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ABSTRACT 
Touch-less based fingerprint verification systems are free from the problems of image deformation, latent 
fingerprint issues and so forth that appear in the contemporary touch based fingerprint verification systems. 
Coupled with template protection mechanism, a touch-less fingerprint verification system is further enhanced. In 
this paper, a secure end-to-end touch-less fingerprint verification system is presented. The fingerprint image 
captured with a digital camera is first pre-processed via the proposed pre-processing algorithm. Then, Multiple 
Random Projections-Support Vector Machine (MRP-SVM) is proposed to secure fingerprint template while 
improving system performance. 
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1. INTRODUCTION 
A preponderance of the fingerprint sensors available 
today use “touch” method. However, the durability 
of a touch-based fingerprint scanner is weakened if it 
is used heavily. Additionally, the pressure of the 
physical contacts degrades the quality of the touch-
based fingerprint images. Conversely, touch-less 
fingerprint acquisition technology is free from these 
problems [Son04]. Furthermore, touch-less based 
fingerprint verification systems have great potentials 
in building secure verification systems provided that 
they are free from latent fingerprint (the trail of the 
fingerprint on the contact surface of the sensor) 
issues which can lead to fraudulent use [Lee06a]. 
Hence, with the incorporation of cancellable 
biometrics in these fingerprint features, the security 
and privacy protection of fingerprint biometric 
templates are enhanced.  Cancellable biometrics is a 
concept  

 
initiated to secure biometric templates. This concept 
is important because biometric templates are not 
revocable and their compromise is permanent 
[Sch99]. A good cancellable biometric formulation 
must fulfill four requirements [Mal03]: (i) diversity; 
(ii) reusability; (iii) one way transformation; (iv) 
performance. 

1.1  Related Works 
1.1.1  Touch-less Fingerprint Recognition 
Digital Descriptor System Inc. (DDSI) [Mai06] 
produced the world first contact-less fingerprint 
capture device which can be integrated with 
Fingerprint Matching Solution [Dig00]. Later, TST 
Corona-GmbH developed biometric recognition 
systems using novel touch-less optical fingerprint 
scanning technology. Song et al. proposed a pre-
processing technique for their custom designed 
touch-less sensor [Son04]. Using a strong view 
difference image rejection method, [Lee06a] 
resolved the three-dimensional (3D) to two-
dimensional (2D) image mapping problem which 
appeared in [Son04].  Pre-processing of the 
fingerprint images captured with mobile camera has 
been proposed by [Lee06b]. To make 3D touch-less 
fingerprints interoperable with the current Auto-
mated Fingerprint Identification System  (AFIS), 
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Chen et al. [Che06] proposed an unwrapping 
algorithm that un-folds the 3D touch-less fingerprint 
images into 2D representations which are 
comparable with the legacy rolled fingerprints. 

1.1.2  Cancellable Biometrics 
Ratha et al introduced the first notion of cancellable 
biometric formulation. The underlying idea is to 
generate deformed biometrics data by distorting the 
biometric image in a repeatable but non-reversible 
manner [Rat01]. Teoh et al. [And04] introduced 
another cancellable biometrics approach using 
iterative inner product between tokenized pseudo-
random numbers (PRN) and biometric data. But, this 
formulation suffered from the stolen-token scenario 
when the genuine token is stolen and utilized by 
impostor to claim as the genuine user. Savvides et al. 
[Sav04] encrypted the training images which are 
used to synthesise the correlation filter for biometrics 
authentication. They showed that different templates 
can be obtained from the same biometrics by varying 
the random convolution kernels. Thus, those 
templates can be cancelled.  Ang et al. [Ang05] 
generated a cancellable fingerprint template via a 
key-dependent geometric transformation on a 
minutiae based finger-print representation. 
Nevertheless, the matching accuracy is degraded 
notably in the distorted domain. In [Bou06], the 
authors introduced the concept of biometric-based 
tokens that support robust distance computations, 
which offers cryptographic security such that it can 
be revoked and replaced by a new one. Teoh and 
Chong [And07] introduced Multispace Random 
Projection (MRP) as one of the cancellable 
biometrics approaches that fulfils good cancellable 
biometrics requirements as stated above. However, 
the Equal Error Rate (EER) result is only   30% due 
to the poor classification capability of the matching 
metric. 

