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ABSTRACT

Exploiting similarity of patches within multiple resolution versions of an image is often utilized to solve many
vision problems. Particularly, for image upsampling, recently, there has been a slew of algorithms exploiting
patch repetitions within- and across- different scales of an image, along with some priors to preserve the scene
structure of the reconstructed image. One such method, self-learning algorithm [1], uses only one image to achieve
high magnification factors. But, as the image resolution increases, the number of patches in dictionary increases
dramatically, and makes the reconstruction computationally prohibitive. In this paper, we propose a method that
removes the redundancies inherent in large self-learned dictionaries to upsample an image without using any
regularization methods or priors, and drastically reduces time complexity. We further prove that any low-variance
(low details) patch that does not find any match can be represented as a linear combination of only low-variance
patches from dictionary. The same principle applies to high-variance (high details) patches. Images with high
scaling factors can be obtained with this method without any regularization or prior information, which can be

subjected to further regularization with necessary prior(s) to refine the reconstruction.
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1 INTRODUCTION AND RELATED
WORK

Inherent redundancies present within natural images
can be utilized to solve many vision problems such as
image denoising, texture synthesis [2], image compres-
sion [3], super resolution. A small patch [e.g. 3x3] is
highly likely to recur within- and across different im-
age resolution scales [4]. Zontak et al. [5] exploited
the recurrence of patches for image denoising. The fact
that a coarser scale of any noisy image is less noisier
than the original noisy image is exploited in their work
across different coarser scales to extract a clean patch
for almost any noisy patch.

Freeman et al. [6] introduced example-based image up-
sampling, wherein high-resolution (HR) image patches
are generated from the HR image patches learned from
external database. Fattal [7] learned a parametric model
of edges from a large database of natural images to
achieve single image upsampling. The literature con-
cerning single image upsampling using image database
is growing rich for sometime now. However, these
approaches being patch-based, finding a satisfactory
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Figure 1: Self-learning: illustration for forming LR-
HR pairs using LR image and its coarser resolution ver-
sion.
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match for all the image patches requires very large ex-
ternal database which increases the computational com-
plexity. According to Ebrahimi and Vrscay [8], the
patches learned from image itself form much more rele-
vant database than any other external database. Glasner
et al. [4] empirically proved the repetition of a small
patch across different scales of an image and proposed
a single image super resolution algorithm that uses mul-
tiple coarser scale versions of an image. Zontak and
Irani [9] quantified the recurrence property of natural
images and established the superiority of internal im-
age database over external image database. Freedman
and Fattal [10] proposed a local self-similarity approach
which reduced the search region for the nearest patch
and employed non-dyadic filters to achieve high scal-
ing factors. Shan et al. [11] employed feedback-control
mechanism to match the upsampled image to that of
imaging model through a loop of deconvolution and
reconvolution. Khatri and Joshi [1] drew their inspi-
ration from the work of Glasner et al. [4] and pro-
posed a self-learning algorithm. However, they built
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Figure 2: Variance histogram of LR dictionary
patches: (a) painting, (c) abstract art, (e) natural
scene, (b)-(d)-(f) histograms of variances, (g) combined
variance histogram of all 1300 images. Majority of the
image dictionaries have a long-tailed variance distribu-
tion. The concentration of histograms near the origin
indicates a large number of low-variance patches. In
the plots, x- and y- axes indicate variances and their
frequency, respectively.

low-resolution (LR) and HR dictionaries comprising
patches having exact match with only one coarser-scale
version and generated the remaining patch pairs from
learnt patch pairs using /;-minimization. They further
improved upon the solution by introducing Gabor prior
which forced the similarity of details between LR and
downsampled HR patches at various frequencies.

