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ABSTRACT

In this paper we introduce a second order differential
operator in order to partition discrete objects into mean-
ingful parts. One of these parts contains all points of
the object’s medial axis which is a widely used shape
descriptor.

Since aliasing is a fundamental problem for methods
based on the boundary of discrete objects we use a bi-
lateral filter to reduce the artefacts significantly.

As a result of the partitioning and filtering we obtain
a lattice point set (a superset of the medial axis) which
is robust against noise and aliasing and which is rota-
tionally invariant. The lattice point set can be used for
instance to compute the medial axis or similar shape
descriptors.

Keywords: 2-d shape descriptor, bilateral filter, skele-
tonization, curve skeletons

1 INTRODUCTION

One typical goal for processing a discrete 2-d shape .
is finding a good shape descriptor. One possible de-
scriptor of . is the medial axis which is defined as
the set of centres (and radii) of maximal disks in .%,
whereas a disk is said to be maximal in .7, if it is
not completely covered by any other disk in . (cf.
[1, 12]). Such descriptors are widely used in many ap-
plications such as shape analysis, shape representation,
skeletonization, segmentation, and shape matching (cf.
[10, 5, 9]).

In this paper we use the divergence of a scalar dis-
tance field in order to describe the shape’s local geome-
try. We show that only points located at the medial axis
have a high negative divergence. Of course these points
could be used in the computation of the medial axis as
the contributions of Siddiqi et al. show (cf. [15, 2, 4]).
On the other hand, points at concave boundary regions
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have a positive divergence and may be used in a seg-
mentation approach.

But this property is only helpful for objects with a
smooth boundary and therefore aliasing is a fundamen-
tal problem. Boundary based approaches are notori-
ously instable to small boundary perturbations. Hence,
the results of corresponding algorithms such as for the
medial axis are not rotationally invariant. Many meth-
ods follow the concept of reducing the influence of
aliasing using some sort of heuristic. In the context
of skeleton extraction pruning approaches are used for
such a reducing effect [16, 7, 14].

In contrast to such heuristics, we suggest a signif-
icant reduction on the basis of a bilateral filter (whose
theoretical foundations have been widely developed, re-
cently). The bilateral filter has its origin in [17] and is
typically used in applications such as denoising of im-
ages [19] or meshes [6]. Practically, the filter can be
applied at interactive speed thanks to efficient numer-
ical schemes [18]. A good survey of this field can be
found in [11].

Since the points with a high negative divergence are
of interest for a shape descriptor we utilize the bilateral
filter to emphasize the respective regions. We show that
the filtered point set is suitable to construct a shape de-
scriptor which is rotationally invariant and very robust
against boundary perturbations.

This paper is structured as follows: After introducing
some mathematical basics and notations in section 2 we
explain an adapted Laplace operator and the partition-
ing in section 3. In section 4 we analyse artefacts which
are caused by the aliasing and describe the bilateral fil-
ter which is used to reduce these artefacts significantly.
To demonstrate the qualities and effectiveness of the
introduced operator and filter we present in section 5
as an exemplary application a skeletonization approach
which uses the filtered point set to construct a shape
descriptor. The paper is concluded with our results in
section 6.

2 BASIC DEFINITIONS AND NOTA-
TIONS

We use the Cartesian point lattice Z> as the mathemat-
ical model for describing a tessellation of the 2-d Eu-
clidean space E? into cell elements. The coordinates
of a lattice point p € Z? are denoted by py, py. For the
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Figure 1: In (a) the distance field and (b) the divergence are shown. Gray cells in (b) have zero, blue cells have a

negative and red cells a positive divergence.

Cartesian lattice we define the local neighborhood of
size k for lattice points by

N(p) = {q c7? imax (|px — qxls [Py —gyl) :k} M

which is based on the chessboard metric.

A discretized object O is defined as a connected finite
set of lattice points Z”. Using the notion of a binary
image it is common to say that each point of O belongs
to the foreground while the points of O = Z>\ O form
the background.

The border of a discretized object O is defined by the
set Op of all points p € O whose local neighborhood
N1(p) contains at least one point ¢ with g € O.

