
Fast and Robust Tessellation-Based Silhouette Shadows
Tomáš Milet

Brno University of
Technology Czech

Republic
imilet@fit.vutbr.cz

Jozef Kobrtek
Brno University of
Technology Czech

Republic
ikobrtek@fit.vutbr.cz

Pavel Zemčík
Brno University of
Technology Czech

Republic
zemcik@fit.vutbr.cz

Jan Pečiva
Brno University of
Technology Czech

Republic
peciva@fit.vutbr.cz

a) b)

0

1

2

3

4

5

6

7

8

9

10

11

c)

1 3 5 7 9 11

0 2

4

6

8

10

d)
1

3,4

5

7,8

9

11

0 2

6
10

2
5e)

0

1 3,4

6

7,8

11
9

10

Figure 1: The image shows the transformation of a quad into three overlapping shadow volume sides. The
transition from part a) to part b) is tessellation of quad with Multiplicity = 3. Only green and blue triangles will
be drawn. Yellow and gray triangles will be degenerated. The transition from part b) over part c) to part d) shows
degeneration process. Red and purple vertices 3, 4 and 7, 8 from part a) form only one vertex in part d). The
transition from part d) to part e) shows rotation around red and purple vertices. This transformation creates three
overlapping sides of shadow volume. Positions of vertices A, B, C, D that form initial quad, can be computed
according to equations 2.

ABSTRACT
This paper presents a new simple, fast and robust approach in computation of per-sample precise shadows. The
method uses tessellation shaders for computation of silhouettes on arbitrary triangle soup. We were able to reach
robustness by our previously published algorithm using deterministic shadow volume computation. We also pro-
pose a new simplification of the silhouette computation by introducing reference edge testing. Our new method
was compared with other methods and evaluated on multiple hardware platforms and different scenes, providing
better performance than current state-of-the art algorithms. Finally, conclusions are drawn and the future work is
outlined.

Keywords: shadows, shadow volumes, silhouette, tessellation shaders, geometry shader

1 INTRODUCTION
Shadow Volumes (SV) algorithm was introduced in
1977 by [Crow, 1977], first implementation using hard-
ware support via stencil buffer was carried out by [Hei-
dmann, 1991]. Heidman’s implementation is generally
called z-pass, but does not produce correct results when
observer is in shadow. This problem was eliminated in
the z-fail method [Everitt and Kilgard, 2002], which re-
verses depth test function, but requires shadow volumes
to be capped.

Shadow Mapping (SM) algorithm, proposed by
[Williams, 1978], is an alternative approach to shadow
volumes. It uses depth information from light source
stored in a texture. Shadow mapping is nowadays
massively used in games thanks to its performance,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

but suffers from spatial and often temporal aliasing
problems and produces imperfect shadows because
of limited shadow map resolution [Donnelly and
Lauritzen, 2006]. Low resolution is not an issue for
games, because scenes can be adjusted so that visual
artifacts are suppressed or a filtering method is applied,
but applications for visualization in architecture or
industrial design require pixel-correct shadows for
object visualization. Per-sample precise alias-free
shadow maps (AFSM) algorithm was proposed by
[Sintorn et al., 2008]. Their method stores multiple
samples into a list for each shadow map pixel and
conservatively rasterizes triangles into shadow map
using CUDA. Individual samples stored in lists are then
tested against shadow volume of the triangle. As they
stated, their per-sample precise method is three times
slower than standard shadow mapping with resolution
of 8096 by 8096 texels.

While producing per-sample correct shadows, SV are
affected by performance issues. In its naive form, when
a volume is generated for every triangle in the scene,
resulting performance is very low due to rasterization
of a large amount of triangles. More efficient way is to
construct shadow volumes only from silhouette edges

1

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 33 ISBN 978-80-86943-72-5



of the occluding geometry, which has positive impact
on fill-rate. Silhouette extraction on CPU was first pub-
lished by [Brabec and Seidel, 2003].

Several silhouette-based methods were published since
then, utilising novel hardware features to speed up sil-
houette calculation. [McGuire et al., 2003] managed
to implement the algorithm in vertex shader and [Stich
et al., 2007] used geometry shaders.

Most of the methods mentioned above are not com-
pletely robust and also cannot handle non 2-manifold
casters. [Kim et al., 2008] proposed an algorithm
for non 2-manifold casters, but unfortunately it is not
robust. Kim’s algorithm was improved in [Pečiva et al.,
2013] using deterministic multiplicity calculation,
which we further simplified in this paper.