Majority of the algorithms mentioned above fall in the
category of image super resolution (SR). Image SR is
an ill-posed problem that requires accurate aliasing and
image formation models to correctly reconstruct an HR
image. There have been no models so far (to our knowl-
edge) which incorporate aliasing to faithfully super re-
solve an image. The learning methods employed (e.g.
K-SVD) for dictionary reduction are computationally
taxing. Also, all the SR algorithms require costly opti-
mization methods that render them ineffective for effi-
cient and fast image upsampling. On the other side, tra-
ditional image interpolation methods (bicubic, splines
etc.) use only neighborhood pixels to interpolate a pixel
value ignoring the redundancies within images. Moti-
vated by these limitations of SR and interpolation algo-
rithms, and drawing our inspiration from self-learning
[1], in this paper, we propose a smart, and computation-
ally efficient, image upsampling approach that not only
works successfully on various kinds of images (e.g. nat-
ural scenes, abstract arts, paintings), but for very high
upsampling factors as well. The proposed method, be-
cause of its simple operations, can be a useful tool for
quick upsampling of the images captured on mobile
phones. Unlike self-learning that builds a large LR-
HR dictionaries (for a reasonably large image, thereby
increasing the time complexity), our approach reduces
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the dictionary size by taking only a small percentage
of the total dictionary patches, and further segments it
into three smaller dictionaries, namely, low-variance,
high-variance, and medium-variance dictionaries. The
non-dictionary patches (i.e. image patches that do not
find any best match) are obtained from these reduced
dictionaries. The proposed approach upsamples images
without any prior information, which can be subjected
for further refinements.

The rest of the paper is organized as follows: section 2
briefly reviews self-learning approach. Section 3 intro-
duces the proposed approach. In section 4, the proposed
algorithm is evaluated experimentally. Section 5 con-
cludes the paper.

2 SELF-LEARNING - A SUMMARY

Self-learning [1] uses two images (LR image, I;,, and its
downsampled coarser version, I.,urse) to achieve very
high magnification factors. Contrary to Glasner et al.
approach [4], LR-HR patch pair dictionaries containing
only patches of I;, that find an exact match in I o
are created (also called best-mapped patches). Figure 1
graphically explains the process of dictionary genera-
tion by self-learning. In Fig. 1, Py and P_; form the
best-mapped patch pair, and Ry is the corresponding HR
patch. Py and Ry form an LR-HR patch pair. This pro-
cess of self-learning is repeated to search for all such
LR-HR patch pairs. All such patch pairs form LR-
HR dictionaries. Non-dictionary patches are obtained
as a linear combination of patches from dictionaries us-
ing /;-minimization under sparsity assumption, by for-
mulating the problem to estimate the coefficients as in
Eq. 1[12].

N
min |[x|[;,,subj. toy = ¢x; where ||x[|;, = ) [xi| (1)
xcRN i=1

Here, y and ¢ represent LR patch vectors and the LR
dictionary, respectively. The estimated x is used to re-
construct non-dictionary HR patches from the HR dic-
tionary.

A degradation kernel is estimated for each LR-HR
patch pair from the learned dictionaries. These esti-
mated degradation kernels are subsequently used in
conjunction with Gabor prior to obtain final upsampled
image. All these operation takes hours (see Table 2) to
complete and render self-learning ineffective for fast
and quick image upsampling.

3 THE PROPOSED FRAMEWORK

Self-learning [1] considers exact matching patches as
the candidates for LR-HR dictionaries; though, for
large images, these dictionaries become prohibitively
large. The proposed approach begins by creating
such LR-HR dictionaries from images captured using
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Figure 3: Histogram of edge strengths of LR dictio-
nary patches: The shape of edge-strengths distribution
resembles that of variance distributions of dictionary
patches in Fig. 2. This observation allows reconstruc-
tion of a patch of a particular variance class as a linear
combination of patches from the same variance class.

camera in the same fashion as self-learning [1] with
spatial resolution of X and 0.5X. Our experimental
observation of variance distribution (histogram of vari-
ances) of patches of LR dictionaries of around 1300
images (including paintings, abstract art, and natural
images) indicates that the majority of LR dictionary
patches have very low-variance. Figure 2 shows some
of the sample images along with the variance histogram
of their corresponding LR dictionary patches. We use
this evidence to create dictionaries.