1.2  Our Approach 
A secure digital camera based fingerprint verification 
system is presented in this paper. This system uses 
“touch-less” method with a digital camera to capture 
fingerprint images. The problems appeared in the 
digital camera acquired fingerprint images are: (i) 
low ridges valleys contrast; (ii) defocus; and (iii) 
motion blurriness. To reduce these problems, the 
fingerprint images are pre-processed using the 
proposed method [Hie06]. To protect the template 
and improve the system performance, a variant of 
MRP [And07], named as Multispace Random 
Projections-Support Vector Machine (MRP-SVM), is 
proposed. MRP-SVM is performed after pre-
processing. In MRP-SVM, MRP, which used 
normalized dot product, is replaced with a more 

powerful classifier – Support Vector Machine (SVM) 
while still retains the properties of MRP. 
The outline of the paper is as follows: Section 2 
provides the details of the proposed system. Section 
3 shows the experiment results. Discussions are 
presented in Section 4. Finally, conclusions are given 
in Section 5. 

2. TOUCH-LESS FINGERPRINT 
VERIFICATION ALGORITHM 
2.1  Pre-processing 
Initially, the captured fingerprint image in Red-
Green-Blue (RGB) format is converted to grey scale 
[0-255]. To reduce the problem of non-uniform 
lighting in the image, local normalization is adopted 
to reduce the intensity variations in the image. Local 
normalization of is computed as follows 

[Bio02]: 
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),( ooo yxσ  indicates an estimation of the local 
standard deviation. Next, the fingerprint region is 
segmented from the raw image by applying skin 
color detection, adaptive thresholding, and 
morphological processing [Hie06]. Then, the local 
normalized image is multiplied with the fingerprint 
binary mask to get the segmented image. The 
resulting image is cropped and enhanced by using the 
Short Time Fourier Transform (STFT) analysis 
[Chi05]. Subsequently, the ridge orientation is 
calculated and the core point is detected from the 
enhanced image [And03]. The true and false core 
point detections are obtained by: (number of true 
core point detected images/total number of 
fingerprint images) and (number of false core point 
detected images/total number of fingerprint images) 
respectively. The detail description can be obtained 
in [Hie06]. After the core point detection, the pre-
processed image is created by cropping the local 
normalized image into a size of 200 x 200 with the 
core point as the centre. 

2.2  Multispace Random Projections-
Support Vector Machine (MRP-SVM) 
2.2.1 Brief Review of Multispace Random 
Projections (MRP) 
MRP covers two stages: (i) feature extraction: feature 
vector, , with fixed length d is extracted; (ii) 
random projections: the feature vector is projected 
onto a random subspace, which is formed by 
externally derived random matrix, , where 
m ≤ d. The R is formed by the independent, zero 

dℜ∈f

dm×ℜ∈R
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mean and unit variance Gaussian distributed random 
bases. Thus, the user-specific random-projected 
vector,  is described as mℜ∈p

Rfp m/1=  (1) 

During verification, the extracted feature vector is 
mixed with the genuine R. The resulting vector is 
compared with the enrolled template using the 
normalised dot product, a dissimilarity 
measure, , where x and y are the 
normalised feature vectors. From the performance 
perspective, three scenarios are considered when 
MRP is applied: (i) Legitimate-token: in which the 
genuine biometric is mixed with the user-specific 
token; (ii) Stolen-token: wherein an impostor has 
possessed genuine token and used by the impostor to 
claim as the genuine user; (iii) Stolen-biometrics: 
where an impostor assesses intercepted biometric 
data of high possibility to be considered genuine. 
Through the theoretical and experimental analysis 
[And07], Figure 1 illustrates the original system 
performance and performance behaviour of MRP in 
the legitimate-token, stolen-token and stolen-
biometrics scenarios using the genuine-impostor 
distributions. By referring to Figure 1, MRP’s 
genuine, impostor and genuine-impostor distributions 
in the legitimate-token, stolen-token and stolen-
biometrics scenarios with its respective recognition 
performance are summarised in Table 1.  

yxT−=1γ

2.2.2 Multispace Random Projections-Support 
Vector Machine (MRP-SVM) 
MRP-SVM is applicable to biometrics features 
represented in feature vector format. This technique 
consists of three stages: (i) feature extraction, (ii) 
random projection, and (iii) SVM classification. 

2.2.2.1 Feature Extraction 
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Figure 1. Genuine-impostor distributions of the 
original system and performance behavior of 

MRP in the legitimate-token, stolen-token and 
stolen-biometrics scenarios. 

