

High-Performance Terrain Rendering Using
Hardware Tessellation

Egor Yusov

Intel Corporation
30 Turgeneva street,

603024, Russia, Nizhny Novgorod

egor.a.yusov@intel.com

Maxim Shevtsov

Intel Corporation
30 Turgeneva street,

603024, Russia, Nizhny Novgorod

maxim.y.shevtsov@intel.com

ABSTRACT
In this paper, we present a new terrain rendering approach, with adaptive triangulation performed entirely on the

GPU via tessellation unit available on the DX11-class graphics hardware. The proposed approach avoids

encoding of the triangulation topology thus reducing the CPU burden significantly. It also minimizes the data

transfer overhead between host and GPU memory, which also improves rendering performance. During the

preprocessing, we construct a multiresolution terrain height map representation that is encoded by the robust

compression technique enabling direct error control. The technique is efficiently accelerated by the GPU and

allows the trade-off between speed and compression performance. At run time, an adaptive triangulation is

constructed in two stages: a coarse and a fine-grain one. At the first stage, rendering algorithm selects the

coarsest level patches that satisfy the given error threshold. At the second stage, each patch is subdivided into

smaller blocks which are then tessellated on the GPU in the way that guarantees seamless triangulation.

Keywords
Terrain rendering, DX11, GPU, adaptive tessellation, compression, level of detail.

1. INTRODUCTION
Despite the rapid advances in the graphics hardware,

high geometric fidelity and real-time large scale

terrain visualization is still an active research area.

The primary reason is that the size and resolution of

digital terrain models grow at a significantly higher

rate than the graphics hardware can manage. Even the

modest height map can easily exceed the available

memory of today’s highest-end graphics platforms.

So it is still important to dynamically control the

triangulation complexity and reduce the height map

size to fit the hardware limitations and meet real-time

constraints.

To effectively render large terrains, a number of

dynamic multiresolution approaches as well as data

compression techniques have been developed in the

last years. These algorithms typically adapt the

terrain tessellation using local surface roughness

criteria together with the view parameters. This

allows dramatic reduction of the model complexity

without significant loss of visual accuracy. Brief

overview of different terrain rendering approaches is

given in the following section. In the previous

methods, the adaptive triangulation was usually

constructed by the CPU and then transferred to the

GPU for rendering. New capabilities of DX11-class

graphics hardware enable new approach, when

adaptive terrain tessellation is built entirely on the

GPU. This reduces the memory storage requirements

together with the CPU load. It also reduces the

amount of data to be transferred from the main

memory to the GPU that again results in a higher

rendering performance.

2. RELATED WORK
Many research papers about adaptive view-dependent

triangulation construction methods were published in

the last years. Refer to a nice survey by R. Pajarola

and E. Gobbetti [PG07].

Early approaches construct triangulated irregular

networks (TINs). Exploiting progressive meshes for

terrain simplification [Hop98] is one specific

example. Though TIN-based methods do minimize

the amount of triangles to be rendered for a given

error bound, they are too computationally and storage

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

Journal of WSCG 85 ISSN 1213-6972

demanding. More regular triangulations such as

bintree hierarchies [LKR+96, DWS+97] or restricted

quad trees [Paj98] are faster and easier to implement

for the price of slightly more redundant triangulation.

Recent approaches are based on techniques that fully

exploit the power of modern graphics hardware.

CABTT algorithm [Lev02] by J. Levenberg as well

as BDAM [CGG+03a] and P-BDAM [CGG+03b]

methods by Cignoni et al exploit bintree hierarchies

of pre-computed triangulations or batches instead of

individual triangles. Geometry clipmaps approach

[LH04] renders the terrain as a set of nested regular

grids centered about the viewer, allowing efficient

GPU utilization. The method exploits regular grid

pyramid data structure in conjunction with the lossy

image compression technique [Mal00] to

dramatically reduce the storage requirements.

However, the algorithm completely ignores local

surface features of the terrain and provides no

guarantees for the error bound, which becomes

especially apparent on high-variation terrains.