Dictionary creation

Self-learning employs [j-minimization to solve for
non-dictionary patches, which not only has very high
time complexity, but the LR dictionary itself has
inherent redundancies of the patches. The proposed
approach eliminates these redundancies in a simple and
efficient manner. In the proposed approach, instead
of using computationally taxing /;-minimization, we
opt for much faster /;-minimization. In our experi-
ments we have observed that, based on the variance
distribution of LR dictionary patches, any low-variance
non-dictionary patch can be reconstructed by a linear
combination of only low-variance dictionary patches.
Similarly, for high- or medium-variance non-dictionary
patches, linear combination of patches from their re-
spective dictionaries, is sufficient. This observation can
be supported by considering low-variance patches as
patches lacking in details and high-variance patches as
patches with high-details (edges). For this assumption
to be true, the histogram of edge-strengths (gradient
value for each dictionary patch) of an LR dictionary
patches should resemble that of the histograms in
Fig. 2. Figure 3 shows histogram of edge-strengths of
LR dictionary patches for one of the sample images.
It indeed validates our assumption that high-variance
patches contain details and vice versa. As a conse-
quence of this observation, in the proposed approach,
the self-learned LR dictionary is divided into three
separate dictionaries comprising low-, medium-, and
high-variance patches, separately. Cumulative Density
Function (CDF) of LR dictionary variances (Figure 4)
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Figure 4: Selection of thresholds for dictionary di-
vision: A sharp rise in the CDF curve near the origin
indicates a very high density of low-variance patches.
Indices i and j in CDF are used to select 7; and 7}, from
histogram of variances. 7; and T}, are variables.

Variance at index i, T; ‘

provides a guideline for the division of LR dictionary.
It represents the process of threshold selection for
LR dictionary division. The variance value in the
histogram of variances plot that has a cumulative
value of 0.3 with all the preceding variance values is
chosen as low-variance threshold, 7; (index i in Fig. 4).
Similarly, the variance value in the histogram that has a
cumulative value of 0.6 with all the preceding variance
values is chosen as high-variance threshold, 7}, (index
j in Fig. 4). Any LR dictionary patch with variance
less than 7; is classified as low-variance patch, and
any LR dictionary patch with variance greater than 7;,
is classified as high-variance patch; while the rest of
the dictionary patches are termed as medium-variance
patches. It is to be noted that 7; and T}, are variables
and can have values other than 0.3 and 0.6, respectively.

Dictionary redundancy removal

Even after the division, low-variance dictionary still ex-
hibits redundancies among its patches. These redun-
dancies are eliminated by a simple k-nearest neighbor
(k=1) operation. In the proposed approach, for every
patch in low-variance dictionary (unlike self-learning
that searches for the exact match), its most similar patch
is searched within the low-variance dictionary itself.
For every such LR patch pair found, the patch with a
higher variance value is retained in the dictionary, while
the other patch of the pair is discarded from the dictio-
nary. Since medium- and high-variance represent de-
tails of the image, this operation is performed only on
low-variance dictionary. Figure 5 shows a dictionary
variance distribution before and after redundancy re-
moval. HR dictionary is formed by extracting for ev-
ery LR patch its corresponding HR patch from the HR
dictionary. We thus have three LR dictionaries and their
corresponding HR dictionaries. After obtaining LR dic-
tionaries in the aforementioned manner, non-dictionary
LR patches are represented as a linear combination of
patches from one of the three LR dictionaries depend-
ing upon their variances, and the corresponding coef-
ficients for each non-dictionary LR patch are obtained
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Figure 5: Redundancy elimination for low-variance
dictionary: (a) Input image; (b) Distribution before re-
dundancy removal; (c) Distribution after redundancy
removal. The shape of the distribution is preserved pre-
and post- redundancy removal with 30% reduction in
low-variance dictionary patches.

using a least-norm minimization, as in Eq. 2, where y
is an LR patch vector; L;,, Ly, Ly, are low-variance,
medium-variance and high-variance LR dictionaries,
respectively; X is a coefficient vector. Equation 2 repre-
sents an under-determined system of equations. Hence,
there is no unique solution in the least-square sense.

