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ABSTRACT 
In this paper, we present a new terrain rendering approach, with adaptive triangulation performed entirely on the 

GPU via tessellation unit available on the DX11-class graphics hardware. The proposed approach avoids 

encoding of the triangulation topology thus reducing the CPU burden significantly. It also minimizes the data 

transfer overhead between host and GPU memory, which also improves rendering performance. During the 

preprocessing, we construct a multiresolution terrain height map representation that is encoded by the robust 

compression technique enabling direct error control. The technique is efficiently accelerated by the GPU and 

allows the trade-off between speed and compression performance. At run time, an adaptive triangulation is 

constructed in two stages: a coarse and a fine-grain one. At the first stage, rendering algorithm selects the 

coarsest level patches that satisfy the given error threshold. At the second stage, each patch is subdivided into 

smaller blocks which are then tessellated on the GPU in the way that guarantees seamless triangulation. 

Keywords 
Terrain rendering, DX11, GPU, adaptive tessellation, compression, level of detail. 

1. INTRODUCTION 
Despite the rapid advances in the graphics hardware, 

high geometric fidelity and real-time large scale 

terrain visualization is still an active research area. 

The primary reason is that the size and resolution of 

digital terrain models grow at a significantly higher 

rate than the graphics hardware can manage. Even the 

modest height map can easily exceed the available 

memory of today’s highest-end graphics platforms. 

So it is still important to dynamically control the 

triangulation complexity and reduce the height map 

size to fit the hardware limitations and meet real-time 

constraints. 

To effectively render large terrains, a number of 

dynamic multiresolution approaches as well as data 

compression techniques have been developed in the 

last years. These algorithms typically adapt the 

terrain tessellation using local surface roughness 

criteria together with the view parameters. This 

allows dramatic reduction of the model complexity 

without significant loss of visual accuracy. Brief 

overview of different terrain rendering approaches is 

given in the following section. In the previous 

methods, the adaptive triangulation was usually 

constructed by the CPU and then transferred to the 

GPU for rendering. New capabilities of DX11-class 

graphics hardware enable new approach, when 

adaptive terrain tessellation is built entirely on the 

GPU. This reduces the memory storage requirements 

together with the CPU load. It also reduces the 

amount of data to be transferred from the main 

memory to the GPU that again results in a higher 

rendering performance. 

2. RELATED WORK 
Many research papers about adaptive view-dependent 

triangulation construction methods were published in 

the last years. Refer to a nice survey by R. Pajarola 

and E. Gobbetti [PG07]. 

Early approaches construct triangulated irregular 

networks (TINs). Exploiting progressive meshes for 

terrain simplification [Hop98] is one specific 

example. Though TIN-based methods do minimize 

the amount of triangles to be rendered for a given 

error bound, they are too computationally and storage 
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demanding. More regular triangulations such as 

bintree hierarchies [LKR+96, DWS+97] or restricted 

quad trees [Paj98] are faster and easier to implement 

for the price of slightly more redundant triangulation. 

Recent approaches are based on techniques that fully 

exploit the power of modern graphics hardware. 

CABTT algorithm [Lev02] by J. Levenberg as well 

as BDAM [CGG+03a] and P-BDAM [CGG+03b] 

methods by Cignoni et al exploit bintree hierarchies 

of pre-computed triangulations or batches instead of 

individual triangles. Geometry clipmaps approach 

[LH04] renders the terrain as a set of nested regular 

grids centered about the viewer, allowing efficient 

GPU utilization. The method exploits regular grid 

pyramid data structure in conjunction with the lossy 

image compression technique [Mal00] to 

dramatically reduce the storage requirements. 

However, the algorithm completely ignores local 

surface features of the terrain and provides no 

guarantees for the error bound, which becomes 

especially apparent on high-variation terrains. 

Next, C-BDAM method, an extension of BDAM and 

P-BDAM algorithms, was presented by Gobbetti et al 

in [GMC+06]. The method exploits a wavelet-based 

two stage near-lossless compression technique to 

efficiently encode the height map data. In C-BDAM, 

uniform batch triangulations are used which do not 

adapt to local surface features. Regular triangulations 

typically generate significantly more triangles and 

unreasonably increase the GPU load. 

Terrain rendering method presented by Schneider and 

Westermann [SW06] partitions the terrain into square 

tiles and builds for each tile a discrete set of LODs 

using a nested mesh hierarchy. Following this 

approach, Dick et al proposed the method for tile 

triangulations encoding that enables efficient GPU-

based decoding [DSW09]. 

