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ABSTRACT

In this paper we introduce a second order differential

operator in order to partition discrete objects into mean-

ingful parts. One of these parts contains all points of

the object’s medial axis which is a widely used shape

descriptor.

Since aliasing is a fundamental problem for methods

based on the boundary of discrete objects we use a bi-

lateral filter to reduce the artefacts significantly.

As a result of the partitioning and filtering we obtain

a lattice point set (a superset of the medial axis) which

is robust against noise and aliasing and which is rota-

tionally invariant. The lattice point set can be used for

instance to compute the medial axis or similar shape

descriptors.

Keywords: 2-d shape descriptor, bilateral filter, skele-

tonization, curve skeletons

1 INTRODUCTION

One typical goal for processing a discrete 2-d shape S

is finding a good shape descriptor. One possible de-

scriptor of S is the medial axis which is defined as

the set of centres (and radii) of maximal disks in S ,

whereas a disk is said to be maximal in S , if it is

not completely covered by any other disk in S (cf.

[1, 12]). Such descriptors are widely used in many ap-

plications such as shape analysis, shape representation,

skeletonization, segmentation, and shape matching (cf.

[10, 5, 9]).

In this paper we use the divergence of a scalar dis-

tance field in order to describe the shape’s local geome-

try. We show that only points located at the medial axis

have a high negative divergence. Of course these points

could be used in the computation of the medial axis as

the contributions of Siddiqi et al. show (cf. [15, 2, 4]).

On the other hand, points at concave boundary regions
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have a positive divergence and may be used in a seg-

mentation approach.

But this property is only helpful for objects with a

smooth boundary and therefore aliasing is a fundamen-

tal problem. Boundary based approaches are notori-

ously instable to small boundary perturbations. Hence,

the results of corresponding algorithms such as for the

medial axis are not rotationally invariant. Many meth-

ods follow the concept of reducing the influence of

aliasing using some sort of heuristic. In the context

of skeleton extraction pruning approaches are used for

such a reducing effect [16, 7, 14].

In contrast to such heuristics, we suggest a signif-

icant reduction on the basis of a bilateral filter (whose

theoretical foundations have been widely developed, re-

cently). The bilateral filter has its origin in [17] and is

typically used in applications such as denoising of im-

ages [19] or meshes [6]. Practically, the filter can be

applied at interactive speed thanks to efficient numer-

ical schemes [18]. A good survey of this field can be

found in [11].

Since the points with a high negative divergence are

of interest for a shape descriptor we utilize the bilateral

filter to emphasize the respective regions. We show that

the filtered point set is suitable to construct a shape de-

scriptor which is rotationally invariant and very robust

against boundary perturbations.

This paper is structured as follows: After introducing

some mathematical basics and notations in section 2 we

explain an adapted Laplace operator and the partition-

ing in section 3. In section 4 we analyse artefacts which

are caused by the aliasing and describe the bilateral fil-

ter which is used to reduce these artefacts significantly.

To demonstrate the qualities and effectiveness of the

introduced operator and filter we present in section 5

as an exemplary application a skeletonization approach

which uses the filtered point set to construct a shape

descriptor. The paper is concluded with our results in

section 6.

2 BASIC DEFINITIONS AND NOTA-

TIONS

We use the Cartesian point lattice Z
2 as the mathemat-

ical model for describing a tessellation of the 2-d Eu-

clidean space E
2 into cell elements. The coordinates

of a lattice point p ∈ Z
2 are denoted by px, py. For the
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where |N1(p)| is the number of local neighbor points,

8 in the 2-d case, and where ∠ 7→ [−1,1] is a function

which computes the cosine of angle α between two vec-

tors~u,~v taking account of zero vectors:

cos(α) = ∠(~u,~v) =







0 :~u ≡~0∨~v ≡~0

〈~u,~v〉

‖~u‖‖~v‖
: else

. (8)

Now we analyse the divergence values for different

point classes. Let D(p) ⊂ O be the set of points of the

maximal disc in O with p as disc center. That is, D(p)
describes the disc with the largest radius of all possible

discs at p. Further, let

B(p) = D(p)∩OB (9)

be the set of all border points in D(p).

We are not only interested in the border points of

B(p). Since the divergence of a point p (defined in eq.

(7)) depends on its local neighbors N1(p), the closest

boundary points of those neighors are of interest, too.

In order to analyse the divergence value at p we need to

consider the gradients of the point set

B(p) =
⋃

q∈N1(p)

B(q). (10)

Note that

B(p)⊂
⋃

q∈N1(p)

B(q). (11)

We observe for points p located at the medial axis the

set B(p) contains points belonging to different bound-

ary segments. For all other points p outside the me-

dial axis B(p) contains only border points located at

exactly one boundary segment. In figure 2 the points

p1, p2 are and p3, p4 are not part of the medial axis.

Obviously, ∆(p) correlates with the gradients of the

points of B(p). For points in B(p) belonging to dif-

ferent boundary segments, the gradients of q ∈ N1(p)
are oriented towards p and vary strongly. Thus, ∆(p)
is negative (see points p1, p2 in figure 2). In contrast,

for points p having in B(p) only border points of one

boundary segment, ∆(p) may be either zero for points

b ∈B(p) having the same gradient (see point p3 in fig-

ure 2) or may be positive if the points b∈B(p) describe

a concave boundary segment (see point p4 in figure 2)

and some of the gradients of the points q ∈ N1(p4) are

oriented away from p4.

