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ABSTRACT

We introduce an improved algorithm for streak line approximation in 2D and 3D time-dependent vector fields. The algorithm
is mainly based on iterative refinement of an initial coarse approximation of the streak line. The refinement process is steered
by a predicate indicating the local approximation quality. We apply the algorithm to several real-world data sets to prove its
applicability and robustness. An error analysis and a comparison show that the algorithm produces more accurate streak lines
in shorter time compared to previous approaches. Finally we show how the new algorithm can help to improve the construction
of streak surfaces.
Keywords: Flow visualization, streak lines, adaptive refinement, unsteady flow, time-dependent vector fields.

1 INTRODUCTION
Unsteady flows are ubiquitous in nature and conse-
quently in science. To be able to deduce the laws gov-
erning the behavior of flowing fluids scientist perform
experiments and simulations. In both cases the effects
under investigation appear to be invisible quite often.
Making them visible is crucial and common. In experi-
ments, a widely used technique is the injection of visi-
ble material into the fluid. Examples are dye for hydro-
dynamic and smoke for aerodynamic experiments. If
a material is constantly injected from a fixed location,
the patterns that become visible in the flow are called
streak lines.

The same patterns are achievable for vector fields
stemming from computational fluid dynamics (CFD),
i.e. from flow simulations. The patterns are again called
streak lines. Here a certain number of virtual particles
is placed in the vector field at a fixed location at consec-
utive times and the particles are computationally traced
through time and space [KL96, SMAM99]. The whole
procedure will be described in more detail in the next
section.

The aim of this paper is to significantly accelerate
the computation of such streak lines in flow data given
as 2D or 3D time-dependent vector fields. The central
idea is to reduce the number of traced particles while
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keeping the accuracy of the streak line approximation
as high as possible, i.e. to trace only particles at those
parts of the streak line that experience strong deforma-
tion by complex patterns in the vector field.

2 STATE OF THE ART
The first part of this section outlines the mathematical
basis for particle tracing and the techniques that were
used for streak line approximation up to now. The sec-
ond part summarizes work related to streak lines and
their effective use for flow visualization.

Streak Line Computation
As already adumbrated, streak lines can be described as
a continuum of particles that were injected into a flow at
the same location but at different times. To enable their
computational approximation we will give the mathe-
matical definition of streak lines. To ease understand-
ing of the definition, we first review the definitions of
two other line types, streamlines and path line, too.

For the following definitions let

v : R3× [tmin, tmax]→ R3

be a continuous time-dependent vector field. Let a ∈
R3 be the position of a particle in space and let t ∈
[tmin, tmax] be a certain time.

Stream Lines Stream lines are integral curves ca,t(u)
of vector fields which are tangential to the vectors of
a field’s domain. They can be interpreted as trajecto-
ries of particles in a steady flow. For time-dependent
vector fields streamlines are of little use as they stay
in a single time step. Thus they do not show actual
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particle motion but theoretical trajectories of parti-
cles with infinite velocity.

u 7→ ca,t(u)
ca,t(0) = a

∂ca,t

∂u
(u) = v(ca,t(u), t)

Here u is a time-independent parameter, t selects the
time from which the vectors v are taken and a is the
streamline seed at u = 0.

Path Lines In contrast to stream lines, path lines pa,s
in unsteady flow, indeed, are the paths of moving
particles. Path lines are obtained by integration over
space and time.

t 7→ pa,s(t)
pa,s(s) = a

∂pa,s

∂ t
(t) = v(pa,s(t), t)

Here s is the seed time. Note that path lines and
stream lines are identical for steady flow.

Streak Lines Streak lines la,t are imaginary lines con-
necting the locations of particles that were released
into a flow at consecutive time steps. The lines can
be observed when looking at the particles at a cer-
tain time t. As streak lines consist of particles and
we need to trace these along their paths through the
field, it is useful to describe streak lines in terms of
path lines:

s 7→ la,t(s) = pa,s(t) (1)

Note that t is fixed and s varies. Like path lines,
streak lines coincide with stream lines in the steady
case.

It is worth mentioning that there exists another type
of streak lines. In contrast to ordinary streak lines, the
seed point for the particles varies in this new concept,
i.e. instead of a constant position a they use a location
a(s) moving along a path q. These so called gener-
alized streak lines lq,t(s) = pa(s),s(t) where introduced
by Wiebel et al. [WTS+07] just recently. Their paper
shows the usefulness of generalized streak lines in the
context of flow separation at boundaries of object im-
mersed in the flow.