3 OBJECT’S PARTITIONING

For further analysis of a discrete object O we want to
partition it into three disjoint parts. The first part Oy is
some kind of scaffold of the object and is similar to the
medial axis. The second part Oy contains points which
are influenced by a concave boundary. The remaining
third part Oy is not of interest because it contains no
applicable information.

Due to partition objects we start with a distance map-
ping. Therefore, we use a distance transform which is
an efficient standard procedure to compute the minimal
Euclidean distance of each object point to the back-
ground (cf. [3, 13]). Figure 1(a) shows an example.

We change this definition a little by defining the mini-
mal Euclidean distance dp, of p € O U O to the bound-
ary Op instead to the background:

dimin(p, Op) = min (||p,q|| : ¢ € Og) 2

where || p,q|| denotes the Euclidean distance between
two lattice points. We define the final distance mapping

7dmin(pa0B): p€6
d(p)=40: pEO0E . (3)
dmin(paOB) : peo

We need to define negative distances for background
points in order to make it possible to have a suitable
second derivative for boundary points, too. Otherwise,
all boundary points would have positive divergence
and thus concave boundary would not be recognizable
(since all boundary points would belong to Op).

After the distance transform, we use an adapted
Laplace operator to compute the divergence of distance
map. The Laplace operator is a second order differ-
ential operator in E” and in our case defined as the
divergence of the gradient of the distance field.

The gradient of the distance field is defined to be the
vector field whose components are the partial deriva-
tives of the distance field. The gradient of a point
P = (px,py)" € Ois defined by:

T
Vd(p) = (242, 240" @

which we will compute by a finite difference since we
use a discrete scalar field:

Vd(p) = l <d((px+ pr)T) —d((px— pr)T)) '
2 \d((px; py+ 1)) —d((px;py = 1)T)
®)
Finally, we compute the divergence of the vector field
to measure the magnitude of the field’s sink at a given
point (see figure 1(b)). In general, the divergence of a
differentiable vector field is defined as the sum of the
partial derivatives of the i-th component:

2 2
ad(p) = Va(p) = 5 TS

Siddiqi et al. state in [15] that this definition cannot
be used since the gradient of the distance field is not free
of singularities and hence is not differentiable. There-
fore, they suggest a numerically stabble solution, which
we will adapt, such that Ad(p) — [—1,1]:

(6)




where |N;(p)| is the number of local neighbor points,
8 in the 2-d case, and where £ +— [—1,1] is a function
which computes the cosine of angle o between two vec-
tors i,V taking account of zero vectors:

0 Gi=0vv=0
(4, V) - (8)

cos(a) = £(4,V) = - else
el

Now we analyse the divergence values for different
point classes. Let D(p) C O be the set of points of the
maximal disc in O with p as disc center. That is, D(p)
describes the disc with the largest radius of all possible
discs at p. Further, let

B(p) =D(p)NOg )

be the set of all border points in D(p).

We are not only interested in the border points of
B(p). Since the divergence of a point p (defined in eq.
(7)) depends on its local neighbors Nj(p), the closest
boundary points of those neighors are of interest, too.
In order to analyse the divergence value at p we need to
consider the gradients of the point set

2p)= |J B (10)
qeN1(p)
Note that
B(p)c |J Bl (11)

q€N1(p)

We observe for points p located at the medial axis the
set Z(p) contains points belonging to different bound-
ary segments. For all other points p outside the me-
dial axis #(p) contains only border points located at
exactly one boundary segment. In figure 2 the points
p1, p2 are and p3, p4 are not part of the medial axis.

Obviously, A(p) correlates with the gradients of the
points of #(p). For points in %(p) belonging to dif-
ferent boundary segments, the gradients of ¢ € Ny (p)
are oriented towards p and vary strongly. Thus, A(p)
is negative (see points pi,p; in figure 2). In contrast,
for points p having in %(p) only border points of one
boundary segment, A(p) may be either zero for points
b € HB(p) having the same gradient (see point p3 in fig-
ure 2) or may be positive if the points b € %B(p) describe
a concave boundary segment (see point ps in figure 2)
and some of the gradients of the points g € N (pa) are
oriented away from pj.