[Sintorn et al., 2011] also proposed a shadowing tech-
nique based on CUDA software rasterization of per-
triangle shadow frusta. This technique uses a small bias
when testing sample depth against a triangle plane to
avoid self-shadowing. This bias, however, may cause
a shadowed fragment to be lit in the final result, more-
over, it is also scene-dependent.

2 METHOD DESCRIPTION
We have developed three methods - two per-triangle ap-
proaches and robust silhouette method.

Our silhouette method is based on the work of [Kim
et al., 2008]. This algorithm calculates so-called multi-
plicity of an edge - light plane from light source through
the edge is casted and all opposing vertices are tested, if
they are above or bellow the plane. According to result
of the test, multiplicity is incremented or decremented.
Absolute value of multiplicity is the number of times an
infinite quad needs to be drawn from this edge.

2.1 Per-Triangle Methods
These methods require no pre-processing and work
with arbitrary triangle soup. In the first variant, input
patch has 3 points, which are original points of the
triangle. Tessellation factors are 3 (inner) and 1 (outer,
for all sides), equal spacing and reversed triangle
winding. The resulting patch can be seen in the picture
2b.

We construct a simple volume in evaluation shader as in
Algorithm 1. Front cap needs to be rendered in second
pass in order to close the volume.

We also designed a single-pass version for z-fail. This
method takes a triangle as an input, but adds one more
point to form a quad (4 control shader invocations per
patch). This quad is then tessellated using outer fac-
tors (1, 5, 1, 5), inner (5,1) and fractional odd spacing,
resulting in a shape seen in Fig. 3b.

Evaluation shader then twists the shape in order to cre-
ate a volume, note Figure 3.

Figure 2: Creating semi-enclosed shadow volume from
a triangle. Initial triangle in a) is tessellated using outer
factors (1, 1, 1) and inner (3) b). Points A′, B′, C′ are
given positions of points A, B, C c) and then pushed to
infinity to form a volume with back cap d).

Data: original points P[3], light position L, tessellation
coordinates T = (x,y,z), x,y,z ∈ 〈0,1〉

Result: world-space coordinates X
c = x · y · z;
if c == 0 then

X = P[0] · x+P[1] · y+P[2] · z;
Xw = 1;

else
i = getIndexO f LargestVectorElement(T);
X = lw ·P[i]−L;
Xw = 0;

end
Algorithm 1: Evaluation shader in two-pass per-
triangle method

2.2 Silhouette Method

The method finds silhouette edges by looping over eve-
ry edge in the model. Each edge is processed in paral-
lel in Tessellation Control Shader where multiplicity is
computed. An input patch primitive is composed of two
vertices that describe an edge, one integer that contains
number of opposite vertices and n opposite vertices, see
Figure 4. Because patch the size must be constant, some
positions are not used.

A vertex buffer of model has to be extended by En ver-
tices, which is the number of edges in the model. We
used element buffer to reduce memory requirements.

Byungmoon’s algorithm [Kim et al., 2008], as in its
core proposal, has a flaw that multiplicity is not calcu-
lated in a deterministic way. In older approach [Pečiva
et al., 2013], it was fixed by calculating multiplicity per
triangle and if the 3 results troughout all 3 edges were
not consistent, we discarded the triangle from further
processing, because it meant that the triangle is almost
parallel to the light and does not cast a shadow. We
further improved this approach - multiplicity is now
computed only once for each opposite vertex using re-
ference edge.

A choice of reference edge has to be the same for all
occurrences of a triangle. This can be achieved for ex-

2

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 34 ISBN 978-80-86943-72-5



a)

0

1

2

3

4

5

6

7

8

9

10

11

b)

0

1

2

3

4

5

6

7

8, 10

9, 11

c)

5

6

7

0

1

2

3 4

8, 10

9, 11
d)

e)

Figure 3: Single-pass per triangle method, a full
shadow volume is created in a single pass. One point is
added to the triangle in order to form a quad a) which
is then tessellated using factors (1, 5, 1, 5),(5, 1) b).
Points 10 and 11 are merged with 8, 9. Light cap is vi-
sualized as blue, dark cap grey c). Then we join points
0-7, 1-5, 2-9, 4-8 and push points 5, 6, 7 to infinity d)
to make the volume e).