The individual’s feature matrix is extracted from the 
pre-processed image through Gabor filter feature 
extractor. The adopted feature extraction method is 
similar to the method described in [Lee99]. Initially, 
the pre-processed images are sampled by Gabor 
filters. Given that a band of Ω  Gabor filters is 
applied in an experiment, the filtered images are 
divided into a set of MxM non-overlapping blocks, 
respectively. The resulting magnitude will be next 
converted to a scalar number by calculating its 
standard deviation value. The scalar numbers form 
the Gabor features of each image. Finally, 

 Gabor features are 
extracted from each image.  

ΩMMN ×)/200(×)/200(=

Then, PCA is used to compress the feature vectors. 
An eigenspace is built during the training phase. 
During the testing phase, each testing Gabor feature 
vector is projected onto the eigenspace to form 
eigenGabors, f with feature length d [Tur91].  Before  
 

Scenario 

Genuine 
distribution 
(intra-class 
variation) 

Impostor distribution 
(inter-class variation) 

Genuine-Impostor  
Distributions 

 
Recognition 
Performance 

Legitimate-
token 
Stolen-
biometrics 

Impostor distribution is amplified. 
The mean is 1 whereby the curve 
is centred at 1; the distribution 
profile’s shrinking rate (standard 
deviation) follows Y/1 . 

Clear separation can be 
attained, hence zero EER, 
if Y is sufficiently large as 
depicted in Figure 1. 

Significantly 
improved. 

Stolen-
token 

Preserved 
 

Preserved Reverts to its original state 
in feature vector level and 
thus the performance is 
retained as like original 
state before the random 
projection is performed. 

Reverts to its 
original state 
in feature 
vector before 
MRP is 
applied. 

Table 1. MRP’s genuine, impostor and genuine-impostor distributions in the legitimate-token, stolen-
token and stolen-biometrics scenarios with its respective recognition performance 
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applying Multi-space Random Projection, each 
eigenGabors is normalised to unit length, ||f|| = 1.  

2.2.2.2 Random Projection 
Subsequently, the unit length feature vector is 
projected onto a random subspace as described in 
Section 2.2.1. The user-specific random-projection 

(RP) vector, p  is produced through the random 
projection process, which is defined in Eq. 1. The 
one way transformation property can be assessed by 
looking at Eq. (1). p can be regarded as a set of 
underdetermined systems of linear equations (more 
unknowns than equations) if m < d. Thus, it is 
impossible to find the exact values of all the elements 
in f by solving an underdetermined linear equation 
system in 

mℜ∈

Rfp m/1=  if m < d, based on the 
premise that the possible solutions are infinite 
[And07]. The detail of the analysis can refer to 
[Kar05]. In the event of compromised, the template 
could be renewed by just changing R in Eq. (1) of the 
compromised biometric template. From this way, 
reusability property of MRP-SVM is fulfilled.  

2.2.2.3 Support Vector Machine (SVM) 
classification 

Then, the random projected vector p is fed into SVM 
[Bur98] to discriminate genuine and impostor. Let a 
training set be 

where 

either belongs to genuine’s or impostor’s random 

projection vector, indicates the label (+1 for 
genuine, -1 for impostor), Q denotes the number of 
training samples, and m signifies the feature length. 
During training, SVM looks for an optimal hyper-
plane, which takes the form  where 

is the normal to the plane, b  denotes the bias 
term. The optimal hyper-plane is a separating hyper-
plane, which gives the largest margin. Assuming that 
genuine and impostor samples are linearly separated, 
the Langrage Dual optimisation problem for maximal 
margin separation is: 
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subject to  and 0
1

=∑
=

Q

i
ii qα 0≥≥ iC α where iα  are 

the Langrage multipliers, C is the regularisation 
constant. 
The extension to non-linear boundaries is determined 
through projecting each data point to a higher 
dimensional feature space [Bur98], which may be 
carried out through the use of kernels: (i) polynomial 
kernel as (the order of the polynomial) or (ii) radial 
basis function (RBF) kernel as (the width of the 

radial basis function). Subject to constructing the 
optimal hyper-plane for SVM with non-linear kernel   
involves the following dual: 
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Q
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During verification,  and  learned from training 
phase are used. The decision value,  of a test 
sample of vector p for linear SVM and non-linear 
SVM are calculated by Eq. 4 and Eq. 5 respectively, 
where are the support vectors. 
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ppT
j  (in Eq.4) and  ( )jK pp,  (in Eq.5) are a 

similarity measure comparing   (test sample) and 

 (support vectors) in input space and feature 

space respectively.  is a weighted sum of the 

similarity between  and . Comparison is made 

between nd a threshold, dvTh he claimed user 
is accepted if dvdv ThG

p

jp

dvG

p jp
dvG a . T

<  and rejec

3. EXPERIMENT EVALUATION 
lts 

ed 

ted if dvdv ThG ≥ . 