Lyx  ifVar(y) <T,
min.||x||y; st.y=< Lpyx ifT; <Var(y)<T, ()
Lyx ifVar(y) > T,

For every LR patch, its corresponding HR patch (based
on its variance) can be reconstructed from one of the
three HR dictionaries and the estimated coefficient vec-
tor x, as shown in Eq. 3. Here z is a reconstructed HR
patch; H indicates HR dictionary and the subscript in-
dicates the dictionary class.

Hyx  ifVar(y) <T,
z=< Hpx ifTj<Var(y)<T, 3)
Hpx  ifVar(y) > T,

The histogram plot of the difference of variances be-
tween LR and their corresponding HR patches in Fig-
ure 6 validates the use of estimated coefficients from
LR patches to reconstruct corresponding HR patches. A
spike at the origin hints at the sameness of low-variance
and medium-variance patches; while the long tail of the
distribution points at the similarity between the high-
variance LR and HR patches. Most of the image dictio-
naries exhibit such behavior. The division of dictionary
into smaller dictionaries, along with the use of least-
norm, makes the proposed approach smarter and com-
putationally efficient from self-learning [1]. It is to be
noted that the procedure explained above upsamples the
image by a factor of 2. Higher magnification factors can
be achieved by considering the current upsampled im-
age as an LR image and repeating the above procedure.

4 EXPERIMENTAL RESULTS

In this section, the proposed approach is evaluated both,
perceptually and quantitatively, for upsampling factors
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Figure 6: Distribution of difference of variances be-
tween LR-HR patches of dictionary: Gaussian shape
of the distribution along with a long tail indicates the
similarity of variances between LR and their corre-
sponding HR patches.

up to 8. Blind/Referenceless Image Spatial QUality
Evaluator (BRISQUE) [13] is used for quantitative
evaluation. We work in Y C,C, color space. Only the
luminance (Y) channel is upsampled, while C;, and C,
channels are bicubically interpolated. The images are
either downloaded from the Internet or captured using
a mobile phone (XOLO A500, SMP camera). Icoqrse
is obtained from I;, by a blur & downsample process.
Patches of size 3x3 are used. For self-learning [1],
nearest neighbor search is performed using Approxi-
mate Nearest Neighbor [14]. The threshold values, 7;
and Ty, for dictionary division, after many trials, are set
to 0.3 and 0.6, respectively.

Perceptual and quantitative evaluation

Figures 7—10 show the results for upsampling factor of
2. Self-learned dictionary of Fig. 7(c) (top row) com-
prises around 28,000 patches. The combined dictio-
nary using our approach comprises 4,744 patches (a re-
duction of 83%). It would be of interest to note that
only a small percentage of the patches in self-learned
dictionary are used in our approach for reconstruction
(see figure captions for relevant statistics). Insets in fig-
ures prove the superiority of our approach over self-
learning, and its comparability to Shan et al. [11].
While for edges with smooth nearby regions Shan et
al. [11] produces visually pleasant results (insets in
Figs. 7b-top row, 9d, 11a), for images with very fine
textures, it seems to produce a cartoonish feel (insets in
Figs. 8b, 10d).

Figures 11 and 12 present the results for upsampling
factors of 4 and 8, respectively. For 4X, reduction
of 94% is achieved in Fig. 11(c) (113,218 to 6,602
patches); while Fig. 11(f) has 93% reduction (108,413
to 7,867 patches). Final spatial resolution of 8X im-
ages is 3736x2492. For both the results of 8X in Fig-
ure 12, the dictionary reduction of 99% is achieved.
This means only 1% of the total dictionary patches are
sufficient for 8X reconstruction, and thus establishing
the computational efficiency of our approach for higher
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scaling factors. Figure 13 shows the upsampling results
for images captured using mobile phones. Quantita-
tive evaluation is done with Bicubic interpolation, along
with image upsampling methods. Table 1 lists the ob-
tained BRISQUE scores for Bicubic, self-learning [1],
Shan et al. [11] and proposed approach. Kindly see the
supplementary material for more upsampling results of
different types of images. Figures 14-15 show some
more results for 2X and 4X. All the input images had a
spatial resolution of ~1-1.5MP. Shan et al. [11] has the
tendency either to oversharp the edges or oversmooth
the fine details.

