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ABSTRACT
This paper presents a real-time procedural texturing algorithm for hatching parametrized surfaces. We expand on
the concept of Tonal Art Maps to define recursive procedural tonal art maps that can service any required level-of-
detail, allowing to zoom in on surfaces indefinitely. We explore the mathematical requirements arising for hatching
placement and propose algorithms for the generation of the procedural models and for real-time texturing.
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1 INTRODUCTION

Image synthesis methods mimicking artistic expres-
sion and illustration styles [Hae90, PHWF01, SS02]
are usually vaguely classified as non photo-realistic
rendering (NPR). Hatching is one of the basic artis-
tic techniques that is often emulated in stylistic ani-
mation. Hatching strokes should appear hand-drawn,
with roughly similar image-space width, dictated by
pencil or brush size, but they should also stick to sur-
faces to provide proper object space shape and mo-
tion cues. Both properties must be maintained in an
animation, without introducing temporal artifacts. In
particular, when surface distance or viewing angle is
changing, object-space density of strokes should adapt
without the strokes flickering or drifting on the surface,
while presenting natural randomness inherent in man-
ual work [JEGPO02, AWI∗09].

In this paper we present recursive procedural tonal art
maps (RPTAM), a single-shader rendering technique
that fulfils the above criteria with less limitations than
previous techniques (Figure 1). In particular, strokes
are preserved as constructing elements (as opposed to
texture harmonics), infinite zooming is possible (as op-
posed to a finite LOD set), and local shading is suf-
ficient (as opposed to global geometry processing and
hidden stroke removal). The key idea is that we place
strokes in texture space, at pre-generated seed locations
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exhibiting a self-similar pattern, allowing for smooth
transitions between any texture scalings.

Figure 1: Teapots rendered with the same shader and
settings, featuring different levels of detail.

The organization of the paper is as follows. In Section 2
we summarize the related previous work on both hatch-
ing and self-similarity. Section 3 introduces the idea
of Recursive Procedural Tonal Art Maps. In Section 4,
we derive the mathematical construct for the placement
of hatching strokes to meet the self-similarity require-
ments. In Section 4.1, we propose a scheme to generate
good quality seed sets. We discuss rendering in Sec-
tion 5, including the level-of-detail scheme and tone
representation. The description of the final algorithm
and the discussion of results and future work conclude
the paper.

2 PREVIOUS WORK
2.1 Density and direction fields
In pencil drawings, artists convey the shape and
illumination of objects with the density, orienta-
tion, length, width and opacity of thin hatching
strokes [WS94, HZ00]. To mimic this, we should find
a density and a direction field in the image plane that is
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as close as possible to what an artist would use. The
density, length, width and opacity should be influenced
by the current illumination, while the orientation is
determined by the underlying geometry. Artists may
use cross-hatching, i.e. several layers of strokes,
aligned at different angles to the direction field.

In this paper, we do not address the problem of
direction field generation, but assume that a proper
UV parametrization is already known for surfaces,
where isoparametric curves follow desired hatching
directions. Proposing a parametrization algorithm
tailored to our approach is left for future research.

2.2 Seed-based hatching
Several works [Mei96, USSK11] proposed the applica-
tion of particles or seeds attached to objects, but extrud-
ing them to hatching strokes in image space. Strokes
are obtained by integrating the direction vector field
started at seed points or particles [ZISS04, PBPS09].
The key problem in these methods is the generation
of the world-space seed distribution corresponding to
the desired image-space hatching density. This either
means seed killing and fissioning [WH94]—even
using mesh subdivision and simplification [CRL01]—,
or rejection sampling [USSK11]. These techniques
are mostly real-time, but require multiple passes and
considerable resources. Compositing hatching strokes
with three-dimensional geometry is not straightfor-
ward: depth testing of extruded hatching curves against
triangle mesh objects must be using heavy bias and
smooth rejection to avoid flickering.

In our work, we use the notion of seeds to discuss hatch-
ing stroke position and distribution patterns. However,
we are not concerned by seed positions in object space,
rather in parameter space, and we do not extrude seeds
to triangle strip geometry, but use their positions for
procedural texturing.

