
Analysis and design of the dynamical stability of collective

behavior in crowds

Albert Mukovskiy
Section for Computational

Sensomotorics, Department of

Cognitive Neurology, Hertie

Institute for Clinical Brain

Research & Centre for Integrative

Neuroscience, University Clinic,

Tübingen, Germany

albert.mukovskiy@medizin.uni-

tuebingen.de

Jean-Jacques E. Slotine
Nonlinear Systems Laboratory,

Department of Mechanical

Engineering, MIT; Cambridge,

MA, USA

jjs@mit.edu

Martin A. Giese
Section for Computational

Sensomotorics, Department of

Cognitive Neurology, Hertie

Institute for Clinical Brain

Research & Centre for Integrative

Neuroscience, University Clinic,

Tübingen, Germany

martin.giese@uni-tuebingen.de

ABSTRACT

The modeling of the dynamics of the collective behavior of multiple characters is a key problem in crowd animation. Collective

behavior can be described by the solutions of large-scale nonlinear dynamical systems that describe the dynamical interaction

of locomoting characters with highly nonlinear articulation dynamics. The design of the stability properties of such complex

multi-component systems has been rarely studied in computer animation. We present an approach for the solution of this

problem that is based on Contraction Theory, a novel framework for the analysis of the stability complex nonlinear dynamical

systems. Using a learning-based realtime-capable architecture for the animation of crowds, we demonstrate the application of

this novel approach for the stability design for the groups of characters that interact in various ways. The underlying dynamics

specifies control rules for propagation speed and direction, and for the synchronization of the gait phases. Contraction theory

is not only suitable for the derivation of conditions that guarantee global asymptotic stability, but also of minimal convergence

rates. Such bounds permit to guarantee the temporal constraints for the order formation in self-organizing interactive crowds.

Keywords: computer animation, crowd animation, coordination, distributed control, stability.

1 INTRODUCTION

Dynamical systems are frequently applied in crowd an-

imation for the simulation of autonomous and collec-

tive behavior of many characters [MT01], [TCP06].

Some of this work has been inspired by observations

in biology, showing that coordinated behavior of large

groups of agents, such as flocks of birds, can be mod-

elled as emergent behavior that arises from the dynami-

cal coupling between interacting agents, without requir-

ing an external central mechanism that ensures coor-

dination [CS07, Cou09], [CDF+01]. Such models can

be analyzed by application of methods from nonlinear

dynamics [PRK03]. The simulation of collective be-

havior by self-organization in systems of dynamically

coupled agents is interesting because it might reduce

the computational costs of traditional computer ani-

mation techniques, such as scripting or path planning

[TCP06, Rey87]. In addition, the generation of col-

lective behavior by self-organization allows to imple-
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ment spontaneous adaptation to external perturbations

or changes in the system architecture, such as the vari-

ation of the number of characters. However, due to the

complexity of the models describing individual char-

acters the mathematical analysis of the underlying dy-

namical systems is typically quite complicated.

In crowd animation, some recent studies have tried to

learn interaction rules from the behavior of real human

crowds [DH03], [PPS07], [LFCCO09]. Other work has

tried to optimize interaction behavior in crowds by ex-

haustive search of the parameter space exploiting com-

puter simulations by definition of appropriate cost func-

tions (e.g. [HMFB01]). However, most of the ex-

isting approaches for the control of group motion in

computer graphics have not taken into account the ef-

fects of the articulation during locomotion on the con-

trol dynamics [PAB07], [NGCL09], [KLLT08]. Con-

sequently, the convergence and stability properties of

such dynamical animation systems have rarely been ad-

dressed. Distributed control theory has started to study

the temporal and spatial self-organization of crowds of

agents, and the design of appropriate dynamic interac-

tions, typically assuming rather simple and often even

linear agent models (e.g. [SS06], [PLS+07], [SDE95]).

