Pipeline Reconstruction from Fisheye Images
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ABSTRACT

Automatic inspection of pipelines has great potential to increase the efficiency and objectivity of pipeline condition assessment.
3-D pipeline reconstruction aims to reveal the deformation of the pipe surface caused by internal or external influences. We
present a system which can reconstruct the inner surface of buried pipelines from multiple fisheye images captured inside the
pipes. Whereas the pipelines are huge, a fatal defect can be as tiny as a fine crack. Therefore a reliable system demands both
efficiency and accuracy. The repetitive patterns on the pipe surface and the poor illumination condition during photographing
further increase the difficulty of the reconstruction. We combine several successful methods found in the literature as well as
new methods proposed by ourselves. The proposed system can reconstruct pipe surface not only accurately but also quickly.
Experiments have been carried out on real pipe images and show promising performance.
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1 INTRODUCTION from bricks which provide distinctive patterns; and the

Water pipelines are indispensable facilities of modert‘?thers termmate with reconsructing a smgll group of
Isolated points only. Some 3D reconstruction applica-

urban systems. After serving for decades undergroun& SR
the condition of the pipelines deteriorates to varyin lons of general scenes [18] bear the same limitation

degrees. Timely inspection and repair is therefore res-tsruvc\filcl)ﬁ Zorltiac;?i% instlg’f Sg\r/grzll ggg:;ﬁgsgef:o%-
quired to prevent imminent collapse. Traditionally pipe pp : 9 - 'p
osed [1, 20], which can reconstruct millions of points

inspection involves intensive manual effort. Manua ! . .
image interpretation is an expensive process for whicf a relat_|vely §hort time. However, their implementa-
wrong decisions caused by fatigue and subjective bi on requires hlg_h—end parallel computers.
are inevitable. Hence a computer-aided inspection sys—What distinguish the proposed system from all the

tem is of great value. previous ones are:

We present a system which can reconstruct the int. e intensively reconstruct the pipe surface, which is

ner surface of buried water pipes based on a sequence composed of millions of points, rather than a group
of images captured inside the pipes (Figure 1). De- of selected points;

formation of the pipe surface which foreshadows the
pipeline collapse can then be detected from the recod- our algorithm is fast and can be implemented on nor-
structed model. Early work on similar applications re- mal PCs;

lied on range cameras such as laser scanners, which_is
expensive. Later, due to the developments of computér
vision, methods solely based on 2D images were pro-
posed [3, 8, 9]. However, because of the limitation in
computer vision at the time and the difficulty in this

particular application, some of these works made re- we first give an overview of the reconstruction prob-
strictive assumptions such as that, the pipes are bujim, as well as our method. When discussing each step

we have proposed a number of specific mechanisms
to increase the robustness of the system, so that it
can work with pipe surface without distinctive pat-
terns under poor illumination conditions.

Permission to make digital or hard copies of all or part of thisin detail, experimental results will be provided accord-
work for personal or classroom use is granted without fee providecihgly_ As will be seen, our method performs not only
that copies are not made or distributed for profit or commercial :

advantage and that copies bear this notice and the full citation gn th%ccurately but also quickly.
first page. To copy otherwise, or republish, to post on servers |or to

redistribute to lists, requires prior specific permission and/orafee. 2 QVERVIEW

Plzen, Czech Republic

Copyright UNION Agency — Science Press We make no particular assumption about the material
of the pipelines. Actually, the pipes a civil engineer fre-
guently confronts are made from concrete which gives
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Figure 2: image cylindeIC is the camera centeraxis
is the central axis of this image cylindé?;is an object
point, with P’ as its image.

1. Firstly, initial point matching is established between
overlapping images;

2. Matched points will then be utilized to estimate the
relative pose of calibrated cameras corresponding to
different views.

3. With the obtained camera parameters, we implement
dense matching between overlapping images while
enforcing the epipolar constraints. This step was
never included in the previous works [3, 8, 9], in
which only those matched points detected in the first
step were reconstructed. This step is also arguably
the most sophisticated and time consuming step in
the whole algorithm. Handling it efficiently is our
major contribution.

