between the two
patches involved.

In the context of information theory, we
propose an animation complexity measure

C, that quantifies the variation of interac-
tions between all the patches for n succes-
sive frames (labeled from 0 to n—1). This
measure is defined by the sum of the com-
plexities C* of each animation step:
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where C*¥ is the complexity of a movement
between the frames £ — 1 and £ and IZ"; is
the exchange of information between the
patches ¢ and 7 in the frame k.

We have proposed root squared differences
against absolute value differences because
of their much higher robustness.

3.4 Euclidean distance

Finally, a non-information-theoretic mea-
sure, the euclidean distance D,, is defined
by the sum of the euclidean distances DF
between the probability distributions of
successive frames:
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where D¥ is the euclidean distance be-

tween the frames k — 1 and £, {%CL} is
the probability distribution of the frame £,
and in the last equality we have considered
LI~ = L¥ = L; because the discretization
of all the frames is the same.

As we will see in the next section, this
measure exhibits a very similar behaviour
to Cy, and thus could be considered as a
cheaper computational alternative to this
one.
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Figure 1: Scenes with a vectorial representation of movement.

scene | frames | n, I? range C, D,
a 7 176 || [3.224413, 3.309799] | 0.126312 | 0.030174
b 7 176 || [2.889719, 2.959785] | 0.241348 | 0.048400
c 7 176 || [2.774633, 3.196687] | 0.748059 | 0.129423
d 7 176 || [2.738304, 3.298303] | 0.710385 | 0.120634
e 7 176 || [2.843272, 2.877578] | 0.132887 | 0.032049
f 10 200 || [3.218023, 3.484319] | 0.500879 | 0.085347
g 2 200 3.476344 0.139460 | 0.027501
h 75 234 || [3.483784, 3.539923] | 2.227256 | 0.372783

Table 1: I¢ range, C,, and D, for the scenes in figure 1, where n, is the number of
patches and 10° global lines were used to obtain these values. All the patches of all

the scenes have the same length.

4 Results and discussion

In order to illustrate the feasibility of an-
imation complexity measure, we compute
C, and D, for eight sequences of frames
(figure 1) whose values are contained in
table 1.

For each sequence of frames, 10° global
lines have been cast to obtain an approx-
imated Monte Carlo solution for the form
factors [16], by counting the number of
intersections between pairs of segments
which are visible. The first two sequences
(figures 1(a, b)) show a moving square fol-
lowing two different paths. Animation in
figure 1(b) is more complex than in figure

1(a) because the movement is produced in
a more complex region (between the wall
and four objects). This can be seen in fig-
ures 2(a, b) where we show the complexity
maps [15], computed with formula 1, cor-
responding to both sequences (figures 1(a,
b)). It is interesting to remark that in the
sequence from figure 1(b) the scene com-
plexity I¢ is lower than in the other one,
where the four objects are placed in the
middle of the scene.

In figures 1(c,d) all the objects are moved
simultaneously. As we could expect, the
animation complexity increases outstand-

ingly.

In figure 1(e), the decrease of the size of
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Figure 2: Complexity maps (increasing from white to black) and ranges of the com-
plexity of a region corresponding to figures 1(a, b, h) respectively. The computation
has been carried out casting 10® lines from each cell of a 96x96 grid [15].
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Figure 3: Evolution of C* (a) and D¥ (b) for figures 1(a) to 1(e).

the moving square implies a decrease in
animation complexity. Figure 3 collects
together the first five sequences (figures
1(a) to 1(e)) and shows the animation
complexity and the euclidean distance of
each step. An almost identical behaviour
can be observed from both graphs. In our
future work the reasons for this behaviour
will be analyzed.

In figure 1(f), an interior square rotates
(5 degrees on each step) in a square enclo-
sure from a position with parallel sides to
a position where the vertexs of the interior
square almost touch the enclosure. In this
case, the animation complexity increases
on each step (figure 4(a)), similarly to the
scene complexity I¢ (figure 4(b)). Figure
1(g) simply represents a rotation of 90 de-
grees. In this case, the animation com-

plexity is high because the variation of the
relationship between the patches has been
important.

Finally, in the labyrinth scene (figure 1(h))
the high complexity is due to the big num-
ber of frames. In figure 2(c) we show the
corresponding complexity map and in fig-
ure 5 we observe again a very similar evo-
lution of C, and D,. From all these ex-
periments, we conclude:

e Both measures, C, and D,, capture
well the complexity of the animation,
exhibiting very similar behaviour.

e The animation will be more complex
if it is produced in more complex re-
gions of a scene.

e The increase in moving objects in-
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Figure 4: Evolution of C* (a) and I¢ (b) for figure 1(f).
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Figure 5: Evolution of C* (a) and D¥ (b) for figure 1(h).

creases the animation complexity.

e The bigger the moving objects, the
higher the animation complexity.

Future work will be addressed to extend-
ing these measures to radiosity and to
studying the relationship between C, and
D, from both theoretical and computa-
tional points of view.
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