However, human-like characters are characterized by

highly complex kinematic and even dynamic proper-

ties, c.f. [BH97]. Consequently, approaches for a sys-

tematic analysis and design of the dynamical properties
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of crowd animation systems are largely lacking. How-

ever, such methods seem highly desirable, since they

permit one to guarantee desired system properties and

to ensure the robustness of the generated behavior under

variations of system inputs and the system parameters.

In this paper we introduce Contraction Theory

([LS98], [PS07]) as a framework that makes such

stability problems tractable, even for characters with

multiple coupled levels of control. Contraction Theory

provides a useful tool specifically for modularity-based

stability analysis and design [Slo03], [WS05]. This

framework is applied to a simple learning-based

animation architecture for the real-time synthesis of

the movements of interacting characters, which is

based on a method that approximates complex human

behavior by relatively simple nonlinear dynamical sys-

tems [GMP+09], [PMSA09]. Consistent with related

approaches in robotics [RI06], [BC89], [GRIL08],

[Ijs08], [BRI06], [GTH98], [CS93], this method gen-

erates complex movements by the combination of the

learned movement primitives [OG06], [GMP+09]. The

resulting system architecture is rather simple, making

it suitable for a mathematical treatment of dynamical

stability properties.

The paper is structured as follows: The structure of

the animation system is sketched in section 2. The dy-

namics underlying navigation control is described in

section 3. Subsequently, in section 4 we introduce some

basic ideas from Contraction Theory. The major results

of our stability analysis and some demos of their appli-

cations to the control of crowds are described in section

5, followed by the conclusions.

2 SYSTEM ARCHITECTURE

Our investigation of the collective dynamics of crowds

was based on a learning-based animation system, de-

scribed in details in [GMP+09] (see Fig. 1). By ap-

plying anechoic demixing [OG06] to motion capture

data, we learned spatio-temporal components. These

source components were generated online by nonlinear

dynamical systems, Andronov-Hopf oscillators. The

mappings σ j between the stable solutions of the nonlin-

ear oscillators and the required source functions were

learned by application of kernel methods [GMP+09].

Each character is modelled by a single limit cycle os-

cillator, whose solution is mapped by support vector re-

gression (SVR) onto three source signals. These signals

were then superimposed with different linear weights

wi j and phase delays τi j in order to generate the joint

angle trajectories ξi(t) (see Fig. 1). By blending of

the mixing weights and the phase delays, intermediate

gait styles were generated. This allowed us to simu-

late specifically walking along paths with different cur-

vatures, changes in step length and walking style. In-

teractive behavior of multiple agents can be modelled

by making the states of the oscillators and the mixing

Figure 1: Architecture of the simulation system.

weights dependent on the behavior of the other agents.

Such couplings result in a highly nonlinear system dy-

namics.

The heading direction of the characters was changed

by morphing between curved gaits, controlled by a non-

linear navigation dynamics. In the shown applications

this dynamics steers the avatars towards goal points that

were placed along parallel straight lines. The heading

dynamics was given by a nonlinear first-order differen-

tial equation (see [GMP+09] for details). Control of

heading direction was only active during the the initial

stage of the organization of the crowd, resulting in an

alignment of the avatars along the parallel straight lines,

independent of their initial positions and gait phases.

(See Fig. 2 and Fig. 3).

3 CONTROL DYNAMICS

Beyond the control of heading direction, the analyzed

scenarios of order formation in a group of characters

require the control of the following variables: 1) phase

within the step cycle, 2) step length, 3) gait frequency,

and 4) heading direction.

The dynamics of each individual character was mod-

elled by an Andronov-Hopf oscillator with constant

equilibrium amplitude (r∗i = 1). For appropriate choice

of parameters, these nonlinear oscillators have a stable

limit cycle that corresponds to a circular trajectory in

phase space [AVK87].

In polar coordinates and with the instantaneous

eigenfrequency ω this dynamics is given by:

ṙ(t) = r(t)
(

1− r2(t)
)

, φ̇(t) = ω . Control affects

the instantaneous eigenfrequency ω of the Andronov-

Hopf oscillators and their phases φ , while the first

equation guarantees that the state stays on the limit

cycle (r(t) = 1,∀t).

