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ABSTRACT

The major preference for applying B-spline filtering rather than non-separable box spline filtering on the BCC lattice is the fact

that separable filtering can be performed more efficiently on current GPUs due to the utilization of the hardware-accelerated

trilinear texture fetching. In order to make a fair comparison, a similar, efficient evaluation scheme is required that uses trilinear

texture fetches instead of nearest-neighbor ones also for the box splines. Thus, in this paper, we propose an evaluation scheme

for the linear BCC box spline built upon a trilinear B-spline basis. We compare our trilinearly evaluated linear box spline

scheme to the latest method, that uses twice as many nearest neighbor fetches. Then we give a comparison to the major

competitive methods: the BCC B-spline filtering and the BCC DC-spline filtering in terms of their performance.

Keywords: Volume Rendering, Filtering, Reconstruction.

1 INTRODUCTION

In many applications in engineering and computing sci-

ence, a continuous phenomenon is represented by its

discrete samples. In order to operate on the underlying

continuous function, first it has to be accurately recon-

structed from its discrete representation. Reconstruc-

tion filters have received attention also in image pro-

cessing and volume visualization since appropriate re-

construction of multivariate functions is a key step of

the processing pipeline [2, 3, 17, 18].

According to the most commonly-used sampling

scheme in practice, volumetric data is often acquired

on a uniform lattice by regular sampling, while recon-

struction is performed by convolution filtering. An

appropriate choice of both the sampling lattice and

the reconstruction filter kernel is of crucial importance

as they together directly determine the quality of the

reproduced continuous function and the efficiency of

the reconstruction.

Recent results advocate the benefits of non-Cartesian

lattices for regular sampling. The application of Body-

Centered Cubic (BCC) sampling received increased at-

tention from the perspective of continuous signal recon-

struction in the last decade [5, 6, 11, 12]. This lattice

is optimal for sampling 3D signals of isotropic band-

width [19, 21], unlike the commonly used Cartesian

Cubic (CC) lattice along with tensor-product recon-
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struction. To perfectly reconstruct a signal of a spher-

ically bounded spectrum from its discrete representa-

tion, roughly 30% fewer samples per unit volume have

to be taken on a BCC lattice than on an equivalent CC

lattice. In addition to the improved spectral isotropy,

this directly translates into an explicit reduction of the

storage cost.

A crucial question of BCC sampling is the way in

which the original continuous signal is reconstructed

from its discrete samples. Although due to the shift-

invariant property of the sampling lattice, the recon-

struction can be implemented by a simple convolution,

the choice of the filter kernel has a direct impact on both

numerical accuracy and visual quality. Generally, an

appropriate filter is chosen by making a compromise

between quality and efficiency.

Currently, three promising resampling techniques ex-

ist for the BCC lattice that provide high visual quality,

numerical accuracy, and efficiency at the same time:

the box splines [11], the BCC B-splines [8, 6], and the

BCC DC-splines [10]. As only the latter two methods

can exploit the hardware-accelerated trilinear filtering,

it has not been possible to make a fair comparison so far.

To remedy this problem, we propose an algorithm that

uses trilinear fetches for the box spline filtering as well.

Since these filters have already been compared in terms

of visual quality and numerical accuracy [6, 10, 13], in

this paper, we focus on a fair comparison of their per-

formance.

2 RELATEDWORK

One of the most important aspects of rendering sampled

data is how to perform proper and efficient resampling

depending on the applied lattice. For the CC lattice, re-

construction filters are usually designed in 1D, and then
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extended to the trivariate setting by a separable tensor-

product extension. However, the BCC lattice is not sep-

arable itself, therefore the advantageous properties of a

1D filter are not necessarily inherited in 3D by a sepa-

rable extension [21, 22, 15].