4. Finally, the 3D location of each point in the image is
densely determined through triangulation and a 3D

Figure 1. fisheye images captured inside of the modelis built up.

pipelines. The pipe on the top is in relatively good con-

dition, whereas the one on the bottom is in poor condi- As computer vision algorithms ab_out perspectl_ve
tion. cameras have already been well studied [4], one might

transform each fisheye image to a perspective image
to simplify the subsequent process [8, 9]. However,
such a transformation either produces an extremely
little reliable texture. We will therefore make our sys-large perspective view which significantly upsampled
tem capable of handling pipes of this type. the peripheral region in the original image, or produces
To assess the pipeline condition, images are collected perspective view of proper size but at the cost of
by a mobile camera travelling through the pipelines. Teropping off the peripheral region. In either case,
capture more details from the pipe surface, the mobilee will destroy the region which really contains the
camera is equipped with a wide view angle fisheye lenisnportant information in the original image. Therefore,
rather than an ordinary perspective lens. During phdn our work we choose to process the images in their
tographing the illumination is provided by a light fixed original form, or transform them, when necessary, onto
to the camera, which can only illuminate a limited rangean image cylinder (Figure 2) instead of an image plane.
in the pipe unevenly. Figure 1 shows two example im- We define an image cylinder by specifying its central
ages captured in different pipelines. As we can seexis. Its radius can be deliberately set to unity without
only the peripheral regions of the images contain cleaiffecting its functionality. The central axis of the im-
pipe surface. The texture on the pipe surface is fine aralje cylinder can be the optical axis of the camera or the
weak. In the same pipe the surface appears to be sinpaseline between two cameras, depending on the cir-
lar everywhere. A sequence of images is captured as thbeamstances. The cylindrical image of each point in the
camera moves. Two adjacent images share overlappi8® world is generated by the intersection of the image
regions. cylinder and the ray going from the point to the cam-
Our reconstruction follows a four-step paradigm.  era center. Each parallel line on the cylindrical surface
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functions like a perspective camera by itself, however
altogether they receive an omnidirectional image more
readily than a normal perspective camera does. Thisi
age cylinder is particularly useful during point match-
ing and depth estimation, as will become clear soon.

In the remaining part of this paper, we discuss eac
step mentioned above in detail.

3 INITIAL POINT MATCHING

Due to the development of local invariant features [13
16], finding corresponding points between overlapping
images is much easier now than ever. Comprehensi
surveys into the feature detectors and descriptors ca

be found in [14, 15]. However, point matching on agigyre 3: matches found on the image pair of original
pipe surface is still difficult due to the faint and sim-¢5rm and transformed form respectively. Only those
ilar patterns everywhere. Moreover, whereas all thg,aiches that pass the loose geometry verification are
proposed local invariant features are approximately ifsresented. The rejected false matches are thousands in

variant under affine transformations, the transformatioumner, They happen so frequently because the pipe
conducted by a fisheye lens is not even perspective, bgitrtace is similar everywhere.

nonlinear. Thus the corresponding points identified by
local invariant features on pipe surface contain many
false matches. Our experiments show that the number
of false matches can easily exceed the number of tr@@nnect each pair with a yellow line segment. As we
matches by an order of magnitude. can expect, the lines in the original image should all