Figure 4: Input patch for tessellation control shader

ample by introducing vertex ordering - Equations 1 and
Algorithm 2.

A < B⇔ Greater(A,B)< 0
A = B⇔ Greater(A,B) = 0
A > B⇔ Greater(A,B)> 0 (1)

Data: Vertices A,B
Result: Result r of comparison
S = sgn(A−B);
K = (4,2,1);
r = S ·K
Algorithm 2: Function Greater(A,B) used for vertex
ordering.

In order to guarantee consistency, reference edge of a
triangle in our algorithm is constructed using smallest
and larges vertex of a triangle, as in Algorithm 2. More
options for such method are available, but evaluation
per each triangle occurance must be consistent in order
to get correct results.
To simulate behaviour of Byungmoon’s algorithm
(edge casts a quad as many times as it has multiplicity),
we tessellate the casted quad from the edge using inner
tessellation levels (Multiplicity · 2− 1,1) and then we
bend the tessellated quad in evaluation shader in a way
to create m overlapping quads, as seen in Fig. 1, which
demonstrates edge A-B having multiplicity of 3.
The procedure of multiplicity calculation is described
in Algorithm 3 and 4.

Data: Edge A,B, A < B, set O of opposite vertices
Oi ∈O, light position L in homogeneous
coordinates

Result: Multiplicity m
m = 0;
for Oi ∈O do

if A > Oi then
m = m+CompMultiplicity(Oi,A,B,L);

else
if B > Oi then

m = m−CompMultiplicity(A,Oi,B,L);
else

m = m+CompMultiplicity(A,B,Oi,L);
end

end
end
Algorithm 3: Modified algorithm for computation of
final multiplicity of edge A,B

Data: Vertices A,B,C; A < B < C; light position L in
homogeneous coordinates

Result: Multiplicity m for one opposite vertex
X =C−A;
Y = (lx−axlw, ly−aylw, lz−azlw);
N = X×Y;
m = sgn(N · (B−A));
Algorithm 4: CompMultiplicity(A,B,C,L) function
used in algorithm 3

After tessellation, we have to transform tessellation co-
ordinates into vertex position of the shadow volume
quad in the evaluation shader. The algorithm for its im-
plementation is described in Algorithm 5 and Equations
2.

A = (ax,ay,az,1)T

B = (bx,by,bz,1)T

C = (ax− lx,ay− ly,az− lz,0)T

D = (bx− lx,by− ly,bz− lz,0)T (2)

Because caps are not generated, this method can also be
used with simpler z-pass algorithm.

2.3 Implementation
All our methods were implemented in Lexolights, an
open-source multi-platform program based on Open-
SceneGraph and Delta3D, using OpenGL.

Single-pass per-triangle method suffers from inconsis-
tent rasterization of two identical triangles at the same
depth but with different winding - depth of fragments
from both triangles differs, which resulted in z-fighting
artiffacts. We had to manually push the front cap’s

3

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 35 ISBN 978-80-86943-72-5



Data: Vertices A,B,C,D, tessellation coordinates
x,y ∈ 〈0,1〉 and multiplicity m

Result: Vertex V in world-space
P0 = A;
P1 = B;
P2 = C;
P3 = D;
a = round(x ·m);
b = round(y);
id = a ·2+b;
t = (id mod 2) ˆ (bid/4c mod 2);
l = b(id +2)/4c mod 2;
n = t + l ·2;
V = Pn;
Algorithm 5: This algorithm transforms tessellation
coordinates into the vertex of side of shadow volume.
Vertices A,B,C,D are computed using Equation 2.

fragments into depth of 1.0f, so they would fail the
depth test, otherwise we observed self-shadowing ar-
tiffacts. Bypassing early depth test in rasterization due
to assigning depth values in fragment shader causes sig-
nificant performance loss over two-pass method. This
method served as a basis for silhouette-based approach.

For caps generation in silhouette-based method, we
used gemetry shader and multiplicity calculation, us-
ing which we calculated triangle’s orientation towards
light source via reference edge. It was also necessary
for keeping discarding calculations consistent through-
out the rendering process of shadow volumes.

Because tessellation factors are limited, at the time of
writing, to 64, there is also a limit of maximum multi-
plicity per edge that this algorithm is able to process.
Acording to equation to calculate tessellation factor
Multiplicity · 2− 1, maximum multiplicity of an egde
is 32, which should be more than enough for majority
of models. But for example well-known Power Plant
model (12M triangles) has some edges, which have
multiplicity of 128. In that case, they would have to
be splitted into more edges.

