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ABSTRACT 
Extracting complex geometric primitives from 2-D imagery is a long-standing problem that researchers have had 

to deal with. Various approaches were tried from Hough transform based methods to stochastic algorithms. 

However, serial implementations lack sufficient scalability on high resolution imagery. As sequential computing 

power cannot pace up with the increase in size of datasets, researchers are compelled to exploit parallel 

computational resources and algorithms. In this study, we have merged parallelization capability of GPUs with 

inherent parallelism on genetic algorithms to cope with the problem of detecting complex geometric primitives 

on high resolution imagery. We have implemented ellipse detection on commodity graphics processing unit and 

showed that our GPU implementation achieve high speed-up relative to state of the art CPU by experimental 

results. 
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1. INTRODUCTION 
   Most of the tasks in image analysis involve 

geometric primitive extraction as a preprocessing 

step. Therefore, efficiently detecting primitives is an 

important research topic in the domain of computer 

vision. Researchers have proposed numerous 

solutions to detect geometric primitives [Tia96], 

[Rob98], [Rot94].  

   Hough transform, HT, based techniques have been 

widely used for geometric primitive extraction. The 

idea of classical Hough transform was to perform a 

mapping from image space to parameter space in 

order to obtain a function. Optima’s of this function 

correspond to instances of primitives.  HT is 

powerful for detecting simple primitives such as 

lines. However, computational and memory 

complexity of classical Hough transform increase 

exponentially along with the number of parameters 

[Pen99].  

   To alleviate problems of HT, randomized Hough 

transform, RHT, has been proposed by Kultanen et 

al. [Kul90]. RHT performs converging mapping to 

parameter space by randomly sampling a number of 

pixels from image space that will ensure convergence 

to one point.  

 

   RHT is not the only approach that tried to reduce 

the parameter space of classical Hough transform. 

Researchers have proposed partitioning parameter 

space to smaller subspaces by using features of 

specific complex geometric primitives. Si-Cheng et 

al. proposed real time ellipse detector that uses 

analytical properties of ellipses and edge gradient 

information to divide 5-D parameter space of 

classical Hough transform [Sic05]. 

   Stochastic approaches were also tried to detect 

geometric primitives. Ever since geometric primitive 

extraction has been shown to be an optimization 

problem [Rot93], researchers have tried optimization 

algorithms to extract primitives [Rot94], [Pen99].  

   Genetic algorithm, GA, is one of the most popular 

stochastic approaches to extract geometric primitives. 

In the context of natural evolution, genetic algorithm 

simulates parallel evolution of individuals to find 

approximate solutions to optimization problems for 

which no efficient algorithm is known to find the 

exact solution otherwise. Since primitive extraction 

can be regarded as an optima search problem, genetic 

algorithm fit well into the problem of detecting 

imperfect instances of geometric primitives. Thus, 

many researchers have developed genetic algorithm 

oriented methods to detect geometric shapes 

[Yao05], [Kaw98], [Rot94]. 
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  GA based techniques use the feedback obtained 

from population to cluster solutions around optima’s, 
whereas HT based methods exhaustively search 

image space irrespective of distribution in parameter 

space. Although genetic algorithms has inherent 

strengths over HT based methods, extracting all 

instances of a geometric primitive cannot be directly 

translated into problem space of classical genetic 

algorithm.   

   Detection of single most observable geometric 

primitive, on the other hand, can be converted into 

unimodal optimization problem. However, in real life 

applications, we need to detect multiple primitives 

that qualify certain criteria. This corresponds to 

multi-modal optimization. Researchers have 

proposed variety of multi-modal optimization 

stochastic algorithms to extract geometric primitives 

from 2-D imagery. 

   Lutton et al. proposed sharing genetic algorithm, 

SGA, where diversification of population is 

maintained by promoting fitness of local optima 

[Lut94]. Fitness of similar individuals is shared to 

decrease the clustering around global optima while 

guiding search towards uninhabited areas.  

   Yao et al. proposed multi-population genetic 

algorithm [Yao05]. They suggest island oriented 

model of population where each individual is 

prompted to live on a matching island. New island 

generation is also possible if an individual is not 

close to any existing island. 