2.3 Self-similarity in NPR
Dynamic solid textures [BBT09] have been proposed
for infinite zooming capability in stylistic rendering.
The textures are fractalized, and represented as a
weighted sum of octaves, whose scale and blending
weights change in a cyclic manner to produce zooming.
Our work shares the same motivation, and we also
exploit self-similarity, but we keep strokes as generat-
ing elements, focusing on hatching rather than generic
texturing, thus avoiding contrast loss and mixing in
unintended frequencies.

The Halton sequence has been used to generate seed
sequences [USSK11] that can be truncated to get statis-
tically similar, lower density hatching. As any number
of seeds can be generated this way, this allows for in-
finite level of detail. We aim at the same effect, but

working in texture space to avoid stroke geometry pro-
cessing and hidden stroke removal complications, and
with a finite, but self-similar seed set to eliminate the
need of generating a view-dependent number of seeds.

2.4 Texture-based hatching
In order to assure that strokes remain fixed to 3D
surfaces, hatches can be generated into textures and
mapped onto animated objects [LKL06]. This requires
surface parametrization. The most characteristic
limitation of texturing-based hatching approaches is
limited level-of-detail support. Simple static textures
perform extremely poorly, as the width of hatching
strokes is fixed in UV space, and—through the UV
mapping—also in object space.

Figure 2: A Tonal Art Map with the nesting property.
Strokes in one image appear in all the images to the
right and down from it. From Praun et. al [PHWF01].

Thus, simple texturing does not allow for hatching that
is uniform in screen space. A level-of-detail mecha-
nism called Tonal Art Maps has been proposed to al-
leviate this problem [PHWF01]. Using this technique,
several texture images are pre-drawn, representing dif-
ferent tones and hatching scales. Figure 2, taken from
the referred paper, shows such a set of maps. When ren-
dering surfaces, the appropriate texture in every pixel
can be selected based on the desired tone and on-screen
hatching stroke width. In order to avoid sharply clipped
hatching strokes at boundaries of different-detail zones,
the patterns fade into each other using interpolation.

In an animation, as the required hatching density is
changing, it is important that strokes stay at their on-
surface positions. It is allowed for new hatching strokes
to appear when the density increases, and for existing
strokes to vanish, should the density decrease. How-
ever, strokes should not be appearing and vanishing in
the same vicinity at the same time. Therefore, denser
hatching textures should always contain the strokes of
sparser textures as a subset. This is called the nesting
property, also observable in Figure 2.

Tonal Art Maps, however, only support a range of
hatching scales as defined by the most detailed and least
detailed map levels. Thus, when zooming in onto a sur-
face, we cannot have finer hatching than what texturing
with the most detailed map level would produce, result-
ing in huge and sparse hatching strokes in image space.
Also, there is a trade-off between the number of de-
tail levels used and the quality of transitions between
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those levels. With too few textures, a large number of
strokes fade in at the same time, resulting in an image
with non-uniform stroke weights. While this is accept-
able in most cases, as weaker pencil strokes can possi-
bly be used by artists, it is a limitation to the degree of
screen-space uniformity we can achieve.

3 RECURSIVE TONAL ART MAPS
Our goal is to unify the simplicity and robustness of
Tonal Art Maps with the unlimited level-of-detail of-
fered by deterministic seed generation and rejection
sampling. To achieve this, we make Tonal Art Maps
infinitely loopable, by making the nesting property re-
cursive.

The workflow of the complete solution is:

• Bit patterns—fitting in a few bytes—representing
recursively nested seed sets are generated offline.

• A stroke coverage texture is rendered that stores
seed IDs, indicating which strokes could contribute
to a surface point. This texture must only be re-
rendered when the hatching style (e.g. overall stroke
width) is modified.

• When shading a surface point, the required detail
level is computed. Scaled according to the de-
tail level, the stroke coverage texture is queried for
IDs of relevant seeds. Their positions are recon-
structed from the bit pattern and the ID. Hatching
strokes—using an artist-drawn stroke texture, scaled
and faded for required detail—are placed at these
positions and processed for their contribution to the
color of the shaded point.

Strokes are positioned at seeds in the texture represent-
ing the hatching pattern. This texture is broken into
four tiles, forming a 2× 2 grid. In all four quarters,
the seeds must be the subset of the complete seed set
scaled down to fit the quarter. This way, the seeds are
nested in the pattern that we get by repeating them twice
along both axes (Figure 3). Thus, when we zoom in to
any of the quarters, it is possible to add new strokes
re-creating the original, most detailed hatching pattern,
where the process can be restarted. This is the recursive
nesting property of the seed set, which we will define
more formally in Section 4. Following the classic Tonal
Art Map scheme, this would require four sequences of
images, describing how the individual quarters evolve
into the full hatching pattern. However, we will never
actually create these images, but describe them proce-
durally, and use this extremely compact representation
for rendering.