3 EXPERIMENTS
We compared our methods against already available
shadow volumes implementations on modern hardware
- robust geometry shader implementation and standard
shadow mapping, using which we also tried to evalu-
ate performance against Sintorn’s AFSM [Sintorn et al.,
2008]. We also tested two-pass per-triangle method
against similar geometry shader implementation. For
shadow volumes approaches, z-fail was used; shadow
map resolution was set to 8k x 8k texels.

Testing platform had following configuration: Intel
Xeon E3-1230V3, 3.3 GHz; 16GiB DDR3; GPUs:
AMD Radeon R9 280X 3 GiB GDDR5, nVidia

Spheres10x10 R280 G680
Triangles TS GS TS GS

32400 984 995 490 484 739 825 542 540
67600 921 963 488 487 624 667 494 513

102400 615 729 484 479 491 555 372 402
360000 203 233 270 272 218 228 131 135
1081600 72 88 104 110 82 94 46 49
1440000 56 72 84 91 67 81 36 39
1960000 34 41 59 62 49 58 26 28

Table 1: Performance of two determinism methods
measured in FPS on a scene with 10x10 spheres at dif-
ferent triangle count.

GeForce GTX 680 2 GiB GDDR5; Windows 7 x64;
driver version: 13.12 (AMD), 334.89 (nVidia).

3.1 Testing Scenes
We created a camera fly-through in two testing scenes,
each having one point light source.

• Sphere scene: synthetic scene containing adjustable
number of spheres (typically 100) with configurable
amount of detailness. Fly-through has 16 seconds.

• Crytek Sponza: popular model used to evaluate
computer graphics algorithms. 262 267 triangles,
40 seconds.

3.2 Results
Majority of our tests was performed on a sphere scene
with adjustable amount of geometry. First, we made a
flythrough in a scene containing 100 spheres with dif-
ferent amount of triangles per scene, the results can be
seen in Table 1 and graph in Fig. 5.

On GTX680, tessellation using reference edge is the
fastest, no matter the number of triangles, although the
performance gaps gets smaller with increasing num-
ber of triangles in scene. R9 280X showed differ-
ent results, tessellation was more than 2x faster when
the scene contained only 32K triangles but at approxi-
mately 300K, geometry shader method took lead.

105 106

200

400

600

800

104.51 5 ·104 2 ·105 3 ·105 5 ·105 106.29

Number of triangles

FP
S

Dependence of performance on number of triangles for 10x10 spheres

R280TS Orig
R280TS Ref
G680TS Orig
G680TS Ref
R280GS Orig
R280GS Ref
G680GS Orig
G680GS Ref

Figure 5: Dependence of performance (FPS) on num-
ber of triangles on a scene with 10x10 spheres using
original and new deterministic method.4

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 36 ISBN 978-80-86943-72-5



Spheres 1M R280 G680
Objects TS GS TS GS

1 73 92 111 120 106 134 55 60
4 74 94 113 121 101 126 53 58

25 64 76 97 101 76 88 46 50
64 68 76 90 89 61 66 40 43

100 64 70 84 82 58 62 39 42
240 58 55 70 64 50 49 35 36
399 53 48 61 54 36 36 27 28
625 43 38 53 46 29 27 22 22
851 40 44 46 50 24 25 19 20
1250 35 37 28 31 19 19 16 16
2500 23 19 15.1 15.4 12 11 10.8 10.1
3116 21.2 21.5 12.8 12.5 11.1 11.2 9.1 9.2
3920 15.7 14 10.1 10.12 9.1 8.7 7.7 7.5
5100 14.8 14.2 7.8 7.75 8.2 8.2 6.7 6.8

15600 7.45 6.45 3.07 3.14 10.5 9.1 3.6 3.6

Table 2: Dependence on number of objects for spheres
scene with 1M triangles. Bold values represent the
fastest algorithm/implementation for respective number
of objects, per GPU.

We further extended this test to performance depen-
dency on number of objects in a scene while maintainig
constant amount of geometry. This measurement was
carried out on Sphere scene, having 1 million triangles
(with deviation max 2%) in every case. No hardware
instancing was used, every object was drawn via sepa-
rate draw call. Results can be seen in Table 2 and graph
in Figure 6.