The position zi of each character along the paral-

lel paths (see Fig. 2) fulfills the differential equation

żi(t) = φ̇ig(φi), where the positive function g deter-

mines the propagation speed of the character depend-

ing on the phase within the gait cycle. This nonlinear
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Figure 2: Crowd coordination scenario. Every character i

is characterized by its position zi(t), the phase φi(t) and the

instantaneous eigenfrequency ωi(t) = φ̇i(t) of the correspond-

ing Andronov-Hopf oscillator, and a step-size scaling param-

eter µi(t).

Figure 3: A sliding goal for each avatar was placed on a

straight line at fixed distance ahead in z-direction. Heading

direction angle: ψheading and goal direction angle: ψgoal .

function was determined empirically from a kinematic

model of character. By integration of this propagation

dynamics one obtains zi(t) = G(φi(t) + φ 0
i ) + ci, with

an initial phase shift φ 0
i and some constant ci depending

on the initial position and phase of avatar i, and with the

monotonously increasing function G(φi) =
∫ φi

0 g(φ)dφ ,

assuming G(0) = 0. Three control rules described:

I) Control of step frequency: A simple form of

speed control is based on making the frequency of the

oscillators φ̇i dependent on the behavior of the other

characters. Let ω0 be the equilibrium frequency of the

oscillators without interaction. Then a simple controller

is defined by the differential equation

φ̇i(t) = ω0 −md

N

∑
j=1

Ki j[zi(t)− z j(t)−di j] (1)

The constants di j specify the stable pairwise relative

distances in the formed order for each pair (i, j) of char-

acters. The elements of the link adjacency matrix K are

Ki j = 1 if characters i and j are coupled and zero oth-

erwise. In addition, we assume Kii = 0. The constant

md > 0 defines the coupling strength.

With the Laplacian Ld of the coupling graph, which

is defined by Ld
i j = −Ki j for i 6= j and Ld

ii = ∑
N
j=1 Ki j,

and the constants ci = −∑
N
j=1 Ki jdi j the last equation

system can be re-written in vector form:

φ̇ = ω01−md(L
dG(φ +φ 0)+ c) (2)

II) Control of step length: Step length was varied

by morphing between gaits with short and long steps. A

Figure 4: Propagation velocity for 10 different values the

of step length morphing parameter µ = [0 . . .0.25] dependent

on gait cycle phase φ(t) and ω(t) = 1. The vertical axis is

scaled in order to make all average velocities equal to one for

µ = 0 (lowest thick line). This empirical estimates are well

approximated by (1+ µ)g(φ(t)).

detailed analysis shows that the influence of step length

on the propagation could be well captured by simple

linear rescaling. If the propagation velocity of char-

acters i is vi(t) = żi(t) = φ̇i(t)g(φi(t)) = ωi(t)g(φi(t))
for the normal step size, then the velocity for modi-

fied step size was well approximated by vi(t) = żi(t) =
(1 + µi)ωi(t)g(φi(t)) with the morphing parameter µi.

The range of morphing parameters was restricted to the

interval −0.5 < µi < 0.5, where this linear scaling law

was fulfilled with high accuracy. The empirically es-

timated propagation velocity in heading direction, de-

pendent on gait phase, is shown in Fig.4 for different

values of the step length morphing parameter µi. Using

the same notations as in equation (1), this motivates the

definition of the following dynamics that models the in-

fluence of the step length control on the propagation

speed:

ż = ωg(φ +φ 0)(1−mz(L
zz+ c)) (3)

In this equation Lz signifies the Laplacian of the rel-

evant coupling graph, and mz the strength of the cou-

pling. For uncoupled characters (mz = 0) this equa-

tion is consistent with the the definition of propagation

speed that was given before.

III) Control of step phase: By defining separate

controls for step length and step frequency it becomes

possible to dissociate the control of position and step

phase of the characters. Specifically, it is interesting to

introduce a controller that results in phase synchroniza-

tion between different characters. This can be achieved

by addition of a simple linear coupling term to equation

(1), written in vector form:

φ̇ = ω01−md(L
dG(φ +φ 0)+ c)− kLφ φ (4)

with k > 0 and the Laplacian Lφ . (All sums or differ-

ences of angular variables were computed by modulo

2π).