All these methods either completely ignore local 

terrain surface features (like [LC03, LH04, 

GMC+06]) for the sake of efficient GPU utilization, 

or pre-compute the triangulations off-line and then 

just load them during rendering [CGG+03a, 

CGG+03b]. For the case of compressed data, GPU 

can also be used for geometry decompressing as well 

[SW06, DSW09]. 

By the best of our knowledge, none of the previous 

methods take an advantage of the tessellation unit 

exposed by the latest DX11-class graphics hardware 

for precise yet adaptive (view-dependent) terrain 

tessellation. 

3. CONTRIBUTION 
The main contribution is a novel terrain rendering 

approach, which combines efficiency of the chunk-

based terrain rendering with the accuracy of fine-

grain triangulation construction methods. In contrast 

to the previous approaches, our adaptive view-

dependent triangulation is constructed entirely on the 

GPU using hardware-supported tessellation. This 

offloads computations from the CPU while also 

reduces expensive CPU-GPU data transfers. We also 

propose fast and simple GPU-accelerated 

compression technique for progressively encoding 

multiresolution hierarchy that enables direct control 

of a reconstruction precision. 

Algorithm Overview 
To achieve real-time rendering and meet the 

hardware limitations, we exploit the LOD technique. 

To create various levels of detail, during the 

preprocessing, a multiresolution hierarchy is 

constructed by recursively downsampling the initial 

data and subdividing it into overlapping patches. In 

order to reduce the memory requirements, the 

resulting hierarchy is then encoded using simple and 

efficient compression algorithm described in 

section 4. 

Constructing adaptive terrain model to be rendered is 

a two-stage process. The first stage is the coarse per-

patch LOD selection: the rendering algorithm selects 

the coarsest level patches that tolerate the given 

screen-space error. They are cached in a GPU 

memory and due to the frame-to-frame coherence are 

re-used for a number of successive frames. On the 

second stage, a fine-grain LOD selection is 

performed: each patch is seamlessly triangulated 

using hardware. For this purpose, each patch is 

subdivided into the equal-sized smaller blocks that 

are independently triangulated by the GPU-supported 

tessellation unit, as described in section 5. 

Experimental results are given in section 6. Section 7 

concludes the paper. 

4. BUILDING COMPRESSED 

MULTIRESOLUTION TERRAIN 

REPRESENTATION 

Patch Quad Tree 
The core structure of the proposed multiresolution 

model is a quad tree of square blocks (hereinafter 

referred to as patches). This structure is commonly 

used in real-time terrain rendering systems [Ulr00, 

DSW09]. 

The patch quad tree is constructed at the preprocess 

stage. At the first step, a series of coarser height maps 

is built. Each height map is the downsampled version 

of the previous one (fig. 1). At the next step, the 

patch quad tree itself is constructed by subdividing 

each level into )12()12(  nn
 square blocks 

(65x65, 129x129, 257x257 etc.), refer to fig. 2. 
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To refine samples from R, we exploit the following 
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Since )1(

,

l
jiq  is known, encoding the )(

2,2

l

jiq  requires 

only 3 symbols: 1 , 0 or 1 . These symbols are 

encoded using adaptive arithmetic coding [WNC87]. 

At the second step, we encode the remaining samples 

located at positions from I in )(ˆ l

CH  (dotted circles in 

fig. 4). This is done by predicting the sample’s value 

from the refined samples and by encoding the 

prediction error. 

 

For the sake of GPU-acceleration, we exploit bilinear 

predictor )ˆ( )(

,

l

jiR hP  that calculates predicted value of 

)(

,
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jih  as a weighted sum of 4 refined samples located 

at the neighboring positions in R. We then calculate 

the prediction error as follows: 
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Magnitudes and signs of the resulting prediction 

errors )(

,

l

jid  are then separately encoded using 

adaptive arithmetic coding. 

As it was already discussed, symbols being used 

during described compression process are encoded 

with the technique described in [WNC87]. We 

exploit adaptive approach that learns the statistical 

properties of the input symbol stream on the fly. This 

is implemented as a histogram which counts 

corresponding symbol frequencies (see [WNC87] for 

details). Note that simple context modeling can 

improve the compression performance with minimal 

algorithmic complexity increase. 

During the preprocessing, the whole hierarchy is 

recursively traversed starting from the root (level 0) 

and the proposed encoding process is repeated for 

each patch. 

The proposed compression scheme enables direct 

control of the reconstruction precision in 
L  error 

metric: it assures that the maximum reconstruction 

error of a terrain block at level l of the hierarchy is no 

more than l . For comparison, compression method 

[Mal00] used in geometry clipmaps [LH04] does not 

provide a guaranteed error bound in 
L  metric. C-

BDAM [GMC+06] exploits sophisticated two-stage 

compression scheme to assure the given error 

tolerance. This provides higher compression ratios 

but is more computationally expensive than the 

presented scheme. Moreover, as we will show in the 

next section, our technique can be efficiently 

accelerated using the GPU. 