A word on time complexity

The proposed approach does not use any type of opti-
mization methods to upsample the image. So, the pro-
cesses that incur significant time cost in the proposed
approach are, nearest-neighbor search, and estimation
of coefficient vector x. The proposed approach is im-
plemented in MATLAB on a system with 4GB RAM
and 2.50 GHz intel-i5 processor system, and although
it is an unoptimized and proof-of-concept version, a fair
idea about its efficiency can be had. MATLAB in-built
optimized functions were used wherever possible to
speed up the upsampling process. For nearest-neighbor
search an optimized version of ANN was used. For /;-
minimization used in self-learning, /;-magic [15] pack-
age by Justin Romberg was used. Results of Shan et
al. [11] were produced by an optimized executable ob-
tained from their online resources and the best result
was chosen for the comparison. Table 2 compares the
proposed approach with self-learning [1] and Shan et
al. [11]. While clearly outrunning self-learning [1], the
proposed approach performs comparably with Shan et
al. [11] indicating at its viability for practical imple-
mentation when used in its optimized form.

S CONCLUSION

We have proposed a single image upscaling approach
which uses only a small percentage of the total dictio-
nary patches to reconstruct high resolution images in an
efficient manner. The time performance of the proposed
approach hints at its potential ability to be utilized in (an
optimized form) the current handheld devices.
Acknowledgement This research has been carried
out as a part of the project Indian Digital Heritage
(IDH) - Hampi, sponsored by Department of Sci-
ence and Technology, Govt. of India (Grant No:
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(a) LR (b) Shanetal.[11] (c) Self-learn. [1] (d) Our Approach (e) LR (f) Shanetal.[11] (g) Self-learn. [1] (h) Our Approach
Figure 8: Upsampling by 2X for architectural images [Castle (480x320) and Mural (480x720)]: (a), (e) LR im-
ages; (b), (f) Shan et al. [11]; (c), (g) Self-learning; (d), (h) Our Result. Self-learned dictionaries in (c) and (g) are

of size 30,680 and 76,797, respectively. Our approach has dictionary size of 5,640 (82% reduction) and 7,081
(91% reduction), respectively.

(a) Shanetal.[11] (b) Self-learning [1]  (c) Our Approach  (d) Shanetal.[11] (e) Self-learning [1]  (f) Our Approach
Figure 9: Upsampling by 2X for abstract/paintings [Arnie (320x192) and Vader (320x192)]: (a), (d) Shan et
al. [11]; (b), (e) Self-learning; (c), (f) Our Result. Self-learned dictionaries in (b) and (e) are of size 11,581

and 9,504, respectively. Our approach has dictionary size of 982 and 794 (92% reduction for both the images),
respectively.

(a) Shanetal.[11] (b) Self-learning [1]  (c) Our Approach  (d) Shanetal.[11] (e) Self-learning [1]  (f) Our Approach
Figure 10: Upsampling by 2X for natural images [Tulip (416x352) and Cat (416x352)]: (a), (d) Shan et
al. [11]; (b), (e) Self-learning; (c), (f) Our Result. Self-learned dictionaries in (b) and (e) are of size 17,993

and 25, 886, respectively. Our approach has dictionary size of 4,314 (76% reduction) and 6, 106 (76% reduction),
respectively.