Related Work
A general overview of line based visualization of
fields can be found in the State-of-the-Art report by
McLoughlin et al. [MLP+09]. In the following we
will go into detail only for a number of streak line
techniques especially relevant for our work.

An early implementations of streak lines for large
unsteady flow fields was reported by Lane [Lan93]. In
the literature we found only few papers dealing with
accelerating streak lines. All of the reported approaches
are complementary to what we present. One of the first
ideas was trying to accelerate streak line computation
by simply accelerating particle tracing. The first
paper in this direction was written by Kenwright and
Lane [KL96]. They increase the performance of the
particle tracing by improving the cell search which
is necessary for interpolation in unstructured grids.
Later papers use also improved integration schemes,
see [MLP+09] for details.

A paper by Sanna et al. [SMA00] might seem simi-
lar to our work because they use adaptive streak lines
for visualizing unsteady flows. However their method
is quite different and does not have the aim to accel-
erate streak line computation. They are interested in
a large number of densely seeded streak lines that pro-
duce visualizations similar to texture-based flow visual-
ization [LHD+04]. Their approach is only adaptive re-
garding the seeding of the streak lines which is steered
by the local vorticity of the flow field.

Becker et al. [BLM95] extend the one dimensional
streak lines to flow volumes that are seeded at several
positions lying on a polygonal surface instead of only
from one position. Particles are injected and traced
from all positions simultaneously thus producing an
evolving volume. They use an adaptive insertion of par-
ticles to keep the flow volume dense. Their criterion for
insertion of new particles is the distance between par-
ticles. This is similar to what we present as distance
criterion for streak lines. We will show that a distance
based criterion is not the best approach to steer refine-
ment.

Just recently flow visualization research has focused
on streak surface visualization. Streak surfaces can be
observed when particles are seeded from a line instead
of a point. They correspond to a continuum of streak
lines. The methods reach from a straight forward al-
gorithm producing special streak surfaces called eye-
let path surfaces [WS05], over GPU implementations
for structured grids [vFWTS08, BFTW09], to a method
that manages a complete triangulation of the surface
and is also applicable to data given on unstructured
grids [KGJ09].

Although many papers report the effectiveness of
streak lines [Lan93, KL96, MLP+09] for flow analy-
sis others emphasize that care has to be taken when in-
terpreting the resulting visualizations [Ham62, WH80,
KS86].

3 ACCELERATED STREAK LINE
COMPUTATION

Before we start to explain the actual technique, we
should state that it is not needed for streak lines in
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steady flow. As streak lines are identical to streamlines
in the steady case, the usual streamline approximation
methods are sufficient. Also note, that the presented
technique is applicable to generalized streak lines with-
out any changes because both, ordinary and general-
ized streak lines, have the same digital representation
as a polyline connecting the particles injected at differ-
ent times.

Idea
The idea of the approach we present is to accelerate
the computation of a streak line by reducing the num-
ber of particles traces that have to be computed. It is
clear that we can only compute an approximation of
the real streak line because we can trace only a finite
number of particles in finite time. However, the aim
still has to be as accurate as possible. Thus, we try to
trace as few particles as are needed for a certain accu-
racy. We begin with a very coarse approximation, i.e.
with only few particles started at equidistant points in
time. Each traced particle results in a sample on the
streak line (Fig. 2 left). The samples are joined with
straight lines to form a polyline approximation of the
streak line. Actually, the polyline is a linear interpola-
tion of the samples. Please note that even though the
particles all have the same distance in time, the samples
do not have to have the same distance in space. In fact,
most of the time this is not the case because the streak
line is usually stretched and compressed.

To increase the accuracy of the approximation one
decreases the time interval between the traced parti-
cles. The simplest and most common approach for this
refinement is to decrease all time intervals uniformly,
yielding an equidistant seeding in time again. This is
most conveniently achieved by seeding one new particle
in each interval between the particles of the coarser ap-
proximation. Thus is it possible to reuse the previously
computed samples. The sampling density is doubled by
this step.

The approach we suggest is to add new particles only
in intervals in which the accuracy is low, i.e to steer
the refinement by the local accuracy. The middle and
right images in Figure 2 show the result of the two ap-
proaches applied to the coarse approximation shown in
the left image of the same figure. Comparing the num-
ber of samples it becomes clear that the common ap-
proach is less efficient, as it produces more samples for
a comparable accuracy.