Next, C-BDAM method, an extension of BDAM and

P-BDAM algorithms, was presented by Gobbetti et al

in [GMC+06]. The method exploits a wavelet-based

two stage near-lossless compression technique to

efficiently encode the height map data. In C-BDAM,

uniform batch triangulations are used which do not

adapt to local surface features. Regular triangulations

typically generate significantly more triangles and

unreasonably increase the GPU load.

Terrain rendering method presented by Schneider and

Westermann [SW06] partitions the terrain into square

tiles and builds for each tile a discrete set of LODs

using a nested mesh hierarchy. Following this

approach, Dick et al proposed the method for tile

triangulations encoding that enables efficient GPU-

based decoding [DSW09].

All these methods either completely ignore local

terrain surface features (like [LC03, LH04,

GMC+06]) for the sake of efficient GPU utilization,

or pre-compute the triangulations off-line and then

just load them during rendering [CGG+03a,

CGG+03b]. For the case of compressed data, GPU

can also be used for geometry decompressing as well

[SW06, DSW09].

By the best of our knowledge, none of the previous

methods take an advantage of the tessellation unit

exposed by the latest DX11-class graphics hardware

for precise yet adaptive (view-dependent) terrain

tessellation.

3. CONTRIBUTION
The main contribution is a novel terrain rendering

approach, which combines efficiency of the chunk-

based terrain rendering with the accuracy of fine-

grain triangulation construction methods. In contrast

to the previous approaches, our adaptive view-

dependent triangulation is constructed entirely on the

GPU using hardware-supported tessellation. This

offloads computations from the CPU while also

reduces expensive CPU-GPU data transfers. We also

propose fast and simple GPU-accelerated

compression technique for progressively encoding

multiresolution hierarchy that enables direct control

of a reconstruction precision.

Algorithm Overview
To achieve real-time rendering and meet the

hardware limitations, we exploit the LOD technique.

To create various levels of detail, during the

preprocessing, a multiresolution hierarchy is

constructed by recursively downsampling the initial

data and subdividing it into overlapping patches. In

order to reduce the memory requirements, the

resulting hierarchy is then encoded using simple and

efficient compression algorithm described in

section 4.

Constructing adaptive terrain model to be rendered is

a two-stage process. The first stage is the coarse per-

patch LOD selection: the rendering algorithm selects

the coarsest level patches that tolerate the given

screen-space error. They are cached in a GPU

memory and due to the frame-to-frame coherence are

re-used for a number of successive frames. On the

second stage, a fine-grain LOD selection is

performed: each patch is seamlessly triangulated

using hardware. For this purpose, each patch is

subdivided into the equal-sized smaller blocks that

are independently triangulated by the GPU-supported

tessellation unit, as described in section 5.

Experimental results are given in section 6. Section 7

concludes the paper.

4. BUILDING COMPRESSED

MULTIRESOLUTION TERRAIN

REPRESENTATION

Patch Quad Tree
The core structure of the proposed multiresolution

model is a quad tree of square blocks (hereinafter

referred to as patches). This structure is commonly

used in real-time terrain rendering systems [Ulr00,

DSW09].

The patch quad tree is constructed at the preprocess

stage. At the first step, a series of coarser height maps

is built. Each height map is the downsampled version

of the previous one (fig. 1). At the next step, the

patch quad tree itself is constructed by subdividing

each level into)12()12( nn
 square blocks

(65x65, 129x129, 257x257 etc.), refer to fig. 2.

Journal of WSCG 86 ISSN 1213-6972

}),(ˆˆ:),{()()(

, RjiHhjiI
l

C

l

ji 

To refine samples from R, we exploit the following

observation: the refined sample)(

2,2
ˆ l

jih (from)(ˆ l

CH)

corresponding to the sample)1(

,
ˆ l

jih (from)1(ˆ l
PH) can

only take one of the following 3 values (see fig. 3):

}2ˆ,ˆ,2ˆ{ˆ)1(

,

)1(

,

)1(

,

)(

2,2 l

l

ji

l

jil

l

ji

l

ji hhhh    .