Calculating Guaranteed Patch Error 

Bound 
During the quad tree construction, each patch in the 

hierarchy is assigned a world space approximation 

error. It conservatively estimates the maximum 

geometric deviation of the patch’s reconstructed 

height map from the underlying original full-detail 

height map. This value is required at the run time to 

estimate the screen-space error and to construct the 

patch-based adaptive model, which approximates the 

terrain with the specified screen-space error. 

Let’s denote the patch located at the level l of the 

quad tree at the (m, n) position by the )(

,

l

nmP  and its 

upper error bound by the )( )(

,

l

nmPErr . To calculate 

)( )(

,

l

nmPErr , we first calculate approximation error 

)( )(

,

l

nmAppr PErr , which is the upper bound of the 

maximum distance from the patch’s precise height 

map to the samples of the underlying full-detail (level 

0 

0 

l  

Figure 3. Quantizing two successive levels. 
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0l ) height map. It is recursively calculated using the 

same method as used in ROAM [DWS+97] to 

calculate the nested wedgie thickness: 

0)(
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where )( )(

,

l

nmInt PErr  is the maximum geometric 

deviation of the linearly interpolated patch’s height 

map from its children height maps. Two-dimensional 

illustration for determining )( )(

,

l

nmInt PErr  is given in 

fig. 5. 

 

Since for the patch )(

,

l

nmP , the reconstructed height 

map deviates from the exact height map by at most 

l , the final patch’s upper error bound is given by: 

l
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nm PErrPErr  )()( )(

,
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,  

5. CONSTRUCTING VIEW-

DEPENDENT ADAPTIVE MODEL 
The proposed level-of-detail selection process 

consists of two stages. The first stage is the coarse 

LOD selection which is done on a per-patch level: an 

unbalanced patch quad tree is constructed with the 

leaf patches satisfying the given error tolerance. On 

the second stage, the fine-grain LOD selection is 

performed, at which each patch is precisely 

triangulated using the hardware tessellation unit. 

Coarse Level of Detail Selection 
The coarse LOD selection is performed similar to 

other quad tree-based terrain rendering methods. For 

this purpose, an unbalanced patch quad tree is 

maintained. It defines the block-based adaptive 

model, which approximates the terrain with the 

specified screen-space error. 

The unbalanced quad tree is cached in a GPU 

memory and is updated according to the results of 

comparing patch’s screen-space error estimation 

)( )(

,

l

nmScr PErr  with the user-defined error threshold  . 

Since we already have the maximum geometric error 

for the vertices within a patch, )( )(

,

l

nmScr PErr  can be 

calculated using standard LOD formula for 

conservatively determining the maximum screen-

space vertex error (see [Ulr00, Lev02]): 
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where ))2/(),2/(max(
2
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vvhh ctgRctgR   , hR  

and vR  are horizontal and vertical resolutions of the 

view port, h  and v  are the horizontal and vertical 

camera fields of view, and ),( )(

,

l

nmVc  is the distance 

from the camera position c to the closest point on the 

patch’s bounding box )(

,

l

nmV . 

Tessellation Blocks 
During the fine-grain LOD selection, each patch in 

the unbalanced patch quad tree is adaptively 

triangulated using the GPU. For this purpose, each 

patch is subdivided into the small equal-sized blocks 

that we call tessellation blocks. For instance, a 65×65 

patch can be subdivided into the 4×4 grid of 17×17 

tessellation blocks or into the 8×8 grid of 9×9 blocks 

etc. Detail level for each tessellation block is 

determined independently by the hull shader: the 

block can be rendered in the full resolution (fig. 6, 

left) or in the resolution reduced by a factor of d2 , 

d = 1,2,… (fig. 6, center, right). 

 

To determine the degree of simplification for each 

block, we calculate a series of block errors. These 

errors represent the deviation of the block’s 

simplified triangulation from the patch’s height map 

samples, covered by the block but not included into 

the simplified triangulation (dotted circles in fig. 6). 

Let’s denote the error of the tessellation block located 
at the (r, s) position in the patch, whose triangulation 

is simplified by a factor of d2  by 
)(

,

d

sr . The 

tessellation block errors 
)(

,

d

sr  are computed as 

follows: 
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Figure 5. Patch’s height map interpolation error. 