   In this study, we have implemented multi-

population genetic algorithm for extraction of 

complex geometric primitive on graphics processing 

unit. We have chosen Nvidia’s compute unified 
device architecture, CUDA, as a development 

platform. Our genetic algorithm implementation on 

GPU has been tested for detection of ellipses and 

shown successful improvement over an optimized 

serial implementation. 

2. GEOMETRIC PRIMITIVE 

EXTRACTION ON GPU 
   Our implementation of geometric primitive 

extraction starts by detecting edges of image. Edge 

image is then partitioned into tiles on which a copy 

of our genetic algorithm runs. In CUDA , each block 

works on its corresponding isolated island, and each 

thread is responsible for an individual on that island, 

as it can be seen in figure [1]. After loading data, 

threads behave as individuals who mate with other 

individuals to produce fitter offsprings for the next 

generation. However, these responsibilities are 

distributed after coalesced loads of tiles into shared 

memory. Current graphics processing units have 

sixteen kilobytes of shared memory available per 

block. To comply with limitations of graphics 

hardware, edges are encoded in bit string.  

 

 

 

 

   Genetic algorithm needs a random number 

generator. We have chosen park-miller pseudo-

random number generator, RNG, due to its 

simplicity. Each individual has to load the seed for 

park-miller RNG from global memory of the device 

that was previously set using Mersenne Twister 

RNG. As seen in figure [1], each thread block loads 

initialization data to shared memory in a coalesced 

manner. RNG seeds, on the other hand, are kept in 

the local memory of the threads.  

   After initialization, genetic algorithm is carried out 

in parallel. When to stop algorithm is a challenging 

question in general. An indication of convergence 

can be checked to terminate the process [Yao05]. 

More practical applications employ predefined 

number of iterations before termination [Won09]. 

This is a tradeoff between accuracy and 

computational complexity. We have chosen to 

terminate the genetic algorithm after fixed number of 

epochs determined by empirical results.  

   Last step is to merge the results of thread blocks to 

find potential primitives. Individuals write the best 

result they have obtained to global memory of 

graphics processing unit. Results are then copied 

back to CPU memory, where they are combined to 

find candidate primitives sequentially. Merging of 

results is required only if segmentation is overlapped 

on image. If not, thread blocks can threshold the 

population and output a fixed number of qualified 

individuals. 

Figure 1. Evolution scheme in compute unified 

device architecture. 
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   Figure [2] shows phases of geometric primitive 

extraction on graphics processing unit. We will 

explain details of each step in the following sections 

of this document. 

Edge detection 
   Edge detection is an important part of our process. 

Falsely detected edges lead to unreliable primitive 

extractor. There are various edge detectors available. 

Since we do not have enough memory for contour 

images, our expectation from an edge detector is to 

produce minimal response to a true edge. 

   Canny’s edge detection algorithm is commonly 
used in the domain of computer vision. Its aim is to 

produce single response for an edge while 

maintaining the purpose of detecting all edges in the 

image. In this study, Canny’s algorithm is selected 

for GPU implementation. 

   Yuancheng et al.  have already implemented 

Canny’s algorithm on CUDA [Yua08]. They have 

released source code of their implementation. 

However, their implementation is partial since it 

makes fixed number of iterations to find the 

connected components at the last stage of Canny’s 
algorithm. They have tested their edge detector 

implementation on Lena, and reported limited 

improvement on edges for more than four iterations 

to find connected components. As it can be seen from 

figure [3], one needs more adaptive implementation 

to detect all edges. 

 

 

 

   In our implementation of Canny’s algorithm, we 

have used parallel breadth first search algorithm to 

detect connected edges, proposed by Pawan et al. 

[Paw07]. This adaptation has also accelerated 

Yuancheng’s implementation, which is illustrated in 

figure [5]. Details of algorithm to find connected 

components are given in figure [4]. 
 

 

 

 

Individual representation 
   There are different proposals for chromosome 

encoding of an individual for geometric primitive 

extraction. Yao et al. suggested encoding minimal 

number of points to uniquely define geometric 

primitive [Yao05], whereas Lutton et al. proposed 

storing parameters of the equation of geometric 

primitive [Lut94]. 