100 101 102 103 104

20

40

60

80

100

120

Number of objects

FP
S

Dependence of performance on number of objects for 1M triangles

R280TS Orig
R280TS Ref
G680TS Orig
G680TS Ref
R280GS Orig
R280GS Ref
G680GS Orig
G680GS Ref

Figure 6: Dependence on number of objects for spheres
scene with 1M triangles.

Contrary to previous measurements, tessellation was
faster on R9 280X, starting from 103 objects, although
reference edge was faster only in 40% cases. Moreover,
as can be seen in Fig. 6, there is a slight increase in FPS
in both geometry shader and tessellation implementa-
tions at about 1000 objects on Radeon. On GTX680,
tessellation method was faster in every case; eferenge
edge provided increased performance only in a half of
measurements, but in all other cases the difference was
only 1-3 FPS.

Sintorn in his AFSM paper Sintorn et al. [2008] stated
that his per-pixel precise shadow maps are 3-times
slower than standard 8Kx8K shadow mapping. In
order to evaluate our algorithm against AFSM, we

Spheres10x10 R280 G680
Triangles TS SM TS SM

32400 995 252 825 245
67600 963 250 667 237

102400 729 244 555 225
360000 233 219 228 190
1081600 88 168 94 135
1440000 72 155 81 115
1960000 41 120 58 103

Table 3: Shadow Mapping vs Tessellation Silhouettes,
10x10 sphere scene, FPS

conducted a measurement against shadow mapping
having resolution metioned above, results of which are
in table 3 and graph 7.

105 106

200

400

600

800

104.51 2 ·105 3 ·105 6 ·105 106.29

Number of triangles

FP
S

Dependence of performance on number of triangles for Shadow Mapping and Tessellation Silhouettes

R280TS
R280SM
G680TS
G680SM

Figure 7: Shadow Mapping vs Tessellation Silhouettes
on a scene with 10x10 spheres, measured in frames per
second.
Not only we managed to outperform shadow mapping
with triangle count up to ~400K triangles, but at al-
most 2M triangles our method was on par or faster
than AFSM - R9 280X dropped to 34% of SM perfor-
mance whereas GTX680 was only 44% slower than 8K
shadow mapping.
We also compared silhouette methods with two-pass
per-triangle tessellation implementation and 8K
shadow mapping (only on sphere scene, our framework
does not support omnidirectional shadow mapping) on
Crytek Sponza scene, results in table 4 and graph 8.
One can observe that per triangle tessellation method
is even faster than than both geometry shader meth-
ods running on Sponza scene. It is also worth noting
that per-triangle geometry-shader-based method pro-
vides more performance on this scene than silhouette-
based approach. On GTX680, the difference between
silhouette and per-triangle tessellation method is 122%,
whereas on R9 280X card it is only faster by 27%.
With increased amount of geometry in our synthetic test
scene, the situation turns around in favor to silhouette
methods. Also performance difference between shadow
mapping and tessellation on Radeon drops under 1/3
ratio, but GeForce is still able to maintain 43% of SM
performance.

4 CONCLUSIONS
We have developed new methods for computing
shadow volume silhouettes using tessellation shaders.

5

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 37 ISBN 978-80-86943-72-5



R280 G680
Method Spheres Sponza Spheres Sponza

TS Triangle 5.8 102 7.9 83
TS Silhouette 23.7 130 32 185
GS Triangle 3.1 51 4.9 73

GS Silhouette 34 49 14.8 62
SM 93 0 74 0

Table 4: Overall comparison of GS, TS methods and
classic 8K shadow mapping on testing scenes - Sponza,
and Spheres with 4M triangles. Shadow mapping was
not evaluated on Sponza scene (zeros).

R280Spheres R280SponzaG680Spheres G680Sponza
0

50

100

150

200

3.1

51

4.9

73

5.8

102

7.9

83

34
49

14.8

62

23.7

130

32

185

93

0

74

0

FP
S

GS Triangle TS Triangle GS Silhouette TS Silhouette SM

Figure 8: Overall comparison of methods on testing
scenes - Sponza and Spheres with 4M triangles.

Our two-pass per-triangle tessellation method is, in
some cases, faster than silhouette algorithm imple-
mented in geometry shader, but loses performance as
geometry amount in the scene grows. Compared to
geometry shader per-triangle implementation, it was
faster in every measurement.