IV) Control of heading direction:

The heading directions of the characters were con-

trolled by a navigation dynamics that steers the avatars
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towards goal points, which were placed along parallel

straight lines in front of the avatars (2). The heading dy-

namics was given by a nonlinear differential equation,

independently for every character [GMP+09]:

ψ̇i = sin(ψgoal
i −ψi) (5)

where ψ
goal
i = arctan(∆ξ

goal
i /∆z

goal
i ), ∆ξ

goal
i is the dis-

tance to the goal line in the direction orthogonal to the

propagation direction, while ∆z
goal
i is constant, (see Fig.

3). The morphing weight that controls the mixture of

walking with left and right turning was proportional to

ψ̇i(t). For the mathematical stability analysis presented

in the following, we neglected the influence of the dy-

namics of the control of heading direction, focusing on

the order formation scenarios when the agents’ heading

directions are already aligned, when they walk along

parallel straight lines towards sliding goal points. In

this case, the positions of the agents can be described

by a single position variable z(t). An extension of the

developed analysis framework including the control of

the heading direction is in progress.

The mathematical results derived in the following

sections apply to subsystems of the complete system

dynamics that is given by equations (3) and (4). In ad-

dition, simulations are presented for the full system dy-

namics.

4 CONTRACTION THEORY

Dynamical systems describing the behavior of au-

tonomous agents are essentially nonlinear. In contrast

to the linear dynamical systems, a major difficulty

of the analysis of stability properties of nonlinear is

that the stability properties of parts usually do not

transfer to composite systems. Contraction Theory

[LS98] provides a general method for the analysis of

essentially nonlinear systems, which permits such a

transfer, making it suitable for the analysis of complex

systems with many components. Contraction Theory

characterizes the system stability by the behavior of

the differences between solutions with different initial

conditions. If these differences vanish exponentially

over time, all solutions converge towards a single

trajectory, independent from the initial states. In this

case, the system is called globally asymptotically

stable. For a general dynamical system of the form

ẋ = f(x, t) (6)

assume that x(t) is one solution of the system, and

x̃(t) = x(t) + δx(t) a neighboring one with a differ-

ent initial condition. The function δx(t) is also called

virtual displacement. With the Jacobian of the sys-

tem J(x, t) = ∂ f(x,t)
∂x

it can be shown [LS98] that any

nonzero virtual displacement decays exponentially to

zero over time if the symmetric part of the Jacobian

Js = (J+JT )/2 is uniformly negative definite, denoted

as Js < 0. This implies that it has only negative eigen-

values for all relevant state vectors x. In this case, it

can be shown that the norm of the virtual displacement

decays at least exponentially to zero, for t → ∞. If the

virtual displacement is small enough, then

δ̇x(t) = J(x, t)δx(t)

implying through d
dt
||δx(t)||2 = 2δxT (t)Js(x, t)δx the

inequality: ||δx(t)|| ≤ ||δx(0)|| e
∫ t

0 λmax(Js(x,s))ds. This

implies that the virtual displacements decay with a

convergence rate (inverse timescale) that is bounded

from below by the quantity ρc =−supx,t λmax(Js(x, t)),
where λmax(.) signifies the largest eigenvalue. With

ρc > 0 all trajectories converge to a single solution ex-

ponentially in time [LS98].