This also means that if)1(

,
ˆ l

jih is encoded by the

quantized value
)1(

,

l
jiq , then corresponding)(

2,2

l

jiq can

only take one of the following 3 values:

}12,2,12{)1(

,

)1(

,

)1(

,

)(

2,2   l

ji

l

ji

l

ji

l

ji qqqq

Since)1(

,

l
jiq is known, encoding the)(

2,2

l

jiq requires

only 3 symbols: 1 , 0 or 1 . These symbols are

encoded using adaptive arithmetic coding [WNC87].

At the second step, we encode the remaining samples

located at positions from I in)(ˆ l

CH (dotted circles in

fig. 4). This is done by predicting the sample’s value

from the refined samples and by encoding the

prediction error.

For the sake of GPU-acceleration, we exploit bilinear

predictor)ˆ()(

,

l

jiR hP that calculates predicted value of

)(

,
ˆ l

jih as a weighted sum of 4 refined samples located

at the neighboring positions in R. We then calculate

the prediction error as follows:

)(

,

)(

,

)(

,))ˆ((l

ji

l

jiRl

l

ji qhPQd  , Iji ),(

Magnitudes and signs of the resulting prediction

errors)(

,

l

jid are then separately encoded using

adaptive arithmetic coding.

As it was already discussed, symbols being used

during described compression process are encoded

with the technique described in [WNC87]. We

exploit adaptive approach that learns the statistical

properties of the input symbol stream on the fly. This

is implemented as a histogram which counts

corresponding symbol frequencies (see [WNC87] for

details). Note that simple context modeling can

improve the compression performance with minimal

algorithmic complexity increase.

During the preprocessing, the whole hierarchy is

recursively traversed starting from the root (level 0)

and the proposed encoding process is repeated for

each patch.

The proposed compression scheme enables direct

control of the reconstruction precision in 
L error

metric: it assures that the maximum reconstruction

error of a terrain block at level l of the hierarchy is no

more than l . For comparison, compression method

[Mal00] used in geometry clipmaps [LH04] does not

provide a guaranteed error bound in 
L metric. C-

BDAM [GMC+06] exploits sophisticated two-stage

compression scheme to assure the given error

tolerance. This provides higher compression ratios

but is more computationally expensive than the

presented scheme. Moreover, as we will show in the

next section, our technique can be efficiently

accelerated using the GPU.

Calculating Guaranteed Patch Error

Bound
During the quad tree construction, each patch in the

hierarchy is assigned a world space approximation

error. It conservatively estimates the maximum

geometric deviation of the patch’s reconstructed

height map from the underlying original full-detail

height map. This value is required at the run time to

estimate the screen-space error and to construct the

patch-based adaptive model, which approximates the

terrain with the specified screen-space error.

Let’s denote the patch located at the level l of the

quad tree at the (m, n) position by the)(

,

l

nmP and its

upper error bound by the)()(

,

l

nmPErr . To calculate

)()(

,

l

nmPErr , we first calculate approximation error

)()(

,

l

nmAppr PErr , which is the upper bound of the

maximum distance from the patch’s precise height

map to the samples of the underlying full-detail (level

0

0

l

Figure 3. Quantizing two successive levels.

l
l2 l2 l3 l3

l2

0

0

1 l
1l 12 l 12  l 13 l 13  l

12  l 12 l

l4
l5

l6 l4
l5

l6

l4 l2
l4)(

2,2
ˆ l

jih

0 1 -1

0 1 2 3 -1 -2 -3)(

2,2

l

jiq

)1(

,
ˆ l

jih

)1(

,

l
jiq

Interpolated samples (I)
Refined samples (R)

Figure 4. Refined and interpolated samples of

the child patches joined height map
)(ˆ l

CH .

Journal of WSCG 88 ISSN 1213-6972

0l) height map. It is recursively calculated using the

same method as used in ROAM [DWS+97] to

calculate the nested wedgie thickness:

0)(
)(

,
0 l

nmAppr PErr

})({max)()()1(

2,2
1,

)(

,

)(

,

  l

tnsmAppr
ts

l

nmInt

l

nmAppr PErrPErrPErr ,

0,...10  ll

where)()(

,

l

nmInt PErr is the maximum geometric

deviation of the linearly interpolated patch’s height

map from its children height maps. Two-dimensional

illustration for determining)()(

,

l

nmInt PErr is given in

fig. 5.