First, in Section 4, we deal with the problem of posi-
tioning seeds, in a way that assures the recursive nest-
ing property. In Section 4.1, we discuss what seed sets

Figure 3: Seed sets of 4 and 16 elements with the re-
cursive nesting property. Large circles indicate seeds,
small circles are the seed pattern repeated on a 2× 2
grid. The dense pattern scaled up from any corner gives
the sparse pattern.

produce good quality hatching patterns and how to gen-
erate those. We address hatching stroke length, width,
and orientation in Section 5.

4 SEED GENERATION
Our construction of seed point positions unambigu-
ously follows from the requirement of the recursive
nesting property, and that we use a finite seed set.

Let the set of all seed points be S= {s0, . . . ,si, . . . ,sN−1},
where si = (siu,siv). These positions are defined in
the seed space. Later, to get UV space positions, seed
space positions will be scaled according to the detail
level, and wrapped over indefinitely.

In order to formalize zooming in to any quarter of the
unit square, let us define the operator D as

Ds = ⟨2s⟩,

with angle brackets denoting the fractional part. Geo-
metrically, this operation is a scaling by the factor of
two, using the nearest corner of the unit square as the
center. This tells us where a seed gets when we zoom
in to the quarter it is in. The recursive nesting property
requires that all those positions coincide with seeds, as
the zoomed-in version must be nested in the complete
pattern.

Figure 4: OperatorD projects seeds to double their dis-
tance from the nearest corner. Seed sequences are gen-
erated by repeating this operation. Seeds are colored to
show the corner used for the scaling.
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This means that if we already know a seed si, then its
image Dsi must also be a seed (Figure 4). A sequence
of N seeds then must be found as

si+1 =Dsi, if 0≤ i < N−1.

However, as our set must be finite, DsN−1 must also be
in S. This can be true if s0 =DsN−1.

There is an obvious connection to iterated function sys-
tems (IFS) [BD85], and the chaos game method of gen-
erating their attractors [BV11]. Just like our construct,
the chaos game transforms an initial point repeatedly.
The transformation is randomly picked from a set each
time. However, if the transformations map the attractor
to disjunct areas, then it can be unambiguously deter-
mined for a point which the last transformation was.
Then, starting with a point, the sequence can be traced
back deterministically. In our case, we are playing this
deterministic version of the chaos game with four trans-
formations, each mapping the unit square to one of its
quarters. The attractor of this system is the unit square
itself. We only take care that the sequence returns to
itself, and thus we can work with a finite number of
seeds.

   = 0.00100001101111010010000110111101

   = 

period

0.00011011110100010001101111010001

   = 0.01000011011110100100001101111010

   = 0.00110111101000100011011110100010
cycling

crumb

Figure 5: Interpretation of operator D on binary frac-
tions. For periodic fractions, the bits can be cycled.

In order to find an initial seed that produces such a
closed seed loop, let us consider the binary radix frac-
tion form of the seed coordinates. The operator D re-
moves the first binary digit after the binary radix point,
shifting the rest to the left (Figure 5). Thus, we can in-
terpret the above method of seed generation as repeat-
edly shifting the bits of coordinates s0u and s0v. After
N steps we need to arrive back at s0. This is possi-
ble if s0u and s0v are periodic binary fractions of period
N (or a divisor of N). Any such periodic binary frac-
tions produce a recursively nested seed set, but not all
of them are distributed evenly and isotropically. There-
fore, in Section 4.1 we propose a method for finding
binary fractions that represent good quality seed sets.

4.1 Uniform seed sets
In an infinite sequence of independent, random ele-
ments with discrete, uniform outcome probabilities,
we expect any fixed-length pattern to appear with the
same frequency. Extending that to finite sequences,
we expect possible fixed-length patterns to appear
with frequencies as uniform as possible when cycling

through the sequence. Bit sequences with such a
property are called uniform cycles [Spi09]. The
bit sequence for the u and v coordinates could be
found independently, but then coincidentally identical
patterns could appear, making u and v correlated, and
the seed pattern anisotropic. Instead, we can combine
the respective bits of u and v periods to form crumbs
(quaternary equivalent of binary bits or decimal digits),
forming a quaternary periodic fraction. To distribute
points evenly, the crumbs of one period must form a
quaternary uniform cycle.