3.1  Pre-processing Experiment Resu
Pre-processing experiments are conducted by using 
all digital camera acquired fingerprint images (1938 
images) described in [Hie06]. The results are 
assessed subjectively by visual inspection. The 
proposed pre-processing provides admirable results 
as shown in Figure 2. By counting the number of 
false core point detection, it reveals that the proposed 
pre-processing algorithm can achieve an accuracy of 
95.44% of core point detection whereas the false 
core point detection is only 4.56%. Deep wrinkle, 
motion blurriness and defocus problems are the 
causes of the core point detection failure [Hie06]. 
Figure 3 depicts the comparison of the propos
algorithm to those of existing enhancement methods 
in the literature by using cropped local normalised 
images of our independent database. As illustrated by 
the region rounded by circles shown in Figure 3, 
some portions of the images are not enhanced 
fittingly by Hong enhancement and root filtering. It 
can be witnessed that the proposed algorithm 
performs more competent than Hong’s and root 
filtering. It signifies that image cropping is needed to 
eliminate the gratuitous noisy background; local 
normalisation succours in reducing the non-uniform 
lighting effect.  
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Figure 2. Results for the proposed pre-processing 
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In lieu of using all of the raw images described i
[Hie06] directly, a
local normalised fingerprint images are used in 
performing the verification experiments. These 
fingerprint images originate from 103 different 
fingers with 10 images for each finger.  The system 
performance is determined by using EER, i.e. False 
Accept Rate (FAR) = FRR. The lower the EER, the 
more accurate the system is considered to be. 
The parameters of the Gabor filter feature extractor 
are set as: (i) number of Gabor filters (Ω )
frequency ( gf )=10; (iii) variance ( 2

gxσ  and 
2

gyσ )=128; (iv) number of non-overlappi blocks 

 the Gabor filter based feature extractor are 
compressed using PCA. One Gabor feature vector 
from each finger class is used for training, while the 
rest will be used as testing data. The eigenGabors are 
normalised to be of unit length before verification 
test is conducted. The experiment setting is fixed and 
shown in Table 2. To enhance the reliability of the 
assessment, we perform ten runs for each of T

ng 

(M  ei ures deri

r  

samples with different random partitions between 
training and testing images, and the results are 
averaged. 
The verification accuracy is tested using linear SVM, 
polynomial SVM and RBF SVM. To fix the feature 
length, the eigenvectors are extracted from the Gabor 
feature vectors with the dimensionality of 100. 
Setting No. of 

Training 
Image, Tr  

No. of 
Testing 

Image, 9- Tr  

No. of 
Client 

No. of 
Impostor 

1 1 8 8x103
=824 

8x103x102
=84048 

2 7x103x1022 7 7x103
=721 =73542 

3 3 6 026x103
=618 

6x103x1
=63036 

4 4 5 025x103
=515 

5x103x1
=52530 

Table 2. Configuration for the ing 
SV genGabors 

l (degree) and RBF SVM 

 

experiments us
M on ei

Before comparing the perfor ear, 
polynomial and RBF SVM, the optimal parameter 
values for polynomia

mance of lin

(gamma and C) are investigated. This investigation is 
necessary as these parameter values will affect the 
results. In this study, the polynomial of degree 
between 2 and 5 are tested. Besides, different 
parameter values of RBF SVM (gamma=1, C=10; 
gamma=10, C=1; gamma=1, C=1; gamma=10, 
C=10) for both uncompressed Gabor features and 
eigenGabors are investigated. After the parameter 
value tuning, the best parameter values of 
polynomial SVM (degree=2) and RBF SVM 
(gamma=1 and C=10) are fixed for further evaluation 
tests. Table 3 shows the EER (%) results for linear, 
polynomial and RBF kernel with different number of 
training image, Tr.  For Tr=1…4, it can be seen that 
the EER results of Linear SVM kernel is the worst 
while the EER results of RBF SVM kernel is the 
best. The best result (EER=1.23%) is obtained when 
Tr=4 and RBF SVM kernel is adopted as indicated in 
the table below. 