Contraction analysis can be applied also to hierarchi-

cally coupled systems [LS98]. Consider a composite

dynamical system with two components, where the dy-

namics of the first subsystem is not influenced by the

dynamics of the second one. Such system is called hier-

archically coupled. The composite dynamical system:

d

dt

(

x1

x2

)

=

(

f1(x1)
f2(x1,x2)

)

(7)

results in the Jacobian:

F =

(

∂ f1(x1)
∂x1

0
∂ f2(x1,x2)

∂x1

∂ f2(x1,x2)
∂x2

)

=

(

F11 0

F21 F22

)

(8)

Consider then the smooth dynamics of virtual dis-

placements: d
dt

(

δx1

δx2

)

=

(

F11 0

F21 F22

)(

δx1

δx2

)

,

where F21 is bounded. The first subsystem does

not depend on the second, so that δx1 exponentially

converges to 0 if (F11)s < 0. Then, F21δx1 is an

exponentially decaying disturbance for the second sub-

system. In this case, (see [LS98] for details of proof),

uniformly negative definite F22 implies exponential

convergence of δx2 to an exponentially decaying

ball. The whole system is then globally exponentially

convergent to a single trajectory.

Many systems are not contracting with respect to all

dimensions of the state space, but show convergence

with respect to a subset of dimensions. Such behav-

ior can be mathematically characterized by partial con-

traction [WS05], [PMSA09]. The underlying idea is

to construct an auxiliary system that is contracting with

respect to a subset of the arguments of the function f.

The major result is the following:

Theorem 1 Consider a nonlinear system of the form

ẋ = f(x,x, t) (9)

and assume the existence of auxiliary system

ẏ = f(y,x, t) (10)
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that is contracting with respect to y uniformly for all

relevant x. If a particular solution of this auxiliary sys-

tem verifies a specific smooth property, then trajectories

of the original system (9) verify this property exponen-

tially. The original system is then said to be partially

contracting. [WS05].

A ’smooth property’ is a property of the solution that

depends smoothly on space and time, such as conver-

gence against a particular solution or a properly defined

distance to a subspace in phase space. The proof of

the theorem is immediate noticing that the observer-like

system (10) has y(t) = x(t) for all t ≥ 0 as a particu-

lar solution. Since all trajectories of the y-system con-

verge exponentially to a single trajectory, this implies

that also the trajectory x(t) verifies this specific prop-

erty with exponential convergence.

It is thus sufficient to show that the auxiliary system is

contracting in order to prove the convergence to a sub-

space. Let us assume that system has a flow-invariant

linear subspace M , which is defined by the property

that trajectories starting in this space always remain in

it for arbitrary times (∀t : f(M , t) ⊂ M ). If matrix V

is an orthonormal projection onto M⊥, then sufficient

condition for global exponential convergence to M is:

V

(

∂ f

∂x

)

s

VT < 0, (11)

where smaller sign indicates that this matrix is negative

definite (see [PS07, PMSA09]).

5 RESULTS

We derived contraction bounds for three scenarios that

correspond to control dynamics with increasing levels

of complexity.

1) Control of step phase without position control:

The simplest case is a control of the phase within the

step cycle of the walkers without simultaneous control

of the position of the characters. Such simple control

already permits to simulate interesting behaviors, such

as soldiers synchronizing their step phases [PMSA09],

[Demo1]. The underlying dynamics is given by (4) with

md = 0. For N identical dynamical systems, with sym-

metric identical coupling gains k this dynamics can be

written

ẋi = f(xi)+ k ∑
j∈Ni

(x j −xi), ∀i = 1, . . . ,N (12)

where Ni defines the index set specifying the neighbor-

hood in the coupling graph, i.e. the other subsystems or

characters that are coupled with character i.

This type of symmetric coupling, where the interac-

tion forces between subsystems depend only on the dif-

ferences of the phase variables is called diffusive cou-

pling. In this case, the Laplacian matrix of the coupling

1 www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video0.avi

scheme is given by L = LG

⊗

Ip, where p is the di-

mensionality of the individual sub-systems, and where
⊗

signifies the Kronecker product. The Laplacian of

the coupling graph is the matrix LG. The system then

can be rewritten compactly as ẋ = f(x, t)− kLx with the

concatenated phase variable x = [xT
1 , ...,xT

n ]T . The Ja-

cobian of this system is J(x, t) = D(x, t)− kL, where

the block-diagonal matrix D(x, t) has the Jacobians of

the uncoupled components ∂ f
∂x

(xi, t) as entries.