   Both approaches have their own advantages and 

disadvantages. The former needs re-computation of 

parameters of primitive on each fitness evaluation, 

while keeping search focused on existing edge points 

and primitives. The latter, on the other hand, is 

computationally efficient on fitness evaluation while 

spending considerable time on non-existent 

primitives. 

   Since we have implemented ellipse detection on 

graphics processing unit, computation of ellipse 

parameters is negligible compared to time spent on 

fitness evaluation. Therefore, we have decided to 

encode a chromosome of an individual with five 

points.  General ellipse equation has five coefficients 

to be determined.  Note that, the latter approach 

should be considered on more complex shapes, 

where number of unknowns is large. 

Figure 2. Architecture of primitive extractor on 

graphics processing unit. 

Figure 4. Algorithm to find connected edges on 

graphics processing unit. 

Figure 3. Original 512x512 image (a), edge 

image after 4 iterations (b), after 90 iterations 

(c) 
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Initial population generation 
   One possible population generation is each thread 

composing its own individual based on edge points 

on block’s shared memory. A thread can compose an 
individual by randomly sampling edge points from 

block’s tile. One exceptional case is where there is 

not enough number of edge points on the tile. In that 

situation, block is terminated immediately since there 

is not enough evidence to hypothesize the existence 

of geometric primitive on the tile. Roth et al. has 

applied the same scheme of initial population 

generation, but noted that approach usually leads to 

ill-defined representation of entire geometric 

primitive [Rot94].   

   An alternative generation of initial population is 

total random point generation irrespective of edge 

existence on that point as suggested by [Pen99]. 

Although this approach is less computationally 

demanding, it does not consider existing edges to 

compose a candidate geometric primitive. However, 

number of points on chromosome is insignificant 

considering the points on the primitive it represents.    

   We have chosen second approach since first results 

in bank conflicts between threads. Thus, each thread 

generates a random chromosome consistent with tile 

dimensions.  

Fitness Evaluation 
   Most of the proposed methods for fitness 

evaluation of ellipse simply matches template on the 

boundaries of it. Variations exist, however, in 

calculation. 

   Mainzer suggests punishment of displacement from 

boundary of an ellipse [Man02]. It is intuitive to 

distinguish edges near the primitive and the ones far 

from it. Value of the fitness function is given in 

eq.(1), where c is 0.7 and E(x,y) is 1 if there exists an 

edge pixel on point (x,y)  0 otherwise.   ��� � ݔ + ݅, ݕ + ݆ −   ݅ +  ݆  �  ∀ ݅ ,݆ ݔ(1)       ݕ,  

   Yao et al. suggest two measures of fitness 

concurrently converging on the optima [Yao05]. 

They name these fitness measures as similarity and 

distance. Similarity determines how much the actual 

pixels match the perimeter of an ideal complete 

ellipse. Distance, on the other hand, is a measure of 

how far or close the actual pattern to the ideal ellipse 

is. 

   We have implemented fitness evaluation suggested 

by Mainzer [Man02]. If we had the capability of 

storing contour of tile on the shared memory of our 

GPU, this approach would be less time consuming 

since contour images can supply the distance from 

edge. In our implementation, we have checked 

neighborhood of boundary edge of ellipse. Since 

most time consuming task of genetic algorithm is 

fitness evaluation, contour image usage on larger 

shared memory can directly reduce bank conflicts, 

effectively increasing bandwidth of transaction 

between shared memory and co-processors.  

Evolution 
   Selection and diversification dictate the main 

process of evolution. Selection eliminates individuals 

of low fitness value, promoting fitter individuals. 

However, it is important not to cluster all solutions 

around global optima while using elitism for 

selection. Since our genetic algorithm 

implementation divides the population into islands, 

side-effects of elitism have been eliminated.  

   Diversification is realized by crossover and 

mutation. Crossover mates two individuals to 

produce fitter offsprings. In CUDA, every thread 

selects her own mate to crossover randomly. We 

have implemented tournament selection on GPU as 

in Pospichal’s study [Pos09]. However, their 

adaptation of tournament selection is deterministic 

since every thread mates with one next to it. In our 

implementation, we have used RNG to select a mate, 

which is more intuitive for stochastic algorithms but 

problematic in terms of bank conflicts.  