The first reconstruction filters tailored to the geome-

try of the non-Cartesian lattices were proposed by En-

tezari et al. [11]. They applied box splines, that offer a

mathematically elegant toolbox for constructing a class

of multidimensional elements with flexible shape and

support. Box splines are often considered as a gener-

alization of B-splines to multivariate setting. Theoret-

ically, the computational complexity of a box spline is

lower than that of an equivalent B-spline, since its sup-

port is more compact and its total polynomial degree

is lower. To investigate this potential also in practice,

several attempts were made. Although de Boor’s recur-

rence relation [9] is the most commonly used technique

for evaluating box splines at an arbitrary position, it is

computationally inefficient and has numerical instabili-

ties [14]. Addressing this issue, Entezari et al. [12] de-

rived a piecewise-polynomial representation of the lin-

ear and quintic box splines for the BCC lattice. In a

CPU-based implementation, due to the smaller support

of the box spline kernels, the data access cost of dis-

crete BCC samples turned out to be twice as low as for

the equivalent B-spline filters on the CC lattice [12].

Following their work, Finkbeiner et al. proposed an al-

gorithm to convolve the BCC samples with these box

spline kernels [13]. Though they applied early selec-

tion of polynomial segments of the piecewise polyno-

mial form that enabled them to avoid a full kernel eval-

uation for each affected sample point, the theoretical

advantages of box splines could not be exploited on the

GPUs, which are rather optimized for separable filter-

ing.

Another family of non-separable filters is repre-

sented by the Voronoi splines [16] that inherit the

geometry of a sampling lattice through its Voronoi

cell. For Cartesian lattices, Voronoi splines coincide

with tensor-product B-splines. For the 2D hexagonal

lattice, Voronoi splines were originally proposed by

Van de Ville et al. [23] as Hex-splines. For the BCC

lattice Voronoi splines were derived as BCC-splines

by Csébfalvi [5]. Recently, Mirzargar et al. [16]

formulated the BCC-splines in terms of multi-box

splines. In spite of their theoretical elegance, Voronoi

splines are currently impractical, since their piecewise

evaluation is not known yet.

Csébfalvi recommended a prefiltered Gaussian re-

construction scheme [4] adapting the principle of gener-

alized interpolation [1] to the BCC lattice. According to

this approach, first a non-separable discrete prefiltering

is performed as a preprocessing step, and afterwards a

fast separable Gaussian filtering is used for continuous

resampling on the fly. This method was extended also

to the B-spline family of filters [8]. An efficient GPU

implementation was proposed exploiting the fact that

the BCC lattice consists of two interleaved CC lattices,

where the second CC lattice is translated by half of the

grid spacing. The reconstruction can be performed sep-

arately for these two CC lattices in the given sample po-

sition by using a standard trilinear or tricubic B-spline

resampling, and then the contributions are averaged [8].

BCC B-splines reconstruction was reported to be four

to five times faster on an NVIDIA GeForce 6800 graph-

ics card than a non-separable box spline reconstruc-

tion of the same approximation power [6], since the

B-splines can utilize the hardware-accelerated trilinear

texture fetching [20].

Recently, Domonkos et al. [10] proposed a discrete/-

continuous filter family generated by the impulse re-

sponse of the BCC trilinear kernel. This technique is

theoretically equivalent to the discrete upsampling of

the BCC-sampled volume on a higher resolution CC

lattice, where the standard trilinear interpolation is used

for resampling. In practice, however, the missing CC

samples are calculated on the fly and not in a prepro-

cessing. Using an optimized GPU implementation, the

linear DC-spline was reported to be slightly faster than

the linear box spline.

3 SPLINE RECONSTRUCTION FOR

THE BCC LATTICE

In the following, we briefly review the main properties

of the BCC lattice, as well as the box spline, B-spline,

and DC-spline family of filters, as they are applied for

reconstruction on the BCC lattice.

3.1 BCC Lattice

The BCC lattice ΛBCC is a discrete subgroup of R3 gen-

erated by integer linear combinations of the following

basis vectors:

ΞΞΞBCC = [ξξξ 1,ξξξ 2,ξξξ 3] =
1

2





1 −1 −1

−1 1 −1

−1 −1 1





ΛBCC =
{

ΞΞΞBCCi : i ∈ Z
3
}

⊂ R
3.