The dynamics has a flow-invariant linear subspace

M that contains the particular solution x∗1 = · · · = x∗n.

For this solution all state variables xi are identical and

thus in synchrony. In addition, for this solution the cou-

pling term in equation (12) vanishes, so that the form of

the solution is identical with the solution of the uncou-

pled systems ẋi = f(xi). If V is a projection matrix onto

the subspace M⊥, then, according to (11), the suffi-

cient contraction condition for convergence toward M

is given by V(D(x, t)− kL)sV
T < 0, [PMSA09]. This

implies

λmin

(

V(kL)sV
T
)

= kλ+
L > sup

x,t
λmax (Ds)

with λ+
L being the smallest non-zero eigenvalue

of symmetrical part of the Laplacian Ls. The

maximal eigenvalue for the individual oscillator

is supx,t λmax

(

∂ f
∂x

(x, t)
)

. The sufficient condi-

tion for global stability of the overall system is

given by k > supx,t λmax

(

∂ f
∂x

(x, t)
)

/λ+
L . This im-

plies the following minimum convergence rate:

ρc = −supx,t λmax(V(D(x, t)−L)sV
T ).

For the special case of (4) with md = 0 this implies

the sufficient contraction conditions k > 0 and (Lφ )s ≥
0.

Different topologies of the coupling graphs result in

different stability conditions, since for example λ+
L =

2(1 − cos(2π/N)) for symmetric ring coupling, and

λ+
L = N for all-to-all coupling. (N is the number of

avatars.) See [WS05] and [PMSA09] for details.

2) Speed control by variation of step frequency:

The dynamics of this system is given by equations (2)

and (3) for mz = 0. Assuming arbitrary initial distances

and phase offsets for different propagating characters,

implying G(φ 0
i ) = ci, ci 6= c j, for i 6= j, we redefine di j

as di j − (ci − c j) in (1), and accordingly redefine c in

(2). Assuming this control dynamics, and two avatars

i and j that follow a leading avatar, their phase tra-

jectories converge to a single unique trajectory only if

ci = c j. This is a consequence of the one-to-one corre-

spondence between gait phase and position of the avatar

that is given by equation (2). In all other cases the tra-

jectories of the followers converge to one-dimensional,

but distinct, attractors in phase-position space that are

uniquely defined by ci. These attractors correspond to a

behavior where the follower’s position oscillates around

the position of the leader.
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For the analysis of contraction properties we

regard an auxiliary system obtained from (2) by

keeping the terms which are only dependent on φ :

φ̇ = −mdLdG(φ + φ 0). The symmetrized Jacobian of

this system projected to the orthogonal compliment of

flow-invariant linear subspace φ ∗
1 +φ 0

1 = . . . = φ ∗
N +φ 0

N

determines whether this system is partially contracting.

By virtue of a linear change of variables the study of

the contraction properties of this system is equivalent

to study the contraction properties of the dynamical

system φ̇ = −mdLdG(φ) on trajectories converging

towards its flow-invariant manifold, the linear subspace

of φ ∗
1 = . . . = φ ∗

N .

In order to derive an asymptotic stability condition,

we consider the following auxiliary system, corre-

sponding to a part of (2): φ̇ = −mdLdG(φ). The

Jacobian of this system is given by J = −mdLdDg,

where (Dg)ii = g(φi) = G′(φi) > 0 is a strictly positive

diagonal matrix. Exploiting diagonal stability theory

[Per69], it is straightforward to demonstrate that the

auxiliary system is globally asymptotically stable and

its state converges to an attractor with φ ∗
1 = . . . = φ ∗

N for

any initial condition assuming (Ld)s ≥ 0 and md > 0.

The sufficient conditions for asymptotic stability are

satisfied for all types of symmetric diffusive couplings

with positive coupling strength. For the case of asym-

metric coupling graphs with more general structure

including negative feedback links some results on

asymptotic stability have been provided in [SA08].