This observation is now used to classify the points
into three sets so that a given object can be partioned
according to the divergence values. We define (using U
(instead of U) to indicate a union of disjoint sets)

0=0;U0;UO0y, (12)

Figure 2: The divergence at different points (red) is in-
fluenced by the respective closest border points (dark
blue). Dark cells representing a negative, light cells
a positive divergence. The dotted circles indicate the

discs D(p1) = D(pa).

with
Or={p:A(p) <0}, (13)
Or={p:A(p) >0}, (14)
Om = {p:A(p) =0}. (15)

Fig. 1(b) illustrates the partitioning for an object with
a smooth boundary (i.e. without aliasing). The blue
points belong to Oy, the red points to Oy, and the light
gray points to Op.

The possible uses of these subsets of an object O are
various: The set Oy contains points, which are used for
example to compute the medial axis of an object. The
points contained in Oy may be used to support a decom-
position approach, since objects are often decomposed
at concave regions. The points of Oy can be ignored
depending on the particular object analysis approach,
resulting in reduced computational costs.

4 FILTERING ALIASING BASED
ARTEFACTS

The object shown in figure 1 contains no aliasing based
artefacts, because all border segments are axis aligned.
Aliasing effects occur when the object in figure 1 is ro-
tated or noise is added and surely when an object con-
tains non-axis aligned edges (see figure 4). The parti-
tion of O based on eq. (12) is unclear in such cases.

Obviously, the noise or aliasing causes the appear-
ance of stripe-shaped regions of positive or negative di-
vergence (see figure 3(a) and 3(b)). In a first filtering
step the gradient field is smoothed to reduce the effects
partly. Afterwards, a second filtering step is applied to
the divergence field. For both filtering steps the bilateral
filter is the appropriate method for removing the men-
tioned artefacts. This filter technique has the advantage
to smooth image data while preserving its discontinu-
1ties.
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In our case we intend to smooth small gradient and
divergence variances while preserving the greater vari-
ances. For this purpose we adapt the well-known bilat-
eral filter. In 2-d the Gaussian kernel is given by

) 1 X2
=——e —— .

8o\ = 552 P\ T2e2
Using this kernel we define the bilateral filter foraq for

lattice points p and two parameters o; € N, oy € R by:

D)= s S sllp=alsen alp.a) V(0

q€Ng, (p)

(16)

(17)
where Nag, (p) is the local neighborhood at p of size
20, (see eq. (1)) and w(p) is a normalization factor
with

> ga,(lp—dl)goy (alp,q))-

q€N20'd (p)

w(p) (18

The function a(p,q) — [0,1] together with eq. (8) is

defined by
s(pd) = (1—4(\7<2p>,wq>>)

and expresses the difference between the gradients of p
and q.

The amount of filtering is influenced by the param-
eters 0; and oy. On the one hand o, influences the
size of the local neighborhood at p. For instance let
o4 = 1 then Ny, (p) defines a 5 x 5-mask. On the
other hand the weight g5, has the intention to decrease
the influence of distant points. The second parameter
8oy intends to decrease the influence of p’s neighbor-
ing points g with a differing gradient in comparison to
V(p). ,

We denote the filtered gradient at point p with V(p)
and the divergence based on the filtered gradients with

A(p):

Ad(p)

19)

1
~ IMi(p)

> Zlg—p,Vd(q)).

qEN1(p)

(20)

See figure 3(b) and 3(c) to comprehend the filtering
effect.

After applying the bilateral filter to the gradients,
the divergence variation is small for neighboring points
P,q € Oy in comparison to the variance between neigh-
boring points p € Oy and g € Oy. With this being the
case, again a bilateral filtering is suitable in order to fur-
ther reduce the artefacts.

Therefore, in eq. (17) the weight g4, is replaced by
the weight g5, and we get:

Jaiv(p) = Q21

> go(lp—dll)ges(Alp) — Alg))Alq)

q€N2g, (p)

1
w(p)
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Figure 3: Gradient and divergences for (a) a smooth
boundary, (b) with added noise, and (c) after gradient
filtering.

with w(p) again as the sum of all weigths. The weight
go, intends to decrease the influence of p’s neighboring
points ¢ with a divergence value different from A(p).