Since for the patch)(

,

l

nmP , the reconstructed height

map deviates from the exact height map by at most

l , the final patch’s upper error bound is given by:

l

l

nmAppr

l

nm PErrPErr )()()(

,

)(

,

5. CONSTRUCTING VIEW-

DEPENDENT ADAPTIVE MODEL
The proposed level-of-detail selection process

consists of two stages. The first stage is the coarse

LOD selection which is done on a per-patch level: an

unbalanced patch quad tree is constructed with the

leaf patches satisfying the given error tolerance. On

the second stage, the fine-grain LOD selection is

performed, at which each patch is precisely

triangulated using the hardware tessellation unit.

Coarse Level of Detail Selection
The coarse LOD selection is performed similar to

other quad tree-based terrain rendering methods. For

this purpose, an unbalanced patch quad tree is

maintained. It defines the block-based adaptive

model, which approximates the terrain with the

specified screen-space error.

The unbalanced quad tree is cached in a GPU

memory and is updated according to the results of

comparing patch’s screen-space error estimation

)()(

,

l

nmScr PErr with the user-defined error threshold  .

Since we already have the maximum geometric error

for the vertices within a patch,)()(

,

l

nmScr PErr can be

calculated using standard LOD formula for

conservatively determining the maximum screen-

space vertex error (see [Ulr00, Lev02]):

),(

)(
)(

)(

,

)(

,)(

, l

nm

l

nml

nmScr
Vc

PErr
PErr 

where))2/(),2/(max(
2
1

vvhh ctgRctgR   , hR

and vR are horizontal and vertical resolutions of the

view port, h and v are the horizontal and vertical

camera fields of view, and),()(

,

l

nmVc is the distance

from the camera position c to the closest point on the

patch’s bounding box)(

,

l

nmV .

Tessellation Blocks
During the fine-grain LOD selection, each patch in

the unbalanced patch quad tree is adaptively

triangulated using the GPU. For this purpose, each

patch is subdivided into the small equal-sized blocks

that we call tessellation blocks. For instance, a 65×65

patch can be subdivided into the 4×4 grid of 17×17

tessellation blocks or into the 8×8 grid of 9×9 blocks

etc. Detail level for each tessellation block is

determined independently by the hull shader: the

block can be rendered in the full resolution (fig. 6,

left) or in the resolution reduced by a factor of d2 ,

d = 1,2,… (fig. 6, center, right).

To determine the degree of simplification for each

block, we calculate a series of block errors. These

errors represent the deviation of the block’s

simplified triangulation from the patch’s height map

samples, covered by the block but not included into

the simplified triangulation (dotted circles in fig. 6).

Let’s denote the error of the tessellation block located
at the (r, s) position in the patch, whose triangulation

is simplified by a factor of d2 by
)(

,

d

sr . The

tessellation block errors
)(

,

d

sr are computed as

follows:

),(max)(

,

)(

,)(
,

d

sr
Tv

d

sr Tv
d
sr

  , d = 1,2,…

Child patches’ (level l) height map samples

Parent patch’s (level l-1) height map samples

)()(

,

l

nmInt PErr

)()(

,

l

nmInt PErr

Figure 5. Patch’s height map interpolation error.

Figure 6. Triangulations of a 9×9 tessellation

block.

)1(

,sr
)2(

,sr 0)0(

, sr

d=0 d=1 d=2

Journal of WSCG 89 ISSN 1213-6972

where)(

,

d

srT is the tessellation block (r,s) triangulation

simplified by a factor of d2 and),()(

,

d

srTv is the

vertical distance from the vertex v to the triangulation
)(

,

d

srT . Two and four times simplified triangulations as

well as these samples (dotted circles) of the patch’s

height map that are used to calculate)1(

,sr and)2(

,sr

are shown in fig. 6 (center and right images

correspondingly).

To get the final error bound for the tessellation block,

it is necessary to take into account the patch’s error
bound. This final error bound hereinafter is referred

to as)(

,

d

sr and is calculated as follows:

)()(

,

)(

,

)(

,

l

nm

d

sr

d

sr PErr 

In our particular implementation, we calculate errors

for 4 simplification levels such that tessellation block

triangulation can be simplified by a maximum factor

of 256)2(24  . This enables us to store the

tessellation block errors as a 4-component vector.