Besides, the BCC lattice points are located on a CC

lattice with an additional sample placed in the center of

each cube. Thus, the BCC lattice can also be consid-

ered as two interleaved CC lattices ΛCCA
and ΛCCB

. By

shifting the secondary CC lattice ΛCCB
by half of the

grid spacing, the vertices of the secondary CC lattice

are moved to the centers of the primary CC cells:

ΛBCC = ΛCCA
∪ΛCCB

(1)

ΛCCA
=

{

i : i ∈ Z
3
}

ΛCCB
=







i+





1/2
1/2
1/2



 : i ∈ Z
3







.
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On the other hand, the BCC lattice can be obtained

also from a dense CC lattice by keeping only the lattice

points whose coordinates have identical parity:

ΛBCC =







1

2





i

j

k





: i≡ j ≡ k (mod 2)
i, j,k ∈ Z







. (2)

3.2 Box Splines for the BCC Lattice

A box spline MΞΞΞ is the shadow of a unit-hypercube in

R
n projected toRs,s≤ nwhere the projection is charac-

terized by ΞΞΞ = [ξξξ 1,ξξξ 2, . . . ,ξξξ n] ∈ R
s×n, ξξξ i ∈ R

s\0 [9].

The shape, the continuity order, and the approximation

power of a given box spline MΞΞΞ is determined by ΞΞΞ.

The simplest box spline is constructed when s= n as a

normalized characteristic function of its support:

MΞΞΞ(x) =

{

1
detΞΞΞ if ΞΞΞ−1x ∈ [0,1)n

0 otherwise.
(3)

When adding a further direction vector ξξξ ∈ R
s to ΞΞΞ,

s< n, the box splineM[ΞΞΞ,ξξξ ] is given by the convolution:

M[ΞΞΞ,ξξξ ](x) =
∫ 1

0
MΞΞΞ(x− tξξξ )dt. (4)

The linear box splineMΞ1
BCC

∈C0 for the BCC lattice

is constructed as a 3D shadow of a tesseract along its

antipodal axis, resulting a function with a rhombic do-

decahedron support, which is the first neighbors cell of

the BCC lattice [12]:

ΞΞΞ1
BCC =



 ΞΞΞBCC

1/2
1/2
1/2



 . (5)

MΞΞΞ1
BCC

has its maximum value at the center, and has a

linear falloff towards the 14 first-neighbor vertices:

MΞΞΞ1
BCC

(x) =max(1− x− y, 0) , (6)

where x is the largest and y is the second largest com-

ponent of the absolute coordinates of x [12].

3.3 B-Splines for the BCC Lattice

The B-spline of order zero is defined as a box filter:

β 0(t) =

{

1 if |t|< 1
2

0 otherwise.
(7)

Generally, the B-spline filter of order n is derived by

successively convolving β 0(t) n times with itself. The

first-order B-spline is the linear interpolation filter or

tent filter:

β 1(t) = β 0(t)∗β 0(t) =

{

1−|t| if |t| ≤ 1

0 otherwise.
(8)

The 1D B-splines can be extended to the 3D CC lat-

tice by a tensor product extension. BCC B-spline re-

sampling exploits the decomposition property of the

BCC lattice (Eq. 1). The reconstruction is performed

separately for the two CC sub-lattices in the given sam-

ple position by using a standard separable CC B-spline

resampling, and then the contributions are simply aver-

aged [8, 6]. This evaluation is equivalent to the convo-

lution of the BCC samples with a B-spline kernel.