In order to understand what uniformity means in the ge-
ometrical sense, let us find the intuitive meanings of the
crumb values. Recall that the first crumb in the quater-
nary representation of a seed point is the combination
of the first bits of the binary fractions for its coordi-
nates. Thus, the value of the first crumb indicates in
which quarter of the unit square the seed point is. Then
the second crumb indicates in which 1

4 ×
1
4 square it is

within the quarter, and so on. When we generate seeds
by cycling the bits, the number of times a pattern of
some length shows up behind the radix point is exactly
the number of seeds in the corresponding squarelet. If
N = 4K with some K integer, then exactly one seed will
fall in every cell of a 2K × 2K grid (Figure 6). This is
very similar to the elemental interval property of the
low discrepancy Halton sequence [Hal64].

Figure 6: Seeds generated by a uniform cycle are uni-
formly distributed in the sense that one seed falls in ev-
ery grid cell.

Although no polynomial-time algorithm of generation
is known for binary or quaternary uniform cycles of ar-
bitrary length, in practice it is possible to find cycles
by enumerating a set of all possible snippets of length
log4 N and performing a brute force search over their
permutations [Spi09]. A permutation is valid if all snip-
pets, with their first crumb removed, are identical to the
consecutive one without its last crumb. The uniform
cycle is given by the initial crumbs of all snippets. For
N = 16, this can even be done manually, arranging the
snippets 00, 01, 02, 03, 10, 11, 12, 13, 20, 21, 22, 23,
30, 31, 32, 33 yielding e.g. the quaternary sequence
0012202332131103. Note that uniformity applies: all
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crumbs appear four times, and all possible snippets of
two crumbs only once.

Algorithm 1 Quaternary uniform cycle generation
1: function UNIFORM(set of snippets P,sequence Q)
2: if |Q| ̸= N then ◃ sequence incomplete
3: ρ ← random crumb from (0,1,2,3)
4: for δ ← ρ,ρ +3(mod 4) do ◃ for all 4
5: p← (q1−K ,q2−K , ...,q−1,δ ) ◃ postfix
6: if p ∈ P then ◃ pfx snippet available
7: P′← P\ p ◃ expend snippet
8: Q′← Qδ ◃ append crumb to Q
9: Q̌← UNIFORM(P′,Q′) ◃ continue
10: if Q̌ ̸= /0 then
11: return Q̌ ◃ success
12: return /0 ◃ nothing worked, fail branch
13: else ◃ sequence complete
14: for i← 0,K−1 do ◃ check wrapping
15: p←

(

qi−(K−1),qi−(K−2), . . . ,qi
)

16: if p /∈ P then ◃ wrapped snippet
17: return /0 ◃ mismatch, reject Q
18: P← P\ p ◃ expend wrapped snippet
19: return Q ◃ accept Q

For an arbitrary N, we provide here an algorithm
(Algorithm 1) that builds a growing sequence
Q = (q0,q1, . . . ,q−2,q−1) of crumbs ultimately form-
ing a quaternary uniform cycle. Note that the indices
in Q are understood (mod |Q|), where |Q| is the length
of Q. The algorithm tests, for all four crumb values,
whether appending them to Q results in a new postfix
that is still available in set P. If it is, we expend the
snippet from P and append the continuation to Q.
When Q is complete, it is verified that the additional
snippets generated by cycling the sequence are identi-
cal to those remaining in P. If they are, we have found
a cycle containing all snippets once, and only once.

We can obtain a uniform cycle that specifies the posi-
tion for an initial seed by calling UNIFORM with an ini-
tial sequence of a random snippet (e.g. 000) as Q, and a
snippet set P with all possible snippets, save for the ini-
tial one already in Q. Having obtained the crumbs of the
initial seed, we get further seeds by repeatedly apply-
ing operator D on these numbers, cycling the crumbs
within the period. Note that Algorithm 1 only needs to
be run once to get the bit pattern for a seed set, which
can then even be hardwired into an implementation. In
runtime, obtaining an individual seed from the bit pat-
tern only needs a circular bit-shift operation.