Fine-Grain Level of Detail Selection
When the patch is to be rendered, it’s necessary to

estimate how much its tessellation blocks’
triangulations can be simplified without introducing

unacceptable error. This is done using the current

frame’s world-view-projection matrix. Each

tessellation block is processed independently and for

each block’s edge, a tessellation factor is determined.

To eliminate cracks, tessellation factors for shared

edges of neighboring blocks must be computed in the

same way. The tessellation factors are then passed to

the tessellation stage of the graphics pipeline, which

generates final triangulation.

Tessellation factors for all edges are determined

identically. Let’s consider some edge and denote its

center by ce . Let’s define edge errors
)(d

ec
 as the

maximum error of the tessellation blocks sharing this

edge. For example, block (r, s) left edge’s errors are

calculated as follows:

),max()(

,

)(

,1

)(d

sr

d

sr

d

ec
  , d = 1,2,…

Next let’s define a series of segments in a world

space specified by theirs end points ),(d

ce and ),(d

ce

determined as follows:

z

d

ec

d

c eee
c

 2/)(),(

z

d

ec

d

c eee
c

 2/)(),(

where ze is the world space z (up) axis unit vector.

Thus ),(d

ce and ),(d

ce define a segment of length

)(d

ec
 directed along the z axis such that the edge

centre ce is located in the segment’s middle.

If we project this segment onto the viewing plane

using the world-view-projection matrix, we will get

the edge screen space error estimation (fig. 7) given

that the neighboring tessellation blocks are simplified

by a factor of d2 . We can then select the maximum

simplification level d for the edge that does not lead

to unacceptable error as follows:

 ),(maxarg),(),(d

c

d

c
d

eeprojd

The same selection process is done for each edge.

Tessellation factor for the block interior is then

defined as the minimum of its edge tessellation

factors. This method assures that tessellation factors

for shared edges of neighboring blocks are computed

equally and guarantees seamless patch triangulation.

An example of a patch triangulation is given in fig. 8.

To hide gaps between neighboring patches, we

exploit “vertical skirts” around the perimeter of each
patch as proposed by T. Ulrich [Ulr00]. The top of

the skirt matches the patch’s edge and the skirt height
is selected such that it hides all possible cracks.

Note that in contrast to all previous terrain

simplification methods, all operations required to

triangulate the patch are performed entirely on the

GPU and does not involve any CPU computations.

Figure 7. Calculating edge screen space error.

),(d

ce

),(d

ce

),(),(),( d

c

d

c eeproj

ce

0

0

1

1

Figure 8. Seamlessly triangulated patch’s
tessellation blocks.

Journal of WSCG 90 ISSN 1213-6972

Implementation Details
The presented algorithm was implemented with the

C++ in an MS Visual Studio .NET environment.

In our system, the CPU decodes the bit stream in

parallel to the rendering thread and all other tasks are

done on the GPU. To facilitate GPU-accelerated

decompression, we support several temporary

textures. The first one is)12()12( nn 8-bit

texture RT that is populated with the parent patch’s

refinement labels (1 , 0 or 1) from R. The second

one is)122()122( nn 8-bit texture IT

storing prediction errors)(

,

l

jid for samples from I.

GPU-part of the decompression is done in two steps:

 At the first step, parent patch height map is

refined by rendering to the temporary texture PT .

 At the second step, child patch height maps are

rendered.

During the second step, PT is filtered using

hardware-supported bilinear filtering, interpolation

errors are loaded from IT and added to the

interpolated samples from PT .

Patch’s height and normal maps as well as the

tessellation block errors are stored as texture arrays.

A list of unused subresources is supported. When

patch is created, we find unused subresource in the

list and release it when the patch is destroyed.

Tessellation block errors as well as normal maps are

computed on the GPU when the patch is created by

rendering to the appropriate texture array element.