3.4 DC-Splines for the BCC Lattice

The BCC lattice can be obtained from a CC lattice by

removing the lattice points whose coordinates have dif-

ferent parity (Eq. 2). The BCC trilinear interpolation

reproduces these “missing CC samples” by interpolat-

ing between the available BCC samples on the fly using

a discrete filter. The resultant impulse response χ1
BCC

of the linear BCC DC-spline is obtained by convolving

this discrete filter with a scaled trilinear kernel β 1(2x):

χ1
BCC(x) = β 1(2x)+

1

2

6

∑
k=1

β 1 (2(x−νk)) (9)

[ν1...6] =





1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1





4 EVALUATIONOF THE LINEAR BOX

SPLINE FROM TRILINEAR TEX-

TURE SAMPLES

The major preference for applying the BCC B-spline

filtering over the non-separable box spline filtering is

the fact that separable filtering can be performed signif-

icantly faster on current GPUs due to the utilization of

the hardware-accelerated trilinear texture fetching [20].

In order to make a fair comparison, an efficient eval-

uation scheme is required that uses trilinear texture

fetches instead of nearest neighbor ones also for the box

splines. In the following, we propose an algorithm for

evaluation of the linear BCC box spline built upon a

trilinear B-spline basis.

According to Eq. 6, the support ofMΞ1
BCC

covers four

BCC samples that form a tetrahedron, thus the B-form

of resampling is [11]:

f (r) =
4

∑
i=1

s(ri)MΞ1
BCC

(ri− r), (10)

where r is an arbitrary resampling point and s is a

3D array of the discrete BCC samples. Direct imple-

mentation of this B-form is rather inefficient, since a

full kernel evaluation is performed for each ri sample

point [13].

A more efficient piecewise-polynomial evaluation

scheme can be set up, since it is possible to evaluate

the ordering of the absolute coordinates of ri − r in

advance for each ri lattice points [13].
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r1

r2

r3

r4

ΛCCA

ΛCCB

r

rA

rB

l

Figure 1: Trilinear evaluation scheme. For an arbitrary

point r, interpolation is performed within the green

tetrahedron formed by the nearest points r1,r2 ∈ ΛCCA

of the red CC lattice and the nearest points r3,r4 ∈ΛCCB

of the blue CC lattice. When r is an internal point, that

is, r /∈ r1,2 and r /∈ r3,4, there is exactly one line l that

intersects r, and edges r1,2 and r3,4.

4.1 Trilinear Evaluation Scheme

The key point of the derivation lies in the fact that the

linear box spline constitutes a linear interpolator on the

BCC lattice [11]. This enables us to evaluate the lin-

ear interpolation within the tetrahedron more efficiently

than a direct evaluation of Eq. 10.

The first observation we make is that the tetrahedron

is composed of four congruent isosceles triangles (see

Fig. 1):

1. r1,2,3 2. r1,2,4 3. r3,4,1 4. r3,4,2

Four edges of the tetrahedron are formed by the equal

sides of these triangles with the length of
√
3
2

while the

remaining two edges of the tetrahedron are formed by

the sides r1,2 and r3,4 of the triangles with the length of

1:
√
3

2
= |r1,3|= |r2,3|= |r1,4|= |r2,4|

1 = |r1,2|= |r3,4|

The edges r1,2 and r3,4 overlap the edges of the BCC

lattice. Moreover, when the BCC lattice is considered

as two interleaved CC lattices (Eq. 1), edge r1,2 is con-

tained by the first CC lattice ΛCCA
, while edge r3,4 is

contained by the second CC lattice ΛCCB
.

This enables us to rewrite the tetrahedral interpola-

tion as the compound of three linear interpolations us-

ing the following scheme:

1. First, we define line l that contains r and intersects

both r1,2 ∈ ΛCCA
and r3,4 ∈ ΛCCB

(see Fig. 1). The

intersection points with edges r1,2 and r3,4 are rA
and rB, respectively. This decouples the BCC re-

sampling problem into resamplings of two separate

CC lattices, to ΛCCA
and ΛCCB

.