5 RENDERING
We need to wrap the seed pattern on surfaces at an
appropriate scale to ensure the desired viewport-space
stroke size and density. This scale varies over the sur-
face, and the pattern needs to adapt continuously in both

time and space. We achieve this by first scaling the
seed pattern by an approximating power of two (Sec-
tion 5.1), then scaling the strokes themselves to make
up for the difference (Section 5.2), and fading some
strokes to transition between densities (Section 5.3).

5.1 Seed pattern scale
The process of detail level selection is analogous to that
of mipmapping [Wil83], the difference being that in our
case all detail levels are identical, but scaled by powers
of two. In mipmapping, level selection is based on the
viewport-space derivatives of UV coordinates. This is
also true for our method, with two main differences.
First, hatching patterns are anisotropic. If perspective
distortion causes strokes merely to appear shortened,
that bears very little stylistic impact, and strokes should
not be made wider and sparser. If perspective distortion
causes strokes to appear thinner and denser, however, a
change in level of detail is justified. Thus, instead of
taking the maximum of the rates of change along the u
and v directions as in classic mipmapping, we are inter-
ested in the rate of change perpendicular to the hatching
strokes. Second, the choice of the detail level does not
indicate a choice from a precomputed set of textures,
but it tells us at what scale the seeds should be wrapped
over the UV space. As the overall goal is to achieve
a given viewport-space density, this mapping between
seed and UV spaces should cancel out the mapping be-
tween UV and viewport spaces as much as possible.
Note that these mappings might not be linear or even
well-defined globally, but they are always interpretable
for a given surface point locally.

Let L be the unknown, local mapping of seeds to texture
coordinates we wish to find:

xuv = Lxs

where xs is a seed space position xuv the texture coordi-
nates, and L must be an isotropic scaling by a power of
two. Our objective is to find the scaling factor for any
given surface point. In this discussion, we are look-
ing for an arbitrary scaling factor first, and then select a
power of two that approximates it.

Let T be the local inverse of the texture mapping oper-
ator, defined by the model parametrization. Thus,

xobj = Txuv

where xobj is the model space position. This is the well-
known tangent space to object space transformation,
with the tangent and binormal vectors being the non-
normalized partial derivatives of object space position
with respect to u and v.

Let G be the complete model-to-viewport-space
mapping of the image synthesis pipeline, including the
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model, view, projection, and viewport transformations,
all defined by object and camera setup. Thus,

xvp = Gxobj

where xvp is the viewport space position.

With these, the transformation from seed space to the
viewport can be written as

xvp = GTLxs. (1)

Note that all operations are dependent on the surface
point, and they are all local linearizations.

Let h be the detail direction, a differential direction vec-
tor in the seed space that is perpendicular to stroke di-
rection. What we are interested in is how the detail di-
rection is scaled by the mappings G, T, and L. Let us
define these scaling factors as the detail factor L, the
texture distortion T , and the geometry factor G:

L =
|Lh|
|h|

, T =
|TLh|
|Lh|

, G =
|GTLh|
|TLh|

.

With these, Equation 1 can be applied to differentials,
yielding the formula for the scaling of the detail direc-
tion as

|hvp|= GT L|h|,
where |hvp| is the length of the detail direction vector as
it appears in the viewport. The geometry factor G and
texture distortion factor T can be computed easily (we
skip the formulae as both model-view-projection and
tangent space transformations are well-known), and L
is the scaling that should be introduced by the choice of
the detail level.

The ratio F = |h|/|hvp| captures how densely seeds ap-
pear in the viewport. This is a free artistic parame-
ter, and a global constant, as we do not consider den-
sity modulation for tone yet. As with regular texture
mapping, choosing a lower value of F results in more
detail—more seeds, thus more hatching strokes per unit
area—, but also more repetition as the texture coordi-
nates wrap around. With this, the desired detail factor
L can be expressed as

L = (GT F)−1.

To make use of the nesting property, L should be a scal-
ing with a power of two, thus L ≈ 2⌊M⌋, where we call
integer ⌊M⌋ the nesting depth. We first compute the real
number M as

M = log2 L = log2(GT F)−1 =− log2 GT F,

then take the integer part to get the nesting depth ⌊M⌋.
This gives us the scaling factor between seed space and
texture coordinates as

xs = 2−⌊M⌋xuv.