Exploiting texture arrays enables the whole terrain

rendering using single draw call with instancing. The

per-instance data contains patch location, level in the

hierarchy and the texture index. Patch rendering hull

shader calculates tessellation factor for each edge and

passes the data to the tessellator. Tessellator

generates topology and domain coordinates that are

passed to the domain shader. Domain shader

calculates world space position for each vertex and

fetches the height map value from the appropriate

texture array element. The resulting triangles then

pass in a conventional way via rasterizer.

6. EXPERIMENTAL RESULTS AND

DISCUSSION
To test our system, we used 16385×16385 height

map of the Puget Sound sampled at 10 meter spacing,

which is used as the common benchmark and is

available at [PS]. The raw data size (16 bps) is 512

MB. The compression and run-time experiments were

done on a workstation with the following hardware

configuration: single Intel Core i7 @2.67; 6.0 GB

RAM; NVidia GTX480.

The data set was compressed to 46.8 MB (11:1) with

1 meter error tolerance. For comparison, C-BDAM

method, which exploits much more sophisticated

approach, compressed the same data set to 19.2 MB

(26:1) [GMC+06]. Note that in contrast to C-BDAM,

our method enables hardware-based decompression.

Note also that in practice we compress extended

)32()32( nn height map for each patch for the

sake of seamless normal map generation. As opposed

to compressing conventional diffuse textures, height

maps usually require less space. That is why we

believe that provided 11x compression rate is a good

justification for the quality of our algorithm.

During our run-time experiments, the Puget Sound

data set was rendered with 2 pixels screen space error

tolerance at 1920x1200 resolution (fig. 10). We

compared the rendering performance of our method

with our implementation of the chunked LOD

approach [Ulr00]. As fig. 10 shows, the data set was

rendered at 607 fps on average with minimum at 465

fps with the proposed method. When the same terrain

was rendered with our method but without exploiting

instancing and texture arrays described previously,

the frame rate was almost 2x lower. As fig. 10 shows,

our method is more than 3.5x faster than the chunked

LOD approach.

Chunked LOD

H/W Tessellation

H/W tess + tex

array & instancing

0

200

400

600

800

1000

1200

F
P

S

Chunked LOD H/W Tessellation H/W tess + tex array & instancing

Figure 10. Rendering performance at 1920×1200

resolution.

Our experiments showed that the optimal tessellation

block size that provides the best performance is 8×8.

Other interesting statistics for this rendering

experiment is that approximately 1024 of 128×128

patches were kept in GPU memory (only ~200 of

them were rendered per frame on average). Each

height map was stored with 16 bit precision. All

patches demanded just 32 MB of the GPU memory.

We also exploited normal map compressed using

BC5, which required additional 16 MB of data.

Diffuse maps are not taken into account because

special algorithms that are behind the scope of this

work are designed to compress them. However, the

same quad tree-based subdivision scheme can be

integrated with our method to handle diffuse texture.

Since our method enables using small screen space

error threshold (2 pixels or less), we did not observe

any popping artifacts during our experiments even

Journal of WSCG 91 ISSN 1213-6972

though there is no morph between successive LODs

in our current implementation.

In all our experiments, the whole compressed

hierarchy easily fitted into the main memory.

However, our approach can be easily extended for the

out-of-core rendering of arbitrary large terrains. In

this case, the whole compressed multiresolution

representation would be kept in a repository on the

disk or a network server, as for example in the

geometry clipmaps. This would allow on-demand

extraction from the repository rather accessing the

data directly in the memory.

7. CONCLUSION AND FUTURE

WORK
We presented a new real-time large-scale terrain

rendering technique, which is based on the

exploitation of the hardware-supported tessellation

available in modern GPUs. Since triangulation is

performed entirely on the GPU, there is no need to

encode the triangulation topology. Moreover, the

triangulation is precisely adapted to each camera

position. To reduce the data storage requirements, we

use robust compression technique that enables direct

control over the reconstruction precision and is also

accelerated by the GPU.

We consider support for dynamic terrain

modifications as a future work topic. Since the

triangulation topology is constructed entirely on the

GPU, it would require only updating the tessellation

block errors, and the triangulation will be updated

accordingly. Another possible direction is to extend

the presented algorithm for rendering arbitrary high-

detailed 2D-parameterized surfaces.