L % 7 s, % 7 ., o 7 V4 oSN
(a) Shanetal.[11] (b) Self-learning [1]  (c) Our Approach  (d) Shanetal.[11] (e) Self-learning [1]  (f) Our Approach

Figure 11: Upsampling by 4X [Baboon (320x480) and Lady (480x312)]: (a), (d) Shan et al. [11]; (b), (e) Self-
learning; (c), (f) Our Result.
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(d) Shanetal.[11] (e) Self-learning [1]

(f) Our Approach
Figure 12: Upsampling by 8X [Lady (480x320) and Boat (466x310)]: (a), (d) Shan et al. [11]; (b), (e) Self-
learning; (c), (f) Our Result. For (c), the dictionary is reduced from 356,175 to 7,977 patches. For (f), the
dictionary is reduced from 419,623 to 2,464 patches.

(a) Shanetal.[11] (b) Self-learning [1]  (c) Our Approach

(a) Shanetal.[11]  (b) Our Approach  (c) Shanetal.[11]  (d) Our Approach  (e) Shanetal.[11] (f) Our Approach
Figure 13: Upsampling by 2X for mobile phone images: (a), (c), () Shan et al. [11]; (b), (d), (f) Our Result. Shan
et al. [11] images have BRISQUE score of 40.72, 42.20 and 46.88, respectively. In comparison, our approach has
BRISQUE scores of 54.78, 42.33 and 47.03, respectively. For all three images, 77% of reduction in dictionaries is
achieved. Input images are of resolution 480x640, 640x480, and 640x480, respectively.

2X 4X 8X
Woman | Logo | Castle | Mural | Arnie | Vader | Tulip | Cat || Baboon | Lady || Lady | Boat éAc ‘;g1:e
Bicubic 26.02 | 37.04 | 43.80 | 41.64 | 19.63 | 22.00 | 59.02 | 36.74 || 55.48 |38.31 || 45.82 | 52.99 | 39.87
Self-
learning 26.14 | 60.74 | 43.06 | 43.63 | 24.02 | 26.66 | 62.04 | 37.85 || 55.48 |46.35 | 55.27 | 54.78 | 44.67
[1]
Shan et
al. [11] 3450 [61.65| 51.35 | 47.92 | 27.38 | 34.40 | 68.87 | 38.43 || 60.19 |41.68 || 66.67 | 68.11 | 50.09
Our 3421 [60.79 | 51.99 | 47.81 | 28.51 | 38.80 | 68.82 | 38.13 || 58.83 |49.97 || 68.50 | 67.89 | 51.19
Approach

Table 1: BRISQUE scores for the results in Figs. 7—12. The average BRISUQE score is better for our approach
than those of self-learning [1] and Shan et al. [11]. (Higher score indicates better image quality.)

2X ax 8X
Woman | Logo | Castle | Mural | Arnie | Vader | Tulip | Cat b]z?)-n Lady || Lady | Boat
Sha[‘;f]t a1l 1500 | 12.82 | 23.89 | 46.06 | 7.11 | 658 | 48.14 |13.18 || 70.18 | 127.83|| 348.49| 342.52
Self- 358 [3.79 |/7.88 |3.79
learning || 144.57 | 150.00 | 136.67 | 183.33 | 155.85 | 109.95 | 123.88 | 96.98 || >: : : :
(1] Hrs. | Hrs. Hrs. Hrs.
Our 10.69 | 67.45 | 72.53 | 153.74 | 16.37 | 14.50 | 61.52 | 67.12 || 144.32 | 168.86|| 340.52 380.12
Approach

Table 2: Time complexity (in seconds) for the results in Figs. 7—12. Note that for 8X the time complexity perfor-
mance of our approach is comparable to that of Shan et al. [11].
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(a) Shanetal.[11] (b) Bicubic Interpola-
tion

(c) Our Approach  (d) Shanetal.[11] (e) Bicubic Interpola- (f) Our Approach
tion

Figure 14: Upsampling by 4X. Input images are of size 468x312 and 480x720, respectively

(a) LR (b) Bicubic Interpolation (c) Shan et al.[11] (d) Our Approach

Figure 15: Upsampling by 2X: Each LR image has a resolution of ~ 1-1.5 MP (630x840, 600x960, 538x717, and

674x899, respectively). Shan et al. [11] often produces results with over-sharpened edges (3"¢ row) or fine details
smoothened (2™ row)
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