To improve the situation, besides enforcing loose ggoughly point to the image center, whereas those in the
ometry constraints, we transform each fisheye imaggansformed images should all be roughly horizontal.
onto the image cylinder we discussed in Section 2. Thé/e only present those matches that can be verified
image cylinder here takes the optical axis of the canwith these loose geometry constraints in Figure 3. On
era as its central axis. The consequential advantadfee original image 239 matches passed the verification,
of such a transformation is obvious. Since the opticaWhereas on the transformed image 563 matches passed
axis of all cameras are roughly parallel to each other dbe verification. That justifies our earlier discussion
well as to the central axis of the pipe, the images genethat matching on the transformed images is more
ated on different image cylinders only differ from eachreliable.
other approximately by a simple translation. Compar- Intuitively the matches from both cases are more than
ing to the original fisheye images, we not only removesufficient to implement subsequent estimation. One
the scale difference between corresponding regions imight therefore suspect the necessity of the cylindrical
different images, but also largely rectify the distortiontransform. However, as we can see, the lines presented
caused by the nonlinear projection through a fisheyi the image do not seem to match the numbers given
lens. Hence the corresponding points found by local irebove. That is because more than one match can happen
variant features on the cylindrical images are more relintensively on neighbor pixels. Considering matches at
able. Geometry consistency is also easier to enforce dine same location does not increase the estimation accu-
the transformed images. All line segments connectinggcy, more matches than sufficient is in fact necessary.
corresponding points in two cylindrical images shouldrhe number of qualified matches also depends on the
be roughly parallel and of almost the same length. Aftetexture on the pipe surface. On some smooth surfaces,
detecting corresponding points in the transformed imthe number of matches will be much smaller as fewer
ages, we can easily back-project them onto the origin&bcal features can be detected. That is when the image
fisheye images to facilitate camera pose estimation. transformation becomes more important.

Figure 3 shows the matching results on the original Some false matches still remain in Figure 3 as their
images and the transformed images respectivelliine segments are not of reasonable length. Again, it is
Particularly, Hessian-affine detector [16] and SIFTmore convenient to enforce this constraint on the trans-
descriptor [13] are used for feature extraction. Matche®rmed images rather than on the original images. On
are identified if two SIFT features share a Euclideathe transformed images, the length of all lines segments
distance under a predefined threshold. Although poirghould be roughly equal. In the original images, their
matching is between two images, we only preseriength should not be equal due to the nonlinearity of
one of them here for clear presentation. We plot théhe fisheye lens, which is difficult to use as a loose con-
matched points from two images onto one image anskraint.
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4 CAMERA POSE ESTIMATION for each image is only related to the dozens of points
that have appeared in its image. The location of each
A calibration method for fisheye cameras can be foungoint is only affected by the few cameras capturing
in [10]. Here we assume the camera is calibrated arng This observation not only leads to the simplifica-
only aim to estimate the external parameters of the canion within Levenberg-Marquardt optimization, i.e. the
era. We have briefly discussed the reason why we dgparse-Levenberg-Marquardt [6], but also to the sim-
not transform the original image into perspective viewlification of our reconstruction. We firstly estimate the
in Section 2. Particularly on camera pose estimatiortamera parameters and points location locally between
the nonlinear transformation between a fisheye viewach pair of adjacent images with the direct estimation
and a perspective view might significantly enlarge thenethod. Although this estimation is local, it has already
matching error from one pixel to hundreds of pixels inconsidered most of the information relevant to the two
the peripheral region of the image. Hence we need @ameras. Hence the output should still be quite accu-
pose estimation scheme that can be applied directly tate. We then transform all the estimated points and
fisheye images and is efficient. cameras into the same frame of reference. That gives us