Accuracy Estimation
In order to be able to seed particles only in intervals
with low accuracy we need to measure the accuracy
somehow. The best measure would be the distance be-
tween the approximated line and the correct streak line.
As we do not have the correct streak line, we need to
estimate the accuracy from the approximation alone.

Figure 1: Different refinement criteria: angle α , area A
and distance d.

Therefore we introduce three heuristic quality criteria
in this section.

Figure 1 illustrates the three different quality crite-
ria we employ for steering the refinement process. For
each of the criteria we consider three consecutive points
on the polyline representing the approximation: The
current point x, its predecessor p and its successor s.
Let xp = p− x and xs = s− x.

Angle As the angle α between xp and xs comes closer
to 180◦ the polyline becomes more similar to a
straight line at x. As we use linear interpolation
between the samples, a straighter polyline implies
a higher accuracy. Thus we prescribe the desired
quality using a minimum angle threshold kα . The
desired quality is reached if

kα < arccos(xp ·xs)

with xp and xs being normalized vectors.

Area A small area A also indicates a relatively straight
line. Thus we prescribe the desired quality using a
maximum area threshold kA. The desired quality is
reached if

kA >
1
2
‖xp×xs‖.

Distance A small distance between samples naturally
guarantees a high quality. Thus we prescribe the de-
sired quality using a maximum distance threshold
kd . The desired quality is reached if

kd > ‖xp‖+‖xs‖.

We would like to mention, that one could make the
above computations directly in homogeneous coordi-
nates as suggested by Skala [Ska06]. It can be shown
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Figure 2: Comparison of refinement based on angle criterion and simple up-sampling. From left to right: Initial
sampling of streak line, adaptive refinement and equidistant sampling with half of initial distance. For comparable
precision adaptive refinement needs only 16 samples compared to 21 with simple sub-sampling.

that a solution of linear equations is equivalent to a gen-
eralized cross product.

Algorithm
In the following we describe the procedure for the adap-
tive streak line computation. As mentioned earlier, the
first step of our algorithm constructs a coarse approx-
imation of the desired streak line with the common
method. This can be done quickly because the coarse
approximation includes only the tracing of very few
particles. Having the coarse line, we start with a first
iteration along the line. We consider three consecu-
tively computed particle positions and the intervals be-
tween them as a triplet. For each such triplet, starting
with the one that has the youngest particles, we evalu-
ate the quality criterion. If the criterion evaluates false
we mark both intervals for refinement. After evalua-
tion and marking have been performed for all triples
we check all intervals. For each marked interval we
trace a new particle starting at the time exactly in the
middle of the times of the two particles bounding the
interval. This completes the first iteration. We repeat
the steps described for the first iteration until no inter-
vals are marked during the evaluation phase or a maxi-
mum number of iterations has been reached. This com-
pletes the computation for the whole streak line. In the
first case we have the streak line with desired accuracy
ready. The second case is only for convenience. Partic-
ularly, it avoids infinite loops that might occur due user
chosen thresholds that are beyond the sensible numeri-
cal bounds.

For the angle criterion we have implemented an addi-
tional condition that avoids endless refinement at sharp
edges of the correct streak line. We omit the details of
this condition here, as it will turn out later that the per-
formance of the angle criterion is the worst. So we do
not want encourage its reimplementation by the reader.

4 RESULTS
We applied our novel method to a number of data sets
to prove its usefulness and robustness.

In this section we analyze two of these examples to
demonstrate the efficiency of the new method and de-
termine which of the quality criteria should be chosen.
We compute streak lines using five different methods

for both examples. At first we compute a reference
streak line using the common method with a very high
resolution. In all examples the reference streak lines
have 5000 samples while the other streak lines com-
pared against it consist of only up to several hundred
particles. The reference streak line is considered to be
the ground truth. To compare the efficiency of the dif-
ferent methods we compute a streak line with each of
them. These streak lines start at the same position and
cover the same time interval. For each method we vary
the threshold for the used quality criterion and note the
number of samples together with the achieved accuracy.
The accuracy is measured by comparing the streak lines
with the reference streak line and computing their dis-
tance. Our distance measure is evaluated as follows:
For each point of the reference streak line we compute
the shortest distance to the current streak line. Then
we compute the mean of these distances. The resulting
number is the average distance of the reference streak
line to the current streak line and thus the error of the
current streak line. We use the samples on the reference
streak line to compute the distance and not those of the
current streak line in order to have the same sampling
density for all distance computations. This is important
to make the computed distances comparable.