The solution is exact if M is an integer, and integer val-
ues define nesting levels. For non-integer values of M,
the dense level ⌊M⌋ has to transition into the sparse
level ⌊M⌋+ 1 smoothly. Therefore, we need to scale
strokes appropriately and fade out those that are not vis-
ible in the sparse level (Figures 7 and 8).

texture parameter u

te
x
tu
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 s
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le

pattern appearing on

surface with changing

texture scale

sparse level

dense level

Figure 7: 2D depiction of smooth transition between
nesting levels by stroke width modulation.
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dense level

Figure 8: 2D depiction of smooth transition between
nesting levels by stroke opacity modulation.

5.2 Stroke scale interpolation
The stroke width and length in viewport space are artis-
tic parameters, expressed as the two-dimensional vector
e. By the definition of F , we know that the seed space
stroke size should be Fe, if L were not quantized to
powers of two. In order to compensate for the quanti-
zation, we need to scale seed space stroke sizes by

2M

2⌊M⌋
= 2M−⌊M⌋ = 2⟨M⟩ = 2m,
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where m can be seen as an interpolation factor between
nesting levels, going from 0 at the dense level to 1 at the
sparse level. Knowing that the dense and sparse levels
are identical but for a factor of two, it is easy to picture
why the strokes need to grow to twice their size as the
interpolation factor increases.

Figure 9: Computation of stroke space position (with-
out scaling or rotation). × marks the shaded point.
Its seed space position is xs, the seed processed is
si, the position relative to the seed is xs − si, which
is mapped to the unit square surrounding the seed as
⟨xs− si +η⟩−η .

In order to find the color contribution of strokes at xs,
we need to find which strokes cover this point, and what
part of their stroke texture appears there. Thus, for ev-
ery seed si, we need to find stroke space coordinates zi
corresponding to seed space position xs (Figure 9). The
position of shaded point xs relative to the seed posi-
tion is xs− si, but seeds must be wrapped around indef-
initely to cover the entire plane. Thus, xs− si contains
an integer offset corresponding to the unit tile in which
the seed instance is found. We would like strokes to
be centered at seeds, so we remove the integer offset
by mapping xs − si to the origin-centered unit tile as
⟨xs− si +η⟩−η , where η = (1/2,1/2). This gives us
the relative position of point xs to the nearest instance
of seed si. This can be rotated for stroke direction and
scaled for stroke length and width, yielding the formula
for the stroke texture coordinates

zi = (R(⟨xs− si +η⟩−η))�(2mFe)+η ,

where R is a rotation matrix for stroke alignment, with� standing for the elementwise division. These coordi-
nates can be used to access the stroke texture. Contri-
butions for all seeds must be composited.

5.3 Density interpolation
When we zoom out from a surface, as object-space seed
density needs to decrease, we see the stroke pattern of
the dense level fade to the sparse level. Some strokes
grow in seed-space size in order to maintain their ex-
tents in viewport space (as described in Section 5), oth-
ers vanish to make the hatching sparser. When inter-
polating between two levels, we need to identify those
seeds that remain.

Figure 10: In the blue dense tile, blue seeds coincide
with sparse seeds. A blue arrow in the blue tile is both
a step in the dense tile’s chaos game and the mapping
of a dense seed to a sparse seed.

Four dense tiles cover a single sparse tile (Figure 10).
Let us consider the dense seeds in the upper left (blue)
tile. During the chaos game process, every one of those
seeds has been constructed as a scaled image of another
dense seed, some of them—the blue seeds—using the
upper left corner as the center. Both blue seeds and
sparse seeds are thus defined as dense seeds scaled out
from the blue corner—therefore, they coincide. The
same line of though can be followed for all tiles and
corners. Thus, whether a dense seed coincides with a
sparse seed depends on the agreement of two indica-
tors: which of the four dense tiles it is in, and which
of the four possible scalings produced it in the chaos
game.

The parity bits of a dense tile’s row and column in-
dices indicate which tile it is, within the sparse level
tile. The tile indices are exactly the integer part that was
discarded with ⟨xs− si +η⟩. This can be computed as

w =
⌊

xs− si +η
⌋

.

Which scaling is applied in the chaos game depends on
the first bits of siu and siv. With cycling the bits, these
become the final bits in the bit pattern of the new seed.
Thus, a dense seed coincides with a sparse seed iff the
parities of its u and v bit cycles are the same as that of
the tile row and column indices w. When zooming out,
these seeds remain, while other seeds have to be faded
out as interpolation factor m increases.