This observation is now used to classify the points

into three sets so that a given object can be partioned

according to the divergence values. We define (using ∪̇
(instead of ∪) to indicate a union of disjoint sets)

O = OI ∪̇ OII ∪̇ OIII , (12)

Figure 2: The divergence at different points (red) is in-

fluenced by the respective closest border points (dark

blue). Dark cells representing a negative, light cells

a positive divergence. The dotted circles indicate the

discs D(p1) – D(p4).

with

OI = {p : ∆(p)< 0} , (13)

OII = {p : ∆(p)> 0} , (14)

OIII = {p : ∆(p) = 0} . (15)

Fig. 1(b) illustrates the partitioning for an object with

a smooth boundary (i.e. without aliasing). The blue

points belong to OI , the red points to OII , and the light

gray points to OIII .

The possible uses of these subsets of an object O are

various: The set OI contains points, which are used for

example to compute the medial axis of an object. The

points contained in OII may be used to support a decom-

position approach, since objects are often decomposed

at concave regions. The points of OIII can be ignored

depending on the particular object analysis approach,

resulting in reduced computational costs.

4 FILTERING ALIASING BASED

ARTEFACTS

The object shown in figure 1 contains no aliasing based

artefacts, because all border segments are axis aligned.

Aliasing effects occur when the object in figure 1 is ro-

tated or noise is added and surely when an object con-

tains non-axis aligned edges (see figure 4). The parti-

tion of O based on eq. (12) is unclear in such cases.

Obviously, the noise or aliasing causes the appear-

ance of stripe-shaped regions of positive or negative di-

vergence (see figure 3(a) and 3(b)). In a first filtering

step the gradient field is smoothed to reduce the effects

partly. Afterwards, a second filtering step is applied to

the divergence field. For both filtering steps the bilateral

filter is the appropriate method for removing the men-

tioned artefacts. This filter technique has the advantage

to smooth image data while preserving its discontinu-

ities.
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In our case we intend to smooth small gradient and

divergence variances while preserving the greater vari-

ances. For this purpose we adapt the well-known bilat-

eral filter. In 2-d the Gaussian kernel is given by

gσ (x) =
1

2πσ
2

exp

(

−
x2

2σ
2

)

. (16)

Using this kernel we define the bilateral filter fgrad for

lattice points p and two parameters σd ∈N, σ∇ ∈R by:

fgrad(p)=
1

w(p)

∑

q∈N2σd
(p)

gσd
(‖p−q‖)gσ∇

(a(p,q))∇(q)

(17)

where N2σd
(p) is the local neighborhood at p of size

2σd (see eq. (1)) and w(p) is a normalization factor

with

w(p) =
∑

q∈N2σd
(p)

gσd
(‖p−q‖)gσ∇

(a(p,q)). (18)

The function a(p,q) 7→ [0,1] together with eq. (8) is

defined by

a(p,q) =

(

1−∠(∇(p),∇(q))

2

)

(19)

and expresses the difference between the gradients of p

and q.

The amount of filtering is influenced by the param-

eters σd and σ∇. On the one hand σd influences the

size of the local neighborhood at p. For instance let

σd = 1 then N2σd
(p) defines a 5 × 5-mask. On the

other hand the weight gσd
has the intention to decrease

the influence of distant points. The second parameter

gσ∇
intends to decrease the influence of p’s neighbor-

ing points q with a differing gradient in comparison to

∇(p).
We denote the filtered gradient at point p with ∇̇(p)

and the divergence based on the filtered gradients with

∆̇(p):

∆̇d(p) =
1

|N1(p)|

∑

q∈N1(p)

∠(q− p, ∇̇d(q)). (20)

See figure 3(b) and 3(c) to comprehend the filtering

effect.

After applying the bilateral filter to the gradients,

the divergence variation is small for neighboring points

p,q ∈ OI in comparison to the variance between neigh-

boring points p ∈ OI and q ∈ OIII . With this being the

case, again a bilateral filtering is suitable in order to fur-

ther reduce the artefacts.

Therefore, in eq. (17) the weight gσ∇
is replaced by

the weight gσ∆
and we get:

fdiv(p) = (21)

1

w(p)

∑

q∈N2σd
(p)

gσd
(‖p−q‖)gσ∆

(∆̇(p)− ∆̇(q))∆̇(q)

(a) (b) (c)

Figure 3: Gradient and divergences for (a) a smooth

boundary, (b) with added noise, and (c) after gradient

filtering.

with w(p) again as the sum of all weigths. The weight

gσ∆
intends to decrease the influence of p’s neighboring

points q with a divergence value different from ∆̇(p).
We denote the filtered divergence value at point p

with ∆̈(p) and redefine the decomposition of O accord-

ing to the filtered divergence field:

O = ÖI ∪̇ ÖII ∪̇ ÖIII , (22)

with

ÖI =
{

p : ∆̈(p)< 0
}

, (23)

ÖII =
{

p : ∆̈(p)> 0
}

, (24)

ÖIII =
{

p : ∆̈(p) = 0
}

. (25)

Note, that filtering the distance map itself wouldn not

be suitable, since the variances of the distance values

are only marginal and significant features would not

preserved.

5 SAMPLE APPLICATION

In this chapter we present a skeletonization approach on

the basis of the findings of the previous chapters in or-

der to evaluate our shape descriptor. Therefore we use

a thinning method which offers two important advan-

tages. It is fast and furthermore the only known method

where the topological equivalence of the skeleton with

the initial discretized object can be guaranteed [8] (the

definition of topological equivalence is based on the

same number of connected components, tunnels, and

cavities). Thinning algorithms iteratively remove bor-

der points (i.e. points with at least one neighbor point

belonging to the background) from a discretized object.

It is common to call a removable point simple if its re-

moval does not change the topology of the discretized

object ([8]).

We extend the standard thinning algorithm by using

the filtered divergence values. This is done firstly, by

sorting the removable points according to the filtered

divergence values, such that points with high positive

divergence are prioritized and points with high negative
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