The sufficient conditions for (exponential) partial

contraction towards flow-invariant subspace are, (see

(11)): VJs(φ)VT = −mdVB(φ)VT < 0, introducing

B(φ) = LdDg +Dg(L
d)T and V signifying the pro-

jection matrix onto the orthogonal complement of the

flow-invariant linear subspace. For diffusive coupling

with symmetric Laplacian the linear flow-invariant

manifold φ ∗
1 = . . . = φ ∗

N is also the null-space of

the Laplacian. In this case, the eigenvectors of the

Laplacian that correspond to positive eigenvalues can

be used to construct the projection matrix V. For

md > 0 the contraction conditions are thus satisfied

if VB(φ)VT = V(LdDg +Dg(L
d)T )VT > 0 for any

diagonal matrix Dg > 0.

Next we prove the exponential contraction condi-

tions for the particular case of symmetrical all-to-all

coupling. In this case Ld = NI − 11T ≥ 0, where I

is identity matrix of size N. Since V1 = 1T VT = 0,

we obtain 1
2
V(LdDg + Dg(L

d)T )VT = NV(Dg)V
T >

0 for Dg > 0. A lower bound for the contraction

rate is computed from the projected symmetrized Jaco-

bian VJs(φ)VT = −md
2

VB(φ)VT . Contraction theory

also permits to compute the guaranteed contraction rate

ρmin = md minφ (g(φ))λ+
Ld , with λ+

Ld = N for all-to-all

symmetric coupling.

For a general symmetric couplings with

positive links (with equal coupling strength

md > 0) we obtain the sufficient contrac-

tion condition as: λ+
min(L

d)/λ+
max(L

d) >
maxφ (|g(φ) − mean(g(φ))|)/mean(g(φ)), where

mean value of g(φ) over the gait cycle period T is:

mean(g(φ)) = 1/T
∫ T

0 g(φ)dφ . This condition is derived

from the fact that for symmetric (positive) matrices

M1 and M2 for M1 −M2 > 0 it is sufficient to satisfy

M1 > M2 (the last means λmin(M1) > λmax(M2)). This

sufficient condition put the constraints on admissible

topologies of the coupling scheme dependent on the

smoothness of gait velocity function g(φ). Alterna-

tively, it is possible to introduce low-pass filtering of

the forward kinematics of walking characters in order

to increase the smoothness of g(φ).
An illustration of these stability bounds if given

by the [Demo2]; that shows convergent behavior

of the characters when the contraction condition

md > 0,(Ld)s ≥ 0 is satisfied for all-to-all coupling.

[Demo3] shows the divergent behavior of a group when

this condition is violated when md < 0.

The same proof can be extended for nonlinear con-

trol rules. In this case the eigenfrequency is given

by a nonlinear modification of the control rule in eq.

(1), for character i coupled to character j as: ωi =
ω0 + mdh(z j − zi + di j), where the saturating nonlin-

ear function h could be given, for example by h(z) =
1/[1 + exp(−γz)] with γ > 0. This nonlinear function

limits the range of admissible speeds for the controller.

Using the same notations as above, the dynamics of a

single follower that follows a leader at position P(t) is

given by: φ̇(t) = ω0 +mdh(P(t)−G(φ(t))+ c). The

Jacobian of this dynamics Js = −mdh′g(φ) < 0 is neg-

ative, which follows from md > 0, g(φ) > 0 and taking

into account h′(z) = dh(z)/dz > 0,∀z, what guarantees

contraction.

Again this dynamics can be extended for N avatars,

resulting in the nonlinear differential equation system:

φ̇i(t) = ω0 −md ∑
N
j=1 Ki jh(G(φi)−G(φ j)+di j),∀i.

The Jacobian of the system is: J(φ) = −mdLd(φ)Dg,

where Ld
i j(φ) = −Ki jh

′(G(φi) − G(φ j) + di j),

Ld
ii(φ) = ∑

N
j 6=i Ki jh

′(G(φi)−G(φ j)+di j), dii = 0,

(Dg is defined as before). Furthermore, the even

function h′(z) > 0 implies that the Laplacian Ld(φ) is

symmetric diagonally dominant and it stays positive

semidefinite for any positive Ki j > 0, by Gershgorin’s

Theorem [HJ85]. This implies that the system is

asymptotically stable, its solutions converging to an

attractor. The analysis of exponential convergence

requires further steps that exceed the scope of this

paper.