2. Next, the discrete data is resampled in rA for ΛCCA

and rB for ΛCCB
using a simple linear kernel:

fA = sA(r1+ |r1,A|r1,2) (11)

fB = sB(r3+ |r3,B|r3,4),

where sA and sB are linearly addressable 3D arrays

of the discrete CC samples corresponding to ΛCCA

and ΛCCB
, respectively.

3. Finally, the linear combination of the two CC sam-

ples is calculated:

f (r) = fA+
|r− rA|
|rA,B|

( fB− fA) . (12)

The clear advantage of this evaluation scheme is that

Step 2 can be performed by only two trilinear fetches on

the GPU instead of four nearest neighbor fetches. Actu-

ally, these trilinear fetches involve in fact only 1D linear

interpolations since rA and rB lie on a lattice edge. Re-

garding the storage scheme, the consequence is that the

BCC samples need to be stored in two separate CC lat-

tices, i.e. conventional 3D textures, to be able to exploit

the trilinear fetching capability of the GPU just like in

case of the BCC B-spline and the BCC DC-spline.

4.2 Orientation Cases

Addressing r1, r2, r3, and r4 for an arbitrary r is re-

quired in Step 1 which needs some further explanation.

Let rbase = round(r) be the nearest lattice point in ΛCCA

and let d = r− rbase be the relative resampling coordi-

nates with their absolute values a = [|dx|, |dy|, |dz|]T ∈
[0, 1

2
)3 and their signs s = [sgn(dx),sgn(dy),sgn(dz)]

T .

Considering the symmetries of the rhombic dodeca-

hedral support of MΞ1
BCC

, six different orientations of

the resampling tetrahedron can be distinguished (see

Fig. 2). These six cases are the 3! possible orderings

of the absolute coordinates a in Eq. 6 as it was reported

in [13].

Since using any control flow statement in the re-

sampling implementation dramatically cuts the perfor-

mance of the GPUs which have a SIMD architecture, it

is advisable to avoid this six-fold branching. Descend-

ing order of three scalars can be calculated in a SIMD-

aware manner as:

x= max(ax,ay,az) z= min(ax,ay,az) (13)

y= ax+ay+az− x− z.

On the other hand, based on the sort order of ax, ay,

and az all the six orientations of the resampling tetrahe-

dron can be transformed back to the first one (the green
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x

y

z

r1

r2

r3

r4

ax ≥ ay ≥ az

r1

r3
r4

ax ≥ az ≥ ay

r1
r2

r3

r4

ay ≥ ax ≥ az

r1r2

r3

r4

ay ≥ az ≥ ax

r1

r2

r3r4

az ≥ ax ≥ ay

r1

r2

r3

r4

az ≥ ay ≥ ax

Figure 2: There are six orientation cases for ordering

the coordinates of a ∈ [0, 1
2
)3. The required resampling

points r1,r2 ∈ ΛCCA
and r3,r4 ∈ ΛCCB

are determined

by these six cases. These resampling points are indi-

cated as red and blue dots for each orientation case.

tetrahedron for ax ≥ ay ≥ az in Fig. 2). Thus, the re-

sampling formula needs to be written only for the first

orientation case, and the other cases can be retrieved by

using this transformation. The transformation can be

defined by a rotation matrix ΠΠΠ as

Πi, j = si · eπ( j),i, (14)

where eπ(1), eπ(2), and eπ(3) are the unit vectors cor-

responding to x, y, and z, respectively (Eq. 13). As a

compact notation, π represents the descending order of

ax, ay, and az as a permutation. By using ΠΠΠ, the lattice

points can be addressed as

r1 = rbase+ΠΠΠ [0 0 0]T r2 = rbase+ΠΠΠ [1 0 0]T

r3 = rbase+ΠΠΠ

[

1

2

1

2
− 1

2

]T

r4 = rbase+ΠΠΠ

[

1

2

1

2

1

2

]T

.