   Although other selection algorithms are possible, 

they are more computationally demanding on CUDA. 

For example, roulette wheel selection requires that 

every thread branch divergently in a loop, which 

immediately causes divergence of whole warp.  

   Mutation, in our implementation, simply changes a 

random bit of a chromosome with low probability of 

occurring. There are different mutation methods 

proposed for primitive extraction. Yao et al. 

suggested localized mutation operator that utilizes a 

trace tracking algorithm to find potential ellipse 

[Yao05]. Yin, on the other hand, proposed flipping a 

bit of a pixel such that it remains in the image 

[Pen99]. We have adapted Yin’s implementation of 
mutation due to its lower processing requirements. 

3. EXPERIMENTS & RESULTS 
   In this section, we inspect various aspects of our 

implementation and describe our results. Most of our 

experiments are focused on comparison of sequential 

and parallel implementations of ellipse detection. 

   A moderate improvement on canny edge detector 

has been achieved in our study. CUDA 

implementation of Yuancheng has been improved in 

terms of reliability and efficiency. Figure [5] shows 

efficiency gained by our adaptation of Pawan’s 
parallel breadth first search algorithm for finding 

connected edges [Paw07]. Difference between two 

GPU implementations stems from work distribution 

among threads. In Yuancheng’s implementation, 
each thread executes its own breadth first search, 
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while in our implementation every thread is 

responsible for a single edge.  

 

  

 

 

  Our ellipse detector is effective against high 

resolution imagery. Ellipse detection algorithm has 

been tested with over 600 images contained in our 

database. CPU implementation has been tested on 

Intel Core™ i7 at 2.67 GHZ, while GPU 
implementation has been tested on Nvidia GeForce 

GTX 260 graphics card. Figure [6] shows us that 

sequential computational resources could not exhibit 

scalability accomplished by our parallel 

implementation of ellipse detection. Note that GPU is 

not fully utilized for a 512 x 512 image since there 

are more processors than image segments. 

 

 

 

 

 

 

 

 

   To test our ellipse detector, we have constructed 

image database from both synthetic and real world 

images. Figure [7] shows a real-world image 

contained in our database along with result of the 

experiment.  To test the accuracy, geometric 

properties of contained ellipses have been recorded. 

Table [1] shows statistical results obtained from 

ellipse detection experiments on GPU.  

   As input size is multiplied by four, average running 

time is doubled for small inputs. The reason is under 

utilization of GPU on low resolution images. Also 

note that, accuracy of our computation decrease as 

we increase number of ellipses. This is the result of 

clustering on global optima. Although we have 

adapted multiple island model of genetic algorithm, 

test cases where more than one solution falls into 

single island did not produce accurate results. To 

overcome this problem, variations of genetic 

algorithm, such as sharing genetic algorithm, can be 

implemented on CUDA. 
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4. CONCLUSION 
   In this study, we have shown an implementation of 

geometric primitive extraction on graphics 

processing unit. Genetic algorithm has been fully 

utilized on GPU side, while CPU’s computation time 
is saved. We have achieved up to 15x speed up 

relative to our sequential implementation of genetic 

algorithm on state of the art Intel CPU. Main 
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Figure 5. Comparison of our canny edge 

detector implementation with Yuancheng’s 
implementation on CUDA. 

Figure 6. Comparison of sequential 

implementation of ellipse detection versus 

parallel implementation on CUDA. 

Table 1. Statistical results obtained from 

experiments on our ellipse detector. 

 

Figure 7. 1024 x 1024 image from our test 

database (a), image with highlighted ellipse (b).  

133 Journal of WSCG



problem of our GPU implementation is low shared 

memory per multiprocessor. Usage of bit strings to 

represent image has produced bank conflicts during 

fitness evaluation, which is the most costly process of 

genetic algorithm. Advantage of our sequential 

implementation is the use of contour images to store 

edges. Such a data structure to store edge images is 

expected to accelerate fitness evaluation on GPU 

side. But current memory limitation has forced us to 

use bit strings. This problem might be alleviated by 

image compression techniques. Hardware solutions, 

on the other hand, are also possible for this kind of 

problem. As graphics processing hardware scales 

rapidly, more efficient ellipse detector can be 

implemented easily.  