                  Tr       
SVM  
kernel type       

1 2 3 4 

Linear 18.89 7 8 1 9.4 6.4 4.2
Polynomial 

=2) (degree
14.57 6.26 3.25 1.76 

RBF(gamma
C=10) 

=1, 5.09 2.75 1.83 1.23 

Table 3. EE
polynomial 

R lts of  S
S nd  S in

eigenGabors (dimensionality = 100) with different 
number of training image, Tr 

 Resu
VM a

 (%) 
 RBF

linear
VM us

VM, 
g 
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 60 70 80 90 100 

ultispace Random Projection 
(MRP) Experiments 
3.3.1 Performance Results 

the performance of MRP on the best 
performing SVM classifier, we concea
eigenGabors through MRP before feat

 During the experiment, setting
adopted. Again, we perform ten runs for each of 4 
samples with different random partitions between 
training and testing images. Then, the results are 
averaged. egsvm, mrpsvm-m, mrpsvm-m(stolen-
token), mrpsvm-m(stolen-biometrics) denote 
eigenGabors, legitimate-token, stolen-token and 
stolen-biometrics scenarios respectively. The feature 
length of eigenGabors (egsvm) are fixed as d = 100. 
Besides, the eigenGabors is normalised to unit length 
before MRP.  To infer the recognition performance, 
three different scenarios (as described in Section 
2.2.1) are considered, i.e. legitimate-token, stolen-
token and stolen-biometrics scenarios. For these 
three scenarios, the eigenvectors are extracted from 
the Gabor feature vectors with the dimensionality 
varied from 10 to 100 in intervals of 10. Later on, the 
normalized eigenGabors are used in these three 
different scenarios. 
Table 4 shows the performance comparison of 
eigenGabors, legitimate-token, stolen token and 
stolen biometrics scenarios. From Table 4, for 
d=10…100, it is 
token’s EER results outperform the eigenGabors’s 
EER results (egsvm in this context). Legitimate-
token and stolen-biometrics scenario attain better 
EER results than the eigenGabors in the range 
of 10040 ≤≤ m . On the other hand, the EER of 
eigenGabors and stolen-token scenarios are equal 
when m≈d. In other words, stolen-token scenario 
reverts the system to its original state when m≈d.   
Fo oken and stolen-biometrics scenarios, 
the MRP performance can be boosted through a 
classifier with better separation whilst the classifier 
quality will determine the performance of MRP 
stolen-token scenario. However, it would not be 
poorer than its original method i.e. classification 
using eigenGabors without MRP. This is favourable 

in practical application whereby MRP survives either 
in stolen-token or in stolen-biometrics attack and also 
capable to offer significant improvement in 
verification setting with better classifier. 
From Table 5, it can be observed that the impostor 
distribution’s mean and standard deviati

scenario                                    d 10 20 30

eigenGabors and stolen-token scenario are the same 
when m≈d. Similar result can be seen in the genuine 
distribution where the mean and standard deviation 
of stolen-token scenario are equivalent to the mean 
and standard deviation of eigenGabors when m≈d. 
This indicates that the preservation of genuine-
impostor distribution is maintained under SVM 
framework when m≈d. It is also depicted in Figure 4 
where the separation of genuine-impostor class 
distribution for eigenGabors and stolen-token 
scenario is almost identical.  The preservation of the 
intra-class variations (genuine distribution) as well as 
inter-class variations (impostor distribution) asserts 
that SVM statistical properties are preserved under 
the MRP framework. 

3.3.2 Diversity Test 
In order to fulfil t
cancell le biometrics, P
conducted to inspect whether the MRP template with 
PRN A and MRP template with PRN B (both with 
same fingerprint feature) are associated. The same 
fingerprint feature is mixed with different PRNs. We 
observe that the scores generation procedure has 
followed the impostor distribution as described 
above. Figure 5 exhibits the Pairwise Independent 
Test of MRP. As indicated in Figure 5, the mean and 
standard deviation are 1.0177 and 0.2982, 
respectively. It can be concluded that MRP is 
Pairwise independent as the histogram of Figure 5 
approaches the independent and similarly distributed 
(i.i.d) random variables drawn from Gaussian 
distribution, N(-1610.2, 407.3). This means that there 
is almost no correlation between the refreshed MRP 
template and old MRP template. Therefore, random 
number refreshment is equivalent to issue a new 
template to the user. In the real application, every 
user is assigned a unique random number. Hence, 
only the respective template is renewed in the event 
of compromise. 