4.3 Formal Derivation

In the following, we also give a formal derivation of

the proposed algorithm. The derivation is based on the

rewriting of the tetrahedral interpolation in barycentric

coordinates. Barycentric coordinates provide a conve-

nient way for interpolation on a tetrahedral mesh:

f (r) =
4

∑
i=1

λis(ri), (15)

where scalars λ1...4 are barycentric coordinates of rwith
respect to the vertices of the tetrahedron r1...4 under the

constraint ∑4
i=1λi = 1. The barycentric expansion of r

is set up in terms of the vertices of the tetrahedron as:

Tλλλ = r− r4 (16)

T = [r1− r4 | r2− r4 | r3− r4]

λλλ =
[

λ1 λ2 λ3
]T

.

The solution of this linear equation system is

T=





− 1
2

1
2

0

− 1
2

− 1
2

0

− 1
2

− 1
2

−1



 , T−1=





−1 −1 0

1 −1 0

0 1 −1



 ,

λ1 = 1− x− y λ2 = x− y

λ3 = y− z λ4 = y+ z.

This enables us to write Eq. 10 as

f (r) =
2

∑
i=1

λisA(ri)+
4

∑
i=3

λisB(ri). (17)

Using the separable trilinear technique of Sigg and

Hadwiger [20], evaluation of Eq. 17 can be derived by

two linear fetches instead of four nearest neighbor ones.

In general, two nearest neighbor fetches can be replaced

by a linear fetch as:

(1− t) fi+ t fi+1 ⇒ f (i+ t) (18)

a fi+b fi+1 ⇒ (a+b) f

(

i+
b

a+b

)

,

as long as t ∈ [0,1] and b
a+b

∈ [0,1]. By combining both

λ1 with λ2 and λ3 with λ4, the linear box spline can be

evaluated by two linear texture fetches:

2

∑
i=1

λisA(ri) ⇒ (1−2y)sA



r1+
x− y

1−2y
ΠΠΠ





1

0

0









4

∑
i=3

λisB(ri) ⇒ 2ysB



r3+
y+ z

2y
ΠΠΠ





0

0

1








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Summing these terms up, we get

fA = sA

(

rbase+
x− y

1−2y
s◦ eπ(1)

)

(19)

fB = sB



rbase+ s◦









1/2
1/2
1/2



+
z− y

2y
eπ(3)







 ,

f (r) = (1−2y) fA+2y fB

where ◦ represents the element-wise product. This is

exactly what was claimed in Step 2 and Step 3 of the

proposed evaluation scheme.

5 GPU IMPLEMENTATION

We employed the proposed trilinear evaluation

scheme formulated in Eq. 19 in a GPU-based first-hit

ray-casting application by using ray marching with

equidistant steps. At each sample position, a filter

kernel was used to reconstruct the volume from

the discrete BCC samples. To get a numerically

stable formulation when the resampling point lies

within a triangular face, on an edge, or coincides

a vertex, the divisions in Eq. 19 are evaluated as

limε→0 ε · si( constantε ) = 0. This numerical safeguard

was incorporated in the GPU implementation as well.

In our GPU implementation, the lattice samples are

stored as textures. Function sA(r) fetches the sample

set sA at r+[ 1
2
, 1
2
, 1
2
]T , while function sB(r) fetches the

shifted sample set sB at r. Sample sets sA and sB can be

implemented as two separate textures or as one texture

with two channels. We have not found an appreciable

difference between these two methods. We present the

complete Cg source of the proposed linear box spline

resampling algorithm in the appendix.

We compare the rendering speed of our trilinearly

evaluated linear box spline scheme to the latest method,

that uses twice as many nearest neighbor fetches [13].

We also give a comparison to the major competitive

methods: to the BCC B-spline [8] and to the BCC DC-

spline [10]. Comprehensive analysis of the numerical

accuracy, and visual quality of these splines are out of

the scope of this paper. We refer the interested reader

to [6, 10, 13] for a more thorough overview.