We use a modified version of the direct estimatiorthe initialization of a global direct estimation. Indeed,
method initially designed for perspective cameras [6\when the global consistency is not compulsory, we can
The main result of the original method is that, giveneven terminate without a global estimation. Later we
a close enough initialization of the camera parametemill see, at least for the purpose of pipe condition as-
as well as the point locations, a structure from motiosessment, local estimation can already detect deforma-
problem can be solved directly using some iterative ogion and cracks on the pipe surface.
timizing algorithms, e.g. the Levenberg-Marquardt al- The error to be minimized with Levenberg-
gorithm [12]. The advantage of this method lies in theMarquardt algorithm is given by (1), whewig is the
fact that it is one-stop. It requires no sophisticated opecoordinates of point observed in imagg, andx;; is
ation on any interim variables, e.g. the fundamental mahe estimated coordinates of the corresponding point
trix required in [5] or the measurement matrix requiredn the corresponding image. Whe§y is unknown,
in [21]. The disadvantage of this algorithm is the rewhich really means point is not observed in image
quirement of a close initialization, which is usually im- j, we setXj = xj, so that their difference is 0 and
possible, especially when the number of unknown pahe total error will not be affected. During local
rameters is huge. estimation, as the numbers of points and cameras are
We discover that the advantage and the disadvantali@ited, the sparse-Levenberg-Marquardt algorithm
of the direct estimation method can be magnified angonverges quickly. In our experiment, it takes about
reduced respectively in our problem. In particular, un0-5 seconds to estimate the relative pose between each
like the other algorithms of structure from motion appli-pair of cameras, whe®00 point matches are involved.
cations, this algorithm bears no assumption on the canthe root mean square error is around one pixel upon
era model, neither perspective nor affine. That meansGPnverging.
can be adapted to fisheye camera as well, as long as we
change the cost function in the Levenberg-Marquardt e= Z z [[%i5 —Xij ||2 (1)
minimization from the perspective projection to the It
fisheye projection. Furthermore, as we know the nor- Further more, we might add the intrinsic camera pa-
mal condition of the pipelines as well as the approxirameters into the local estimation. That converts our
mate location of the camera with respect to the pipe, weroblem to an uncalibrated reconstruction, requiring in-
can initialize all the parameters accordingly. Obviouslyputting three images each time. We do not recommend
many other inspection purposed applications share tlestimation based on three views. That is because the
same convenience. number of matching points that can survive three views
Another important fact about the parameter initializag&re Usua”y too small to facilitate reliable estimation.
tion is that, the parameters are not independent. Mor
precisely, from the parameters of two random cam-§ INTENSIVE MATCHING
eras, we can accurately determine the 3D locations #fhereas reconstructing a set of isolated points is suffi-
all the matched points captured by the two camerasent to reveal the pipe deformation on large scale, in-
through triangulation. This observation largely reducegensive points reconstruction is required to reveal those
the number of variables we need to initialize, i.e. wecracks which are only several pixels wide on images.
only initialize the camera parameters, and then derivEo intensively reconstruct the pipe surface, we need in-
the location of the points. Besides dependence, oltensively match the points on the pipe surface.
viously, there is also independence between different Implementing intensive stereo matching between
parameters. Whereas millions of points were captureaverlapping images is by nature a difficult problem,
from thousands of different locations, the camera poseven though we can narrow the matching range using
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the epipolar constraint. A good review of relevant
algorithms can be found in [19]. The state of the art
of intensive stereo matching lies in tlee-expansion
method proposed in [22], which approaches the
problem by way of optimizing a multi-label Markov
Random Field (MRF). However, when the size of
the image is huge, optimizing a corresponding MRF
requires heavy computation. Another method called
FastPD [11] is faster but requires much more mem-
ory. More recently, a hierarchical mechanism is
incorporated into MRF optimization [23], enabling
optimizing large MRFs more efficiently with low
memaory occupancy.