Figure 6. Triangulations of a 9×9 tessellation 

block. 
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where )(

,

d

srT  is the tessellation block (r,s) triangulation 

simplified by a factor of d2  and ),( )(

,

d

srTv  is the 

vertical distance from the vertex v to the triangulation 
)(

,

d

srT . Two and four times simplified triangulations as 

well as these samples (dotted circles) of the patch’s 

height map that are used to calculate )1(

,sr  and )2(

,sr  

are shown in fig. 6 (center and right images 

correspondingly). 

To get the final error bound for the tessellation block, 

it is necessary to take into account the patch’s error 
bound. This final error bound hereinafter is referred 

to as )(

,

d

sr  and is calculated as follows: 

)( )(

,

)(

,

)(

,

l

nm

d

sr

d
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In our particular implementation, we calculate errors 

for 4 simplification levels such that tessellation block 

triangulation can be simplified by a maximum factor 

of 256)2( 24  . This enables us to store the 

tessellation block errors as a 4-component vector. 

Fine-Grain Level of Detail Selection 
When the patch is to be rendered, it’s necessary to 

estimate how much its tessellation blocks’ 
triangulations can be simplified without introducing 

unacceptable error. This is done using the current 

frame’s world-view-projection matrix. Each 

tessellation block is processed independently and for 

each block’s edge, a tessellation factor is determined. 

To eliminate cracks, tessellation factors for shared 

edges of neighboring blocks must be computed in the 

same way. The tessellation factors are then passed to 

the tessellation stage of the graphics pipeline, which 

generates final triangulation. 

Tessellation factors for all edges are determined 

identically. Let’s consider some edge and denote its 

center by ce . Let’s define edge errors 
)(d

ec
  as the 

maximum error of the tessellation blocks sharing this 

edge. For example, block (r, s) left edge’s errors are 

calculated as follows: 

),max( )(

,
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  , d = 1,2,… 

Next let’s define a series of segments in a world 

space specified by theirs end points ),(d

ce  and ),(d

ce  

determined as follows:  
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where ze  is the world space z (up) axis unit vector. 

Thus ),(d

ce  and ),(d

ce  define a segment of length 

)(d

ec
  directed along the z axis such that the edge 

centre ce  is located in the segment’s middle. 

If we project this segment onto the viewing plane 

using the world-view-projection matrix, we will get 

the edge screen space error estimation (fig. 7) given 

that the neighboring tessellation blocks are simplified 

by a factor of d2 . We can then select the maximum 

simplification level d for the edge that does not lead 

to unacceptable error as follows: 

  ),(maxarg ),(),( d

c

d

c
d

eeprojd  

 

The same selection process is done for each edge. 

Tessellation factor for the block interior is then 

defined as the minimum of its edge tessellation 

factors. This method assures that tessellation factors 

for shared edges of neighboring blocks are computed 

equally and guarantees seamless patch triangulation. 

An example of a patch triangulation is given in fig. 8. 

 

To hide gaps between neighboring patches, we 

exploit “vertical skirts” around the perimeter of each 
patch as proposed by T. Ulrich [Ulr00]. The top of 

the skirt matches the patch’s edge and the skirt height 
is selected such that it hides all possible cracks. 

Note that in contrast to all previous terrain 

simplification methods, all operations required to 

triangulate the patch are performed entirely on the 

GPU and does not involve any CPU computations. 

Figure 7. Calculating edge screen space error. 
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Figure 8. Seamlessly triangulated patch’s 
tessellation blocks. 
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Implementation Details 
The presented algorithm was implemented with the 

C++ in an MS Visual Studio .NET environment. 

In our system, the CPU decodes the bit stream in 

parallel to the rendering thread and all other tasks are 

done on the GPU. To facilitate GPU-accelerated 

decompression, we support several temporary 

textures. The first one is )12()12(  nn  8-bit 

texture RT  that is populated with the parent patch’s 

refinement labels ( 1 , 0 or 1 ) from R. The second 

one is )122()122(  nn  8-bit texture IT  

storing prediction errors )(

,

l

jid  for samples from I. 

GPU-part of the decompression is done in two steps: 

 At the first step, parent patch height map is 

refined by rendering to the temporary texture PT . 

 At the second step, child patch height maps are 

rendered. 

During the second step, PT  is filtered using 

hardware-supported bilinear filtering, interpolation 

errors are loaded from IT  and added to the 

interpolated samples from PT . 

Patch’s height and normal maps as well as the 

tessellation block errors are stored as texture arrays. 

A list of unused subresources is supported. When 

patch is created, we find unused subresource in the 

list and release it when the patch is destroyed. 