The number of texture lookups and the arithmetic

costs differ for each filter (see Table 1). The arithmetic

cost of the trilinear B-spline filtering is practically neg-

ligible [6, 8], the DC-spline filtering has moderate ad-

dressing overhead [10], while the trilinear and nearest

neighbor linear box spline schemes have the highest

number of floating point operations [13]. Concerning

the number of texture fetches, the trilinear B-spline and

the trilinearly evaluated linear box spline are in the best

position: they need only two lookups, while the lin-

ear box spline filtering needs four fetches, and the DC-

spline filtering needs six lookups.

Filter lookups complexity

Lin. box spline (nearest) 4 high

Lin. box spline (linear) 2 high

Trilinear B-spline 2 low

Linear DC-spline 6 medium

Table 1: Number of texture lookups and the arithmetic

cost of different reconstruction filters. These properties

determine the rendering performance.

The skeleton of the ray caster application was the

same for each filtering technique, only the filter ker-

nels and the storage scheme of the BCC samples were

altered. For the nearest neighbor box spline evaluation,

the BCC samples are stored in a one-channel texture

by shifting the samples of the second lattice by half a

grid spacing in every dimension [13]. For the trilinear

box spline scheme, for the BCC B-splines, and for the

BCC DC-splines, the BCC samples were stored as two

separate set of CC samples as a two-channel texture.

5.1 Rendering Speed

We rendered four data sets of different voxel counts

at an image resolution of 512× 512. The analyti-

cally defined Marschner-Lobb test signal was sampled

at 643 × 2 BCC resolution. The other three data sets

are well-known CT scans reconstructed originally on a

CC lattice. To get a BCC representation of them, we

employed a frequency-domain upsampling [7].

The viewing rays were evaluated in front-to-back or-

der, which enabled us to use early ray termination. The

first-hit isosurfaces were shaded by the Blinn-Phong

model using gradients calculated from central differ-

ences. The ray marching step and the central differ-

encing step were adjusted to the voxel size of the data

sets.

The renderings of the Marschner-Lobb test signal are

illustrated in Figure 3. Note that the linear box spline

introduces postaliasing artifacts along the diagonal di-

rections, while the artifacts produced by the linear DC-

spline or the trilinear B-spline are less apparent.

To get relevant rendering speeds, we chose the

middle-aged NVIDIA Geforce 8700 GPU for our

experiments. The observed frame rates are illustrated

in Table 2. According to our prior expectations,

the frame rates depended on the number of samples

fetched, the algorithmic complexity of the filter kernel,

the resolution of the volume, and the distance of the

iso-surface from the image plane.

We can confirm the observation, that the frame rates

get similar as the number of voxels increases with ap-

propriately decreasing the sampling distance. Possibly,

the texture fetches become the bottleneck of the render-

ing pipeline. This can be the reason why the DC-spline

results in the lowest frame rates for the highest voxel

counts.
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Analytical. Linear box spline.

Trilinear B-spline. Linear DC-spline.

Figure 3: Renderings of the analytical Marschner-Lobb

test signal and its sampled representations at 643 × 2

reconstructed by different resampling filters.

Data set M
Ξ
1,nearest
BCC

M
Ξ
1,linear
BCC

β 1 χ1
BCC

ML 21.03 22.90 53.64 21.75
Engine 16.28 17.18 41.82 16.42
Carp 9.22 10.00 25.07 9.19
Xmas Tree 5.77 6.19 6.57 4.61

Table 2: Frame rates in frames per second for dif-

ferent reconstruction filters and popular data sets: the

Marschner-Lobb test signal sampled at 643 × 2, the

“Engine Block” at 2562×110×2, the “Carp” at 2562×
512×2, and the “Christmas Tree” at 512×499×512×
2.

On the other hand, for low and moderate volume res-

olutions, the arithmetic complexity seems to be more

important than the number of texture fetches. It is inter-

esting to note that the concept of applying linear fetches

instead of nearest neighbor ones [20] does not always

pay off. We think that the texture cache operates very

well for filters with a narrow support. This might ex-

plain that the nearest neighbor version and the linear

version of the linear box spline filtering as well as the

linear DC-spline filtering with even six samples attain

similar frame rates, while the trilinear B-spline holds a

towering lead in performance.