The four different streak lines we compare against
the reference streak line are the three described above,
i.e. angle-based, area-based and distance-based adap-
tive streak lines and a non-adaptive streak line that
is equidistantly sampled with a prescribed number of
samples. We carry out the comparison for three test
cases, i.e. streak lines from one position in a 2D data
set and streak lines from two different positions in a 3D
data set. The 2D data set is the simulation of the flow
around a cylinder (see Figure 3). The three-dimensional
data set represents the fluid flow around a cuboid (see
Figure 4). Figures 3 and 4 show the shapes and start
positions of the considered streak lines.

The results of the analysis of the different streak line
methods are shown as graphs in Figure 7. The graphs
reveal that the angle criterion performs worst. The
adaptive computation using the angle criterion is even
worse than the non-adaptive method. The results of
the distance-based method are not that clear. In the
first two examples, where the streak line has nearly

20



Figure 3: Streak line in flow around cylinder.

Figure 4: Streak lines in flow around cuboid. Labels
A and B mark the seed points for the orange resp. red
streak line.

no straight parts that could be exploited by the adap-
tiveness, the distance-based refinement is not as ac-
curate as the non-adaptive streak lines (upper two im-
ages). If the real streak line, however, comprises some
straight parts both, the non-adaptive and the distance-
based adaptive method, perform very similar (lower im-
age). The best method in all examples is the area-based
adaptive method. It is only slightly better where the
adaptiveness is not very useful (upper two images) but
develops its full efficiency where the adaptiveness can
sample straight parts sparsely (lower image). In the lat-
ter case the area-based method performs approximately
three times better than the distance-based and the non-
adaptive method (note the log scale of the graphs). In
all our experiments the time used for particle tracing
outweighs the time used for evaluating the quality cri-
teria.

Finally, it should be noted that the number of com-
puted samples increases monotonic with monotonic
changes of the the quality criteria (increasing angle,
decreasing area or decreasing distance).

Read-world Example
The cylinder and cuboid data sets discussed so far are of
academic nature. We applied our new algorithm also on
a real application data set: an aerodynamic simulation
of a delta wing. The resulting streak lines can be seen in
Figure 6. As the images show the methods works also
on this complex data given on a large unstructured mesh
consisting of 11 million cells (tetrahedra and prisms).
As the acceleration method itself does not depend on
the underlying mesh, it performs well as expected.

Figure 5: Thirty streak lines in flow around cuboid.
Surface connecting the streak lines in blue.

Streak Surface
Our method is suitable to accelerate streak surface algo-
rithms that build up the surface by a number of streak
lines. By accelerating each streak line computation as
described in this paper the whole computation time for
a surface can be reduced. The streak surface shown in
Figure 5 is constructed in this way, i.e. using a number
of streak lines computed with the adaptive method and
connected by a greedy tiling as described by Hultquist
for his stream surface algorithm [Hul92].

Note, that the latest published algorithms for streak
surface computation which we mentioned in the related
work section chose different techniques. They do not
construct streak lines explicitly but trace the particles
of the streak surface independently.

5 CONCLUSION
In this paper we have presented a novel adaptive
method to approximate streak lines. We have applied
the method to data sets in 2D and 3D to demonstrate
its usefulness. Additionally, we have carried out a
thorough performance analysis that showed that only
one of the three suggested quality criteria outperforms
the conventional equidistant sampling. The analysis
showed that the area-based method performs three
times better than the common non-adaptive method.

We are aware that the initial coarse approximation
might miss some of the smaller features of the correct
streak line. The Nyquist-Shannon sampling theorem
implies this restriction. However, smaller features are
most often found in a later refinement step resulting
from the evaluation of one of our quality criteria in its
neighborhood.

For the future, we plan to enhance the accuracy be-
tween the sample points by replacing the linear interpo-
lation producing polylines by higher order interpolation
schemes that produce smooth lines.
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Figure 6: Streak lines in delta wing data set.

the cylinder dataset. The cuboid dataset results from
direct numerical simulation carried out with the
NaSt3DGP flow solver. NaSt3DGP was developed
by the research group in the Division of Scientific
Computing and Numerical Simulation at the University
of Bonn. It is essentially based on the code described
in a book by Griebel et al. [GDN98]. A version
of the NaSt3DGP code, as well as related informa-
tion and documentation is available for download
at http://wissrech.iam.uni-bonn.de/
research/projects/NaSt3DGP/index.htm.
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Figure 7: Error of non-adaptive streak line and adaptive streak lines using angle, area and distance criteria. Error
is plotted versus number of samples. Streak line used as ground truth consists of 5000 samples.
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