The silhouette method is more efficient, and as we have
proven in our measurements, mostly in scenes with
higher amount of geometry. GeForce GTX680 ben-
efited mostly from this algorithm, being faster than
geometry shader silhouette method. As for Radeon
R9 280X, geometry shader method is more suitable.
Tessellation method on Radeon proved to be faster in
Sponza scene, but our synthetic tests on sphere scene
showed that it’s performance is dominant only up to
~300K of triangles when having multiple objects in the
scene, or only up to 15K triangles when only a single
detailed object was drawn. In less detailed scenes it
was able to outperform nVidia-based card, but only up
to aforementioned 300K triangles.

Our robust algorthm was sped up by using a novel
method of multiplicity computation, which was able
to provide up to 31% performance gain in tessellation
method (13.5% in average), maximum speedup in ge-
ometry shader was 10.7% with average of 3.4%.

In comparison to standard SM and Sintorn’s Alias-Free
Shadow Maps (AFSM), our tessellation method pro-
vides better performance than 8K shadow maps up to
~400K triangles and then fall to 43% performance of
shadow mapping at 4M triangles on GeForce, 34% on
Radeon, which is on par or better than AFSM (it’s 3-
times slower than 8K SM) and is also simplier to im-
plement.

In the future, we would like to see an arbitrary± stencil
operation in hardware, configurable in shaders, which
would allow us to increase the speed of our method even
more, due to a lower number of triangles being drawn.
We also want to evaluate more hardware platforms and
explore GPGPU potential in the filed of shadow vol-
umes calculation.

ACKNOWLEDGEMENTS
The work has been made possible thanks to the co-
funding by the IT4Innovations Centre of Excellence,
Ministry of Education, Youth and Sports, Czech
Republic, MŠMT, ED1.1.00/02.0070, V3C - Visual
Computing Competence Center, Technology Agency
of the Czech Republic, TAČR, TE01020415V3C,
and RODOS - Transport systems development centre,
Technology Agency of the Czech Republic, TAČR,
TE01020155.

REFERENCES
Brabec, S. and Seidel, H.-P. (2003). Shadow volumes on pro-

grammable graphics hardware. Computer Graphics Forum (Eu-
rographics), 2003:433–440.

Crow, F. C. (1977). Shadow algorithms for computer graphics. In
Proceedings of the 4th annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’77, pages 242–248, New
York, NY, USA. ACM.

Donnelly, W. and Lauritzen, A. (2006). Variance shadow maps. In
Proceedings of the 2006 Symposium on Interactive 3D Graphics
and Games, I3D ’06, pages 161–165. ACM.

Everitt, C. and Kilgard, M. J. (2002). Practical and robust stenciled
shadow volumes for hardware-accelerated rendering.

Heidmann, T. (1991). Real shadow real time. pages 28–31. IRIS
Universe.

Kim, B., Kim, K., and Turk, G. (2008). A shadow-volume algo-
rithm for opaque and transparent nonmanifold casters. J. Graphics
Tools, 13(3):1–14.

McGuire, M., Hughes, J. F., Egan, K., Kilgard, M., and Everitt, C.
(2003). Fast, practical and robust shadows. Technical report,
NVIDIA Corporation, Austin, TX.

Pečiva, J., Starka, T., Milet, T., Kobrtek, J., and Zemčík, P. (2013).
Robust silhouette shadow volumes on contemporary hardware.
In Conference Proceedings of GraphiCon’2013, pages 56–59.
GraphiCon Scientific Society.

Sintorn, E., Eisemann, E., and Assarsson, U. (2008). Sample based
visibility for soft shadows using alias-free shadow maps. Com-
puter Graphics Forum (Proceedings of the Eurographics Sympo-
sium on Rendering 2008), 27(4):1285–1292.

Sintorn, E., Olsson, O., and Assarsson, U. (2011). An efficient alias-
free shadow algorithm for opaque and transparent objects using
per-triangle shadow volumes. In ACM SIGGRAPH Asia 2011,
SIGGRAPH Asia 2011.

Stich, M., Wächter, C., and Keller, A. (2007). Efficient and robust
shadow volumes using hierarchical occlusion culling and geome-
try shaders. In Nguyen, H., editor, GPU Gems 3, pages 239–256.
Addison Wesley Professional.

Williams, L. (1978). Casting curved shadows on curved surfaces.
SIGGRAPH Comput. Graph., 12(3):270–274.

6

WSCG 2014 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 38 ISBN 978-80-86943-72-5


	I73-full.pdf