Fading strokes out can be accomplished in several
ways. We can use opacity or stroke size modulation,
and we can fade out all strokes simultaneously or one
after the other, as the interpolation factor increases.
Modulating all strokes simultaneously allows them to
blend smoothly, without abruptly appearing or disap-
pearing strokes, but a large number of strokes will be
semi-transparent or intermediate-sized, not achieving
uniform hatching. If strokes appear one after the other,
the method of modulation hardly matters, as they
appear more abruptly, but they all look similar. Note
that because of the recursive nesting property, hatching
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strokes appear or disappear only when hatching needs
to grow denser or sparser, and no flickering is present.

5.4 Tone

In order to convey illumination, we need to be able to
modulate hatching density depending on the locally de-
sired shade or tone. Just as seeds can be faded out for
less detail, their size or opacity can also be modulated
by tone. Again, strokes can be faded out together, pro-
ducing a smoother animation, but with a lot of semi-
transparent strokes, or one after the other, producing
more abruptly appearing strokes of more consistent ap-
pearance.

Furthermore, in artistic practice [HZ00], tone is often
emphasized by rendering about four distinct layers of
strokes, usually at an angle, which is known as cross-
hatching. To simulate that, we use several sets of self-
similar seeds, and overlay them. All layers are asso-
ciated with a tone range, and strokes within a layer
are modulated when local tone is within that range.
Thus, we avoid sharply clipping strokes at tone segment
boundaries.

6 IMPLEMENTATION

Once a proper seed set, in the forms of u and v bit pat-
terns, has been pre-generated, the algorithm can be im-
plemented in a single shader (Algorithm 2). For didac-
tic reasons and ease of understanding, the pseudocode
listing was compiled with the following simplifications:

We do not use multi-layer hatching, to which the al-
gorithm can easily be extended by mapping the de-
sired tone to the tone ranges associated with the lay-
ers, and executing the algorithm for all layers, with
possibly different bit patterns, stroke sizes, rotations,
and stroke textures.

We use simultaneous modulation, as opposed to fad-
ing one stroke after the other, for both tone and de-
tail. If we wish to fade strokes individually, we need
to apply a smoothstep function on tone a and/or in-
terpolation factor m, over the interval [i/(N+1),(i+
1)/(N +1)], in lines 11 and/or 14.

We use opacity modulation, but modulation of stroke
size instead is straightforward.

We process all seeds of the set in a brute force itera-
tion. In practice, only a few strokes influence the
color of a surface point, so the loop of line 9 can be
replaced by a much more economic solution detailed
in Section 6.1.

Algorithm 2 Shading a surface point. Global inputs are
the uniform bit cycles b = (bu,bv) defining the seed set,
and the following artistic parameters: the rotation ma-
trix for stroke alignment R, the global, non-modulated
viewport seed density F , and stroke width and height e.
The artist-drawn stroke texture strokeTex returns zero
alpha for out-of-range texture coordinates.
1: function SHADE(texture coords xuv,position xobj)
2: a← tone from illumination in [0,1]
3: c← 1 ◃ init pixel color to paper color
4: T ← texture distortion at xobj
5: G← geometry factor at xobj
6: M←− log2 GT F ◃ nesting depth
7: xs← 2−⌊M⌋xuv ◃ UV to seed space
8: m←M−⌊M⌋ ◃ interpolation factor
9: for i← 0,N−1 do ◃ for all seeds
10: si← (0.bubu . . . ,0.bvbv . . .) ◃ bits to seed
11: α ← a ◃ opacity from tone fade
12: w← ⌊xs− si +η⌋ ◃ dense tile index
13: if w ̸≡ b(mod 2) then ◃ seed not in sparse
14: α ← α(1−m) ◃ detail fade
15: zi← (R(⟨xs− si +η⟩−η))�(2mFe)+η
16: y← strokeTex[zi] ◃ sample texture
17: α ← αyα ◃ apply texture alpha
18: c← (1−α)c+αy ◃ alpha blending
19: b← b 	 1 ◃ cycle bits for next seed
20: return c

6.1 Seed pre-filtering

The brute force implementation uses N texture samples
for every hatching layer. With 4 layers and a seed set
of 64 elements, this would be 256 samples per pixel. In
spite of this, a naive implementation does not perform
as poorly as one could expect. The 256 samples are
from the same, presumably small stroke texture, effi-
ciently cached, with most texture fetches resolved with-
out memory access for being out of bounds, and pro-
cessing overhead is masked by the latency of the mem-
ory reads that do happen. Even so, the full potential of
the approach can be achieved if we only process those
strokes that potentially contribute to the shading of a
surface point.