However, due to the following reasons, our prob-
lem cannot be solved by these off-the-shelf methods.
Firstly, since the light source is carried by the mov-
ing camera, corresponding points in different images
are captured under significantly different illuminations,
which obviously makes the matching tougher. Sec-
ondly, even the hierarchical mechanism [23] largely
boosts the speed of solving an individual problem, in-
tensively matching a large number of images is still a
huge task. Therefore, we propose two mechanisms to
improve the situation.

5.1 lllumination Regularization

Some illumination invariant description and compari-
son methods have been proposed in the literature, such
as the Normalized Cross-correlation (NCC) and the
SIFT descriptor [13]. They non-exclusively require
more complex computation, which will significantly

SIO\.N dqwn t.he S-‘/Ste”.’- 'Here instead of U.S'ng.'"u.m"Figure 4: the average illumination intensity obtained
nation invariant description, we make the illuminatio

. . Mfrom images of two pipelines: some dark blobs can be
invariant.

Althouah the liaht duri hot hobserved on the top image, which were caused by wa-
ough the ight source moves during pnotograpize drops spread onto the lens; the white threads on the

Ing, Its relat|ye position to the camera cgnter 1S f'xecﬁvottom image are caused by some rubbish attached to
and the location of the camera center within each cross:

. R the lens. However, their affect to the matching process
section of the pipe is in general stable. That suggests, ignorable.
the pipe surface captured by the pixels on the same lo-
cation within every image is illuminated by approxi-
mately the same light. From each pipeline, we have
collected thousands of images. The average grey levegularized image. Figure 5 compares the image be-
of a pixel on the same location over thousands of imfore and after illumination regularization. Especially
ages can be then regarded as the illumination intensign the regularized cylindrical images, the obvious il-
of this pixel or its corresponding points on the pipe surtumination variance is removed leaving all pixels under
face. comparable illumination. After illumination regulariza-
Figure 4 shows the average illumination intensity oriion, we can easily measure the similarity between pix-
images captured in the two pipelines. They are differels by the absolute difference between their regularized
ent because the camera travelled at different height pixel values.
the two pipes and the deterioration degree of the two )
pipes are different. Based on the illumination intensity I (i) al (i) @)

images in Figure 4, we can regularize the illumination -~ G(i)

within each image through (2), wheté) is the pixel . oo
value of pixeli in the original image(G(i) is the grey 5.2 Sequential MRF Optimization
level of pixeli in the illumination intensity imagea We first explain the design af-expansion as well as
is a positive constant controlling the brightness in thés hierarchical version in our problem and then intro-
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pixel and its neighbor, is usually referred to as the bi-
nary term or the smooth term. Each pixel usually has
four neighbors, hence there are four binary terms. Bi-
nary terms are used to enforce the smooth constraint,
i.e. the disparity of points in a scene should be smooth
almost everywhere [17]. In our work, we use the fol-
lowing binary term:

B = |L(1) ~L(j)| (4)

whereL(i) andL(j) is the disparity of two neighbor
pixeli andj in the reference image, ai} is computed
as their absolute difference.

The unary term and the binary term really play the
role of likelihood and prior in the Bayesian theory.
Therefore, through maximizing the probability of a
MRF, one really globally maximizes the posterior of
each variable and obtains the most probable disparity
of each pixel. Due to the Hammersley-Clifford theo-
rem, maximizing the joint probability of variables in
the above MRF is equivalent to minimizing the follow-
ing cost-function:

ki 55 G EZZUH-/\ZB” (5)
Figure 5: images before and after illumination regular- I !
ization. where A is a positive constant balancing the weight
between the unary term and the binary term. An ef-
fective way of perceiving (5) is through constructing a
duce our sequential mechanism, which further boost¥€ighted graph. As shown by Figure 6, each vertex in
the speed of our system. the grgph c.orresponds to a pixel in the reference image
a-expansion After rectification [4], the corresponding ©OF @ disparity value. Edges are created between each
points between two overlapping images all lie in Cc)rregh_spanty vertex and all the pixel vertlce_s. Each gdge of
sponding scan lines. One of the two images will later b§1IS type can be represented by a teymrin (3). Pixel
referred to as the reference. Localizing correspondin{etices which are neighbors in the image are connected
points along a scan line, namely estimating the dispaPy €dges as well. Each edge of this type corresponds
ity of each object point within the two images can bd® @Bij in (4). Then, minimizing (5) is equivalent to
modelled as estimating the variables in a second ordfipding the minimal cut on its graph after which each
Markov Random Field. subgraph contains one and only one disparity vertex.

In particular, each variable in the MRF corresponds !f the graph contains only 2 disparity vertices, the
to a pixel in the reference image. The value of eacfNnimal cut can be found using the max-flow algo-
variable corresponds to the disparity of its correspondithm. regarding the two disparity vertices as the source
ing pixel. The probability for each variable to have a2nd the sink respectively. When the number of disparity
particular value, or equivalently for a pixel to have a’ertices is larger than two, minimizing (5) is in general
particular disparity, is subject to two factors. The firsf\P-hard [2]. a-expansion can provide a high quality
one, a function of the color difference between the tw§UPOPtimal solution in polynomial time. _
pixels related by this particular disparity, is usually re- Starting from a random initial state-expansion se-
ferred to as the unary term or the data term. In our woriguentially examines the applicability of each dispar-