  Experimental results confirmed the trend in 

parallelization of algorithms in the domain of 

computer vision. Scalability of current parallel 

architectures transforms many domains, including 

computer vision, into an era of parallel computation. 

Our study was aimed to contribute to this 

transformation. 

 

5. ACKNOWLEDGMENTS 
   The author acknowledges the support of METU-

TAF Modsimmer, and thanks Prof. İşler for his 
rigorous assistance to this paper. 

 

6. REFERENCES 
[Tia96]  Tianzi Jiang; Song De Ma, Geometric 

primitive extraction using tabu search, Pattern 

Recognition, 1996., Proceedings of the 13th 

International Conference on , vol.2, no., pp.266-

269 vol.2, 25-29 Aug 1996. 

[Rob98] Robert A. McLaughlin, Randomized Hough 

Transform: Improved ellipse detection with 

comparison, Pattern Recognition Letters, Volume 

19, Issues 3-4, Pages 299-305, ISSN 0167-8655, 

March 1998. 

[Rot94] Roth, G.; Levine, M.D., "Geometric 

primitive extraction using a genetic algorithm," 

Pattern Analysis and Machine Intelligence, IEEE 

Transactions on, vol.16, no.9, pp.901-905, Sep 

1994. 

[Pen99] Peng-Yeng Yin, A new circle/ellipse 

detector using genetic algorithms, Pattern 

Recognition Letters, Volume 20, Pages 731-740,  

Issue 7, July 1999. 

[Kul90] Kultanen, P.; Xu, L.; Oja, E., "Randomized 

Hough transform (RHT)," Pattern Recognition, 

1990. Proceedings., 10th International 

Conference on , vol.i, no., pp.631-635 vol.1, 16-

21 Jun 1990. 

[Sic05] Si-Cheng Zhang, Zhi-Qiang Liu, A robust, 

real-time ellipse detector, Pattern Recognition, 

Volume 38, Issue 2, Pages 273-287, February 

2005. 

[Rot93] G. Roth and M. D. Levine, “Extracting 
geometric primitives,” Comput. Vision. Graphics 
Image Processing: Image Understanding, vol. 58, 

pp. 1-22, 1993. 

[Yao05] Yao J., Kharma N., Grogono P.,A multi-

population genetic algorithm for robust and fast 

ellipse detection , Pattern Analysis & 

Applications, vol. 8 pp. 149-162,2005. 

[Kaw98] Kawaguchi, T.; Nagata, R.-I., "Ellipse 

detection using a genetic algorithm," Pattern 

Recognition, 1998. Proceedings. Fourteenth 

International Conference on, vol.1, no., pp.141-

145 vol.1, 16-20 Aug 1998. 

[Lut94] Lutton E, Martinez P, A genetic algorithm 

for the detection of 2D geometric primitives in 

images. In: Proceedings of the 12th international 

conference on pattern recognition, Jerusalem, 

Israel, 9–13 October 1994. 

[Yua08] Yuancheng Luo; Duraiswami, R., Canny 

edge detection on NVIDIA CUDA, Computer 

Vision and Pattern Recognition Workshops, 

2008. CVPRW '08. IEEE Computer Society 

Conference on, vol., no., pp.1-8, 23-28 June 

2008. 

[Paw07] Pawan Harish and P. Narayanan. 

Accelerating large graph algorithms on the gpu 

using cuda. pages 197–208. 2007. 

[Man02] Mainzer T., Genetic algorithm for shape 

detection, Technical report no. DCSE/TR-2002 

06, University of West Bohemia, 2002. 

[Pos09] Pospichal P. , and Jaros J. , GPU-based 

Acceleration of the Genetic Algorithm, from 

contest GPUs for Genetic and Evolutionary 

Computation, 2009. 

[Won09] Wong M. L. , Parallel multi-objective 

evolutionary algorithms on graphics processing 

units, Proceedings of the 11th Annual Conference 

Companion on Genetic and Evolutionary 

Computation Conference, pages 2515-2522, 

2009. 

 

 

134


	!_2010_J_WSCG_1-3.pdf
	F47-full.pdf