40 50 
mrpsvm-m 36.69 10.38 1.84 0.63 0.37 0.36 0.31 0.30 0.37 0.48 
mrpsvm-m (stolen-biometrics) 35.98 11.06 2.23 0.87 0.70 0.56 0.43 0.42 0.49 0.57 
mrpsvm-m (stolen-token) 39.75 14.58 4.80 2.31 1.58 1.51 1.16 1.12 1.19 1.23 
egsvm          1.23 

Table 4. EER results (%) of  m - p  ) r -m e

 

egsvm, rpsvm m, mr svm-m(stolen token and m psvm (stol n 
biometrics) for RBF SVM with different feature length, d 
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m genuineμ  imposterμ  genuineσ  scenario imposterσ  

egsvm - -0.6445 1.0668 0.4428 0.3188 
100 -0.6445 1.0668 0.4428 0.3188 
90 -0.6582 1.1212 0.4410 0.3463 
80 -0.6742 1.1880 0.4380 0.3776 
70 -0.6867 1.2799 0.4363 0.4298 
60 -0.6935 1.3971 0.4549 0.5094 
50 -0.6897 1.5195 0.4517 0.5755 
40 -0.6440 1.6600 0.5040 0.6513 
30 -0.3766 1.7365 0.5865 0.6831 
20 0.4513 1.3946 0.3854 0.5092 

mrpsvm-m 
oken) (stolen-t

10 0.9244 1.0647 0.2172 0.3227 
Table 5. Statistics measurement of egsvm and mrpsvm-m(stolen-token) for RBF SVM 
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Figure 4. Genuine and impostor class distribution for: (a) egsvm; (b) mrpsvm-m (stolen- token). 
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The inheritance of the MRP characteristics (e.g. 
-SVM is 

that SVM 

 with normalised matching metric. 

4. DISCUSSIONS 
MRP maps the data onto a random subspace while 

reusability and diversity properties) by MRP

preserving the pair-wise di
dot product. Hence, MRP can be generalised for 
Linear SVM as the original data points are quantified 
by the dot product, j

T
i pp  in Lagrange dual 

optimisation problem as shown in Eq. 2. 
Furthermore, a dot prod pT

j  also appears in 

decision stage as exhibited in Eq. 4. Therefore, SVM 
inherited the MRP characteristics that described in 
[And07]. As stated in Section 2.2.2.3, to extend the 
idea to non-linearly separable data, a non-linear 
kernel is needed. The dot product of j

T
i pp  in input 

space is substituted with ),( jiK pp in the Langrage 

dual optimisation problem as displaye q. 3. On 
the other hand, the dot p  ppT

j  in input 

space is substituted with ),( jK pp  in deciding the 

decision value as shown in Eq. 5. The non-linear 
kernel measures the simila een two feature 
vectors. Typically, it represents the dot product 
between two representations in the transformed space 
in which the data are linearly separable.  

concretised by the experiment results given in 
Section 3.3.2. The experiment results shown in Table 
5 and Figure 4 deliver our assertion 

uct p

d in E
roduct of

statistical properties are preserved under the MRP 
framework. 
In short, SVM is another classifier that can be used 
in MRP as it contains the property of dot product and 
non-linear kernel. SVM is still preserved under MRP 
framework. Moreover, it has better discrimination 
power compared
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Figure 5. Pairwise Independent Test of MRP 
using RBF SVM 
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5. CONCLUSIONS 
A complete secure digital camera based fingerprint 
verification system is proposed. This system uses 
“touch-less” based method. The proposed pre-
processing which encompasses of skin colour 
det on, local normalisation, fingerprint 
se ation, image enhancement, and core point 
de on resolves the problems exist in its images. 
After pre-processing, MRP-SVM which comprises 
Gabor feature extraction, PCA, MRP and SVM
ve
SV m 
performance. In M with high 

RP 

stems, Man and 
Cybernetics Part B - Special Issue on Recent Advances 

, No. 5, pp.1096-1106, 2007. 

ecti
gment
tecti

 
rification is performed. The employment of MRP-
M protects the template whilst improving syste

 MRP-SVM, SV
discrimination power is preserved under M
framework as it has the property of dot product and 
non-linear kernel. Experiments show that MRP-SVM 
contributes high recognition performance and 
functions well without compromising the verification 
performance in the event of compromised token.  
MRP-SVM is proven to fulfil other cancellable 
biometrics properties, i.e. diversity property and non-
reversible property into the bargain.   
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