8. REFERENCES
[CGG+03a] Cignoni, P., Ganovelli, F., Gobbetti, E.,

Marton, F., Ponchio, F., and Scopigno, R.

BDAM – batched dynamic adaptive meshes for

high performance terrain visualization. Computer

Graphics Forum, Vol. 22, No. 3, pp. 505–514,

2003.

[CGG+03b] Cignoni, P., Ganovelli, F., Gobbetti, E.,

Marton, F., Ponchio, F., and Scopigno, R. Planet-

sized batched dynamic adaptive meshes (P-

BDAM). In Proc. IEEE Visualization, pp. 147–
154, 2003.

[DSW09] Dick, C., Schneider, J., and Westermann,

R. Efficient Geometry Compression for GPU-

based Decoding in Realtime Terrain Rendering.

In Computer Graphics Forum, Vol. 28, No 1, pp.

67–83, 2009.

[DWS+97] Duchaineau, M., Wolinsky, M., Sigeti,

D.E., Miller, M.C., Aldrich, C., and Mineev-

Weinstein, M.B. ROAMing terrain: Real-time

optimally adapting meshes. In Proc. IEEE

Visualization, pp. 81–88, 1997.

[GMC+06] Gobbetti, E., Marton, F., Cignoni, P.,

Di Benedetto, M., and Ganovelli, F. C-BDAM –

compressed batched dynamic adaptive meshes for

terrain rendering. Computer Graphics Forum,

Vol. 25, No. 3, pp. 333–342, 2006.

[Hop98] Hoppe, H. Smooth view-dependent level-of-

detail control and its application to terrain

rendering. In Proc. IEEE Visualization, pp. 35–
42, 1998.

[LC03] Larsen, B.D., and Christensen, N.J. Real-time

Terrain Rendering using Smooth Hardware

Optimized Level of Detail. Journal of WSCG,

Vol. 11, No. 2, pp. 282–289, 2003.

[Lev02] Levenberg, J. Fast view-dependent level-of-

detail rendering using cached geometry. In Proc.

IEEE Visualization, pp. 259–265, 2002.

[LKR+96] Lindstrom, P., Koller, D., Ribarsky, W.,

Hodges, L.F., Faust, N., and Turner, G.A. Real-

time, continuous level of detail rendering of

height fields. In Proc. ACM SIGGRAPH, pp.

109–118, 1996.

[LH04] Losasso, F., and Hoppe, H. Geometry

clipmaps: Terrain rendering using nested regular

grids. In Proc. ACM SIGGRAPH, pp. 769–776,

2004.

[Mal00] Malvar, H. Fast Progressive Image Coding

without Wavelets. In Proceedings of Data

Compression Conference (DCC ’00), Snowbird,
UT, USA, pp. 243–252, 28-30 March 2000.

[Paj98] Pajarola, R. Large scale terrain visualization

using the restricted quadtree triangulation. In

Proc. IEEE Visualization, pp. 19–26, 1998.

[PG07] Pajarola, R., and Gobbetti, E. Survey on

semi-regular multiresolution models for

interactive terrain rendering. The Visual

Computer, Vol. 23, No. 8, pp. 583–605, 2007.

[PS] Puget Sound elevation data set is available at

http://www.cc.gatech.edu/projects/large_models/p

s.html

[SW06] Schneider, J., and Westermann, R. GPU-

Friendly High-Quality Terrain Rendering. Journal

of WSCG, Vol. 14, pp. 49–56, 2006.

[Ulr00] Ulrich, T. Rendering massive terrains using

chunked level of detail. ACM SIGGraph Course

“Super-size it! Scaling up to Massive Virtual

Worlds”, 2000.
[WNC87] Witten, I.H., Neal, R.M., and Cleary J.G.,

Arithmetic coding for data compression. Comm.

ACM, Vol. 30, No. 6, pp. 520–540, June 1987.

Journal of WSCG 92 ISSN 1213-6972

http://www.cc.gatech.edu/projects/large_models/ps.html
http://www.cc.gatech.edu/projects/large_models/ps.html

	J71-full.pdf