We denote the filtered divergence value at point p
with A(p) and redefine the decomposition of O accord-
ing to the filtered divergence field:

0=0;U0; U Oy, (22)

with
Or={p:A(p) <0}, (23)
Or={p:A(p) >0}, (24)
On={p:A(p)=0}. (25)

Note, that filtering the distance map itself wouldn not
be suitable, since the variances of the distance values
are only marginal and significant features would not
preserved.

S SAMPLE APPLICATION

In this chapter we present a skeletonization approach on
the basis of the findings of the previous chapters in or-
der to evaluate our shape descriptor. Therefore we use
a thinning method which offers two important advan-
tages. It is fast and furthermore the only known method
where the topological equivalence of the skeleton with
the initial discretized object can be guaranteed [8] (the
definition of topological equivalence is based on the
same number of connected components, tunnels, and
cavities). Thinning algorithms iteratively remove bor-
der points (i.e. points with at least one neighbor point
belonging to the background) from a discretized object.
It is common to call a removable point simple if its re-
moval does not change the topology of the discretized
object ([8]).

We extend the standard thinning algorithm by using
the filtered divergence values. This is done firstly, by
sorting the removable points according to the filtered
divergence values, such that points with high positive
divergence are prioritized and points with high negative
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Figure 4: For non-axis aligned boundary segments aliasing based artefacts occur.

divergence are considered at last (as suggested in [4]).
Secondly, a divergence-based threshold ¢ is used to
prevent the removal of points with a high negative
divergence. The resulting algorithm is structured as
follows:

do {
something changed

false;
bp = determine all border points;
// desc.

sort bp; divergence values

for each p in bp {

if (p is simple) and (A(p) > t) {
remove p
something changed = true;

}

} while something changed

(b)
Figure 5: Filtering results for 6; = 2, oy = 0.05, and 6, = 0.01 are shown.

After applying the sketched algorithm the resulting
skeletons are not necessarily thin. The thinning
algorithm is once again applied to the remaining point
set with changed conditions. The threshold-based
condition is replaced by the curve-end-point-condition,
which states that a point with only one foreground-
neighbor must not be removed:

do {

for each p in bp {
if (p is simple) and (|Ni(p)|>1) {
remove p

something changed

true;
t

} while something changed
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Sorting the border points by divergence changes the
order of point removal. By removing a point p the re-
movability of its neighbors may be changed. That is, a
point ¢ may not be removed only because its neighbor
(which has a higher divergence) p is removed before
considering q.

The resulting skeletons provide very positive proper-
ties: they are efficient to compute, topological equiva-
lent to the original object, centered, rotationally invari-
ant, and robust against noise (see figure 6). Further-
more, the divergence-based threshold ¢ allows the gen-
eration of hierarchical skeletons — which is a very rare
possibility with regard to the wide range of available
skeletonization methods. See figure 7 for a sample.

6 RESULTS AND CONCLUSION

It is clearly recognizable that bilateral filtering of the
divergence values reduces the aliasing based artefacts
substantially. As a beneficial consequence, the point
set Oy is rotationally invariant and robust against noise.
For this reason, operators or algorithms (such as skele-
tonization) which base on this point set, yield results
with these properties. In the case of the medial axis
based on the filtered point set O7 we get a robust skele-
ton for noisy and rotated 2-d objects.

Another observation could be interesting for shape
decomposition: Repeated filtering of the divergence
values diverges quickly. The resulting connected sets
of points € Oy are representatives for all major parts of
the whole shape (see figure 8).

The presented approach may be easily adopted to dis-
crete 3-d images.

Figure 8: The set Oy diverges if the divergence filter is
repetitive applied. The resulting set may be used for a
shape segmentation.
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Figure 6: The contour is rotated in (a)-(e) and noise is added in (f). The resulting skeletons are nearly identically
except for almost unnoticeable deviations.
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Figure 7: A hierarchical skeleton may be constructed using different thresholds. For the skeletons in (a) all points
p with A(p) < —0.1, in (b) with A(p) < —0.3, and in (¢) with A(p) < —0.5 are preserved.
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