we use the following unary term: ity, represented by, to all the pixels. In particu-
lar, for eacha, a new graph is created. In the new
Ui = [|12() — 120", (3) graph, the source node corresponds to the current dis-

parity of each pixel; the sink node corresponds to the
wherelq(i) is the color of pixeli in the reference im- a disparity. Those pixels, whose current disparity is
age, l,(i’) is the color of the pixel related tbby its o are not included into the new graph. A bi-cut is
current disparity in the other image, addis computed then implemented using max-flow algorithm to deter-
as alj-norm difference between the two. The othemine whether the pixels currently having other dispar-
one, a function of the disparity difference between théies should change their disparities do After each
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Figure 6: a graphic explanation of minimizing (5): the
four blue vertices each correspond to a pixel in the ref- 8
erence image; the two orange vertices correspond tdg ‘ ks

two _possible dispe}ri.ties respectively; minimizing (5)_ iSFigure 7: two adjacent images mapped onto the same
equivalent to a minimal cut to the graph after whichmage cylinder. Images before and after illumination

each subgraph contains one and only one disparity V&ggylarization are both provided for comparison.
tex. The dashed line in the figure shows a possible cut.

central axis of the image cylinder is the baseline con-

round of bi-cut, only the subgraph containiogverteX necting the two camera centers. As we have already
can be increased. That is why the algorithm is nameghtained the external parameters of the cameras, we
asa-expansion. To compensate the loss in optimalitygan accurately generate the cylindrical image through
multiple outer iterations are usually implemented. back-projection. Although this image cylinder is dif-

Denote the number of outer iterationsrasthe num-  ferent from an image plane in shape, it can parallelize
ber of disparity vertices as, the processing time of the epipolar lines as well. It takes minor effort to snip
max-flow algorithm asf. The processing time af-  and unwind that cylindrical image into a planar image.
expansion isnnf. When running on images of small just make sure to snip the two cylinders along the same
size,e.g. 300x 300, a-expansion can usually termi- epipolar line. So we obtain an image pair in the form
nate quickly in 20 seconds on a normal PC. Howevepeople usually deal with during intensive matching,
when dealing with a pair of images in large size, whosgamely corresponding points always lie on the same
disparity range is usually large as well, the max-flowscan line. The pipe surface presented in these two im-
algorithm needs to be implemented on a huge grapiyes contains a vertical connection line and two hor-
many times. The processing time @fexpansion ex- jzontal narrow cracks, which will test our algorithm’s
pands significantly. Our experiments show that whegapability in detecting small defects on the pipe surface.
dealing with a stereo pair in the size 8d00x 100Q We crop off the region Submerged by water before im-
a-expansion needs more than 30 minutes to convergglementing graph cuts. That is because we are only in-
That is by definition too slow for practical use. Theterested in the pipe surface, and that dropping the water
alternative method, FastPD, cannot be applied eitheiggion can help saving processing time. Figure 8 shows
because a normal PC cannot provide sufficient memogye interim and final results of the hierarchical graph
space. cuts. We can see how the final disparity map is reached
Hierarchical a-expansion The idea of hierarchical through a coarse-to-fine procedure. The disparity value
a-expansion can be explained as solving the probleis larger in the center of the image, which corresponds
with a-expansion under a low resolution first, and thero the top region in the pipe. That suggests that the cam-
fine tuning the low resolution solution onto higher resera is closer to the top of the pipe compared to the left
olution through optimizing another MRF. More detailsand right sides of the pipe. The vertical connection line
can be found in [23]. As these two steps can be imand the horizontal cracks can be clearly observed in the
plemented recursively, the original problem is reallyfinal result as well.
solved in a coarse-to-fine manner. Besides, since tf&equentiala-expansion To further boost the process-
MRFs being optimized in the two steps are both mucing speed, we propose a sequential mechanism in MRF
smaller than the original one, the processing speed @ptimization, the key idea of which lies in better label
largely improved. With the hierarchical-expansion, initializations and smaller label range. The time cost
processing a stereo pair in the sizel®@0x 1000re- by the max-flow algorithm which is a subroutinedn
quires only around 0 seconds on a normal PC, and theexpansion depends on the flows needed to be pushed
optimality is comparable to the originalexpansion.  before reaching the optimal state. The number of nec-