6 CONCLUSION AND FUTURE

WORK

In this paper, we have proposed a GPU evaluation

scheme for the linear BCC box spline filtering exploit-

ing the hardwired trilinear texture fetching. This result

enabled us to make a fair comparison of the linear box

spline, the BCC B-spline, and the BCC DC-spline in

terms of their performance. We found that, in general,

the proposed linear evaluation scheme operates slightly

faster than the evaluation scheme with nearest neighbor

fetches [13]. However, using an optimized GPU im-

plementation, the trilinear B-spline can still achieve the

best performance, as it takes the minimum number of

samples with the lowest arithmetic cost. Since the tex-

ture fetches become more expensive when the support

of the filter gets wider or the resolution of the volume

increases, we plan to develop a similar scheme for the

quintic box spline for the BCC lattice.
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CG SHADER CODE

uniform f l o a t 3 S i z e ;

uniform sampler3D Volume ;

/ / Handle removab le s i n g u l a r i t y

# de f i n e DIV( A, B ) \

( abs (B) ? ( A ) / ( B ) : 0 . 0 )

/ / Ith c o o r d i n a t e o f u n i t v e c t o r eπ(1)

# de f i n e E_PI_1 ( I ) ( a . I == x )

/ / Ith c o o r d i n a t e o f u n i t v e c t o r eπ(3)

# de f i n e E_PI_3 ( I ) \

( a . I == z && a . I != x && a . I != y )

/ / Un i t v e c t o r eπ(J)

# de f i n e E_PI ( J ) f l o a t 3 ( E_PI_ ## J ( x ) , \

E_PI_ ## J ( y ) , E_PI_ ## J ( z ) )

/ / F e t c h i ng a t r i l i n e a r sample from ΛCCA a t R

# de f i n e S_A( R ) \

tex3D ( Volume , ( r _ b a s e + (R) + 0 . 5 ) / S i z e ) . r

/ / F e t c h i ng a t r i l i n e a r sample from ΛCCB a t R

# de f i n e S_B ( R ) \

tex3D ( Volume , ( r _ b a s e + (R) ) / S i z e ) . a

f l o a t l i n e a rB o xS p l i n e ( f l o a t 3 t exCoo rd s ) {

/ / Resampl ing p o i n t r

f l o a t 3 r = t exCoo rd s ∗ S i z e − 0 . 5 ;

/ / Nea r e s t l a t t i c e p o i n t o f ΛCCA

f l o a t 3 r _ b a s e = round ( r ) ;

/ / R e l a t i v e c o o r d i n a t e s d ,

/ / t h e i r a b s o l u t e v a l u e s a , and s i g n s s

f l o a t 3 d = r − r _ b a s e ;

f l o a t 3 a = abs ( d ) ;

f l o a t 3 s = s i g n ( d ) ;

/ / S o r t i n g a by i t s components

f l o a t x = max ( a . x , max ( a . y , a . z ) ) ;

f l o a t z = min ( a . x , min ( a . y , a . z ) ) ;

f l o a t y = a . x + a . y + a . z − x − z ;

/ / F e t c h i ng from sample s e t s ΛCCA and ΛCCB

f l o a t two_y = 2 . 0 ∗ y ;

f l o a t tA = DIV( x − y , 1 . 0 − two_y ) ;

f l o a t tB = DIV ( z − y , two_y ) ;

f l o a t fA = S_A( tA ∗ s ∗ E_PI ( 1 ) ) ;

f l o a t fB = S_B ( s ∗ ( 0 . 5 + tB ∗ E_PI ( 3 ) ) ) ;

/ / L i n ea r i n t e r p o l a t i o n o f t h e two samples

re turn l e r p ( fA , fB , two_y ) ;

}
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