3) Stepsize control combined with a control of

step phase: The dynamics is given by equations (3)

and (4) with md = 0. This dynamics defines a hier-

2 www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video1.avi
3 www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video2.avi
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Figure 5: Self-organized reordering of a crowd with 16 characters. Control dynamics affects direction, distance

and gait phase. See [Demo7].

archically coupled nonlinear system (see (7), Section

4), which is difficult to analyze with classical meth-

ods [LS98]. The dynamics for z(t) given by equation

(3) is partially contracting in case of all-to-all coupling

for any bounded external input φ(t), if mz > 0, Lz ≥ 0

and ω(t) > 0. These sufficient contraction conditions

can be derived from the requirement of the positive-

definiteness of the symmetrized Jacobian applying a

similar technique as above. The Jacobian of this sub-

system is J(φ ,ω) = −mzD
z
g(φ ,ω)Lz, with the diago-

nal matrix (Dz
g(φ ,ω))ii = ωig(φi +φ 0

i ) > 0 that is pos-

itive definite since g(φ) > 0 and ω > 0. This subsystem

is (exponentially) contracting and its relaxation rate is

determined by ρz = mz minφ (g(φ))λ+
Lz (in the case of

all-to-all coupling) for any input from the dynamics of

φ(t) eq. (4). The last dynamics is contracting when

(Lφ )s ≥ 0 and its relaxation rate is ρφ = kλ+
Lφ , where

λ+
Lφ is the smallest non-zero eigenvalue of (Lφ )s. The

effective relaxation time of the overall dynamics is thus

determined by the minimum of the contraction rates ρφ

and ρz.

Demonstrations of this control dynamics satisfying

the contraction conditions are shown in [Demo4], with-

out control of step phase, and in [Demo5], with control

of step phase.

4) Advanced scenarios: A simulation of a system

with stable dynamics with both types of speed control

(via step size and step frequency) and step phase con-

trol is shown in [Demo6]. Using the same dynamics,

a larger crowd of 16 avatars simulated with the open-

source animation engine Horde3d [Sch09] is shown in

[Demo7]. In this scenario, dynamic obstacle avoid-

ance and control of heading direction were activated in

an initial time interval for unsorting of a formation of

avatars. In a second time interval navigation is deacti-

vated, and speed and position control according to the

discussed principles takes over. [Demo8] demonstrates

a large synchronizing crowd with 36 avatars without

initial reordering. [Demo9] shows the divergence dy-

namics of the crowd from previous example, when

4 www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video3.avi
5 www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video4.avi
6 www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video5.avi
7 www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video6.avi
8 www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video7.avi
9 www.uni-tuebingen.de/uni/knv/arl/avi/wscg/video8.avi

negative distance-to-eigenfrequency coupling strength

used (md < 0). Two videos [Demo10] and [Demo11]

show convergence dynamics of the crowd of 49 avatars

for two different values of the strength of the distance-

to-step size coupling (slow and fast). The coupling

strength for the phase coupling dynamics is constant for

this example. The development of stability bounds and

estimates of relaxation times for even more advanced

scenarios including multiple control levels of naviga-

tion is the goal of ongoing work.

6 CONCLUSION

For the example of a learning-based system for the an-

imation of locomoting groups, we have demonstrated

first applications of Contraction Theory for the analysis

and the design of stability and convergence properties

of collective behaviors in animated crowds. The dy-

namics of the collective behavior of animated crowds is

highly nonlinear and prevents the stability analysis us-

ing classical approaches. Opposed to these approaches,

Contraction theory allows to transfer stability results

from the components to composite systems. Future

work has to extend this approach to more complex sce-

narios, especially including non-periodic movements.
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