Figure 7 shows two sample images on which we havessary flows depends on the initial state of the network.
implemented hierarchicat-expansion. This time, the That really suggests, if the initial state of the network is

Journal of WSCG 55 ISSN 1213-6972



Figure 8: the interim and final results of the hierarchical
graph cuts.

more similar to the optimal state, fewer flow, and hence

less time, will be needed in optimization. Moreover,

starting from an initial state close to the optimal also re-

duces the number of outer iterations in the&xpansion

algorithm. A smaller label range will reduce the num-

ber of max-flow implementations in a single iteration.
Whereas for a contextless image pair one can only

initialize all labels to be zero or arbitrary values, for se-_, . .

quential pipe images in our case we can largely predi€i9ure 9: reconstructed pipe surface from the point

the label configuration. The disparity of each point orfloud together with its triangulation state.

the pipe surface is determined by two factors: firstly, its

deterioration degree; secondly, and more importantly

the location of the camera center. If the camera center

travels along the central axis of the pipe, the disparity

of different points will only differ slightly due to de- . . . .
S . mine the 3D location of each point on the pipe surface
terioration. However, if the camera center travels alon ; . o
; . . ! rough triangulation. The scale ambiguity is removed
some line far away from the central axis, the disparity o . .
. . . i N y setting the length of the baseline between two cam-
different points on the pipe will vary significantly. Al- ] . . .
era centers as unity. From each pair of adjacent images,

though the deterioration degree of different regions e can obtain several millions of isolated 3D points.

the pipe surface is arbitrary, the location of the camer or better visualization, we might reconstruct a contin-

center within each cross section of the pipe is generale{ . ) ) )
ous surface with these isolated points using the algo-
stable. Therefore, we only use a large label set dur:

) . ; . . . _“rithm proposed in [7]. However, a model containing
ing the intensive matching for the first few image pairs, .. . S
We can then acquire the relative location of the camerg'”'onS of independent points is too huge for a normal
within the cross-section of the pipe, or more directly the C to render.

average disparity along each scan line in the image. On __

subsequent image pairs, the pixels on each scan line ard 19ureé 9 only shows the surface reconstructed from
initialized with the corresponding average disparity. Aor}e h.unclj.redth of all the P?'”ts- However, .ever? aftgr
smaller label set will then be used to estimate their didhiS Significant downsampling, the connection line is
parities accurately. The smaller label set only needs §Ji!! ¢learly presented, so is the pipe deformation on the
cover the variety caused by deterioration, which will bd2r9€ scale. The two cracks are missing because they
significantly narrower than that caused by the camerd® both less then ten pixels wide, which can not be pre-

location. The MRF optimizing speed is hence boostec®€rved during this one hundredth downsampling. How-
ever, their existence and state have been represented

6 BUILDING A 3D MODEL by_the poi_nt clqud containing miIIi(_)n_s of i_ndepende_nt

points, which will be assessed by civil engineers during
Through dense matching on the image cylinder, wéorce analysis. Note that we can only reconstruct the
have acquired the depth information related to eacpipe surface above the water. We observe a complete
pixel on the cylindrical image. Together with the cam-cylinder here because the missing part has been manu-
era parameters estimated earlier, we can easily detatly complemented with ideal cylindrical surface.
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7

CONCLUSION

We successfully reconstruct the inner surface of buried

pipelines from a sequence of fisheye images. The ob-
tained point cloud can be used to generate a virtual syes]

face for visualization, as well as to facilitate other al-

gorithms for pipe condition analysis. We used variou$t7]
efficient and reliable schemes over the four-step recon-
struction. We paid particular attention to the process %8]

intensive matching, which is generally slow and mem-

ory demanding based on previous algorithms. Our new
method overcomes the obstacle of illumination variancg9]
and largely boosts the speed. More improvement on
3D model generation is still necessary. One possible

development lies in automatically detecting regions

interest and unevenly downsampling the point cloud ags)

cordingly. This will be a direction of future work.
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