In order to identify these we create a stroke cover-
age texture representing the unit square in seed space,
where every texel contains a list of those strokes that
may overlap with the texel. Strokes are subject to scal-
ing, up to a factor of two, as we interpolate between
levels, so they must be rendered at their maximum size.
The simplest way to gather seed IDs to texels is to ren-
der to a buffer of bit masks, where every bit indicates
a seed, using atomic bitwise or operations. In a sec-
ond pass, bit masks can be converted to ID lists, which
require fewer bits for all but the smallest seed sets.
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DST TAM B16 C16 B64 C64
0.54 0.28 4.80 1.66 16.6 1.81

Table 1: Rendering time for a frame at 1920×1200 in
ms.

The texture only needs to be updated if the artistic pa-
rameters are changed. The shading algorithm can be
simply upgraded to query the seed coverage texture at
xs, and only loop over the relevant seeds.

7 RESULTS
7.1 Performance
We have tested the algorithm on an NVIDIA GeForce
GTX 780, with 1920 × 1200 full-screen resolu-
tion, and measured the time of rendering a single
frame. We compared our solution against dynamic
solid textures (DST) [BBT09] and Tonal Art Maps
(TAM) [PHWF01], using code published by their
authors. For RPTAM, we used 4 layers with 16 seeds
each (B16 and C16 for brute force and coverage
texture implementations, respectively, Figure 11), and
with 64 seeds each (B64, C64, Figure 12). We used
grayscale textures in all methods. Results in Table 7.1
show that even the brute force implementation delivers
real-time performance, and all other methods have
practically negligible rendering cost, with texture
access bandwidth dominating. While the brute force
method scales linearly with the number of seeds, the
coverage texture acceleration eliminates this problem.
While RPTAM is still slower than TAM, the difference
has no significance on current hardware.

Figure 11: Teapot rendered with 4 tone layers, 16 seeds
per layer, at 600 FPS, 1920×1200.

7.2 Quality
Our method, like dynamic solid textures and Tonal Art
Maps, provides impeccable temporal coherence. Dy-
namic solid textures can produce binary style render-
ing to approximate hatching, but our method can work
with stylized hatching strokes. Tonal Art Maps are
equivalent to our approach in quality, but they do not
offer infinite zooming. TAMs can be edited manu-
ally, or generated automatically by randomly inserting

Figure 12: Teapot rendered with 4 tone layers, 64 seeds
per layer, at 500 FPS, 1920×1200.

new strokes, and rejecting or clipping those colliding
with existing ones. Both the TAM generation method
and our seed set generation are lengthy trial-and-error
searches, aiming at the same quality criteria of uni-
formly distributed strokes. Our method guarantees uni-
formity in a geometric sense. More importantly, as op-
posed to TAMs, seed sets do not need to be re-generated
if artistic parameters like stroke length or stroke texture
change, even allowing these to be animated. We can
fade strokes simultaneously, producing rendering sim-
ilar to TAMs (Figure 13), but also individually (Fig-
ure 14), which is a unique feature among texture-based
hatching methods.

Figure 13: Teapot rendered with simultaneous stroke
fading.

Figure 14: Teapot rendered with individual stroke fad-
ing.
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8 FUTURE WORK
When a surface is visible at an integer detail factor, all
strokes are completely visible. Otherwise, some may
be in a transient state fading in. This difference is un-
noticeable when strokes fade individually, but a slight
periodic modulation in style is observable for simulta-
neous modulation. Therefore, we would like to expand
the concept of nesting to weighted seed sets, with inter-
polated set featuring the same distribution of weights,
making integer level stroke patterns indistinguishable
from interpolated ones. We also believe this will lead
us to the implementation of a new artistic parameter
that allows intermediate strategies between simultane-
ous and individual fading. In this overlapped fading
model, a customizable, but fixed percentage of strokes
will be in transitional state at any time and detail level.

We also plan to examine interaction with outline render-
ing approaches, and investigate whether we can simu-
late overdraw with screen space filtering.
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