Tessellation block errors as well as normal maps are 

computed on the GPU when the patch is created by 

rendering to the appropriate texture array element. 

Exploiting texture arrays enables the whole terrain 

rendering using single draw call with instancing. The 

per-instance data contains patch location, level in the 

hierarchy and the texture index. Patch rendering hull 

shader calculates tessellation factor for each edge and 

passes the data to the tessellator. Tessellator 

generates topology and domain coordinates that are 

passed to the domain shader. Domain shader 

calculates world space position for each vertex and 

fetches the height map value from the appropriate 

texture array element. The resulting triangles then 

pass in a conventional way via rasterizer. 

6. EXPERIMENTAL RESULTS AND 

DISCUSSION 
To test our system, we used 16385×16385 height 

map of the Puget Sound sampled at 10 meter spacing, 

which is used as the common benchmark and is 

available at [PS]. The raw data size (16 bps) is 512 

MB. The compression and run-time experiments were 

done on a workstation with the following hardware 

configuration: single Intel Core i7 @2.67; 6.0 GB 

RAM; NVidia GTX480. 

The data set was compressed to 46.8 MB (11:1) with 

1 meter error tolerance. For comparison, C-BDAM 

method, which exploits much more sophisticated 

approach, compressed the same data set to 19.2 MB 

(26:1) [GMC+06]. Note that in contrast to C-BDAM, 

our method enables hardware-based decompression. 

Note also that in practice we compress extended 

)32()32(  nn  height map for each patch for the 

sake of seamless normal map generation. As opposed 

to compressing conventional diffuse textures, height 

maps usually require less space. That is why we 

believe that provided 11x compression rate is a good 

justification for the quality of our algorithm. 

During our run-time experiments, the Puget Sound 

data set was rendered with 2 pixels screen space error 

tolerance at 1920x1200 resolution (fig. 10). We 

compared the rendering performance of our method 

with our implementation of the chunked LOD 

approach [Ulr00]. As fig. 10 shows, the data set was 

rendered at 607 fps on average with minimum at 465 

fps with the proposed method. When the same terrain 

was rendered with our method but without exploiting 

instancing and texture arrays described previously, 

the frame rate was almost 2x lower. As fig. 10 shows, 

our method is more than 3.5x faster than the chunked 

LOD approach. 

Chunked LOD

H/W Tessellation

H/W tess + tex 

array & instancing

0

200

400

600

800

1000

1200

F
P

S

Chunked LOD H/W Tessellation H/W tess + tex array & instancing
 

Figure 10. Rendering performance at 1920×1200 

resolution. 

Our experiments showed that the optimal tessellation 

block size that provides the best performance is 8×8. 

Other interesting statistics for this rendering 

experiment is that approximately 1024 of 128×128 

patches were kept in GPU memory (only ~200 of 

them were rendered per frame on average). Each 

height map was stored with 16 bit precision. All 

patches demanded just 32 MB of the GPU memory. 

We also exploited normal map compressed using 

BC5, which required additional 16 MB of data. 

Diffuse maps are not taken into account because 

special algorithms that are behind the scope of this 

work are designed to compress them. However, the 

same quad tree-based subdivision scheme can be 

integrated with our method to handle diffuse texture. 

Since our method enables using small screen space 

error threshold (2 pixels or less), we did not observe 

any popping artifacts during our experiments even 
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though there is no morph between successive LODs 

in our current implementation. 

In all our experiments, the whole compressed 

hierarchy easily fitted into the main memory. 

However, our approach can be easily extended for the 

out-of-core rendering of arbitrary large terrains. In 

this case, the whole compressed multiresolution 

representation would be kept in a repository on the 

disk or a network server, as for example in the 

geometry clipmaps. This would allow on-demand 

extraction from the repository rather accessing the 

data directly in the memory. 

7. CONCLUSION AND FUTURE 

WORK 
We presented a new real-time large-scale terrain 

rendering technique, which is based on the 

exploitation of the hardware-supported tessellation 

available in modern GPUs. Since triangulation is 

performed entirely on the GPU, there is no need to 

encode the triangulation topology. Moreover, the 

triangulation is precisely adapted to each camera 

position. To reduce the data storage requirements, we 

use robust compression technique that enables direct 

control over the reconstruction precision and is also 

accelerated by the GPU. 

We consider support for dynamic terrain 

modifications as a future work topic. Since the 

triangulation topology is constructed entirely on the 

GPU, it would require only updating the tessellation 

block errors, and the triangulation will be updated 

accordingly. Another possible direction is to extend 

the presented algorithm for rendering arbitrary high-

detailed 2D-parameterized surfaces. 
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