

Complex Geometric Primitive Extraction on
Graphics Processing Unit

Mert Değirmenci
Department of Computer Engineering,

Middle East Technical University, Turkey

mert.degirmenci@ceng.metu.edu.tr

ABSTRACT
Extracting complex geometric primitives from 2-D imagery is a long-standing problem that researchers have had

to deal with. Various approaches were tried from Hough transform based methods to stochastic algorithms.

However, serial implementations lack sufficient scalability on high resolution imagery. As sequential computing

power cannot pace up with the increase in size of datasets, researchers are compelled to exploit parallel

computational resources and algorithms. In this study, we have merged parallelization capability of GPUs with

inherent parallelism on genetic algorithms to cope with the problem of detecting complex geometric primitives

on high resolution imagery. We have implemented ellipse detection on commodity graphics processing unit and

showed that our GPU implementation achieve high speed-up relative to state of the art CPU by experimental

results.

Keywords
Geometric primitive extraction, Genetic algorithm, GPU.

1. INTRODUCTION
 Most of the tasks in image analysis involve

geometric primitive extraction as a preprocessing

step. Therefore, efficiently detecting primitives is an

important research topic in the domain of computer

vision. Researchers have proposed numerous

solutions to detect geometric primitives [Tia96],

[Rob98], [Rot94].

 Hough transform, HT, based techniques have been

widely used for geometric primitive extraction. The

idea of classical Hough transform was to perform a

mapping from image space to parameter space in

order to obtain a function. Optima’s of this function

correspond to instances of primitives. HT is

powerful for detecting simple primitives such as

lines. However, computational and memory

complexity of classical Hough transform increase

exponentially along with the number of parameters

[Pen99].

 To alleviate problems of HT, randomized Hough

transform, RHT, has been proposed by Kultanen et

al. [Kul90]. RHT performs converging mapping to

parameter space by randomly sampling a number of

pixels from image space that will ensure convergence

to one point.

 RHT is not the only approach that tried to reduce

the parameter space of classical Hough transform.

Researchers have proposed partitioning parameter

space to smaller subspaces by using features of

specific complex geometric primitives. Si-Cheng et

al. proposed real time ellipse detector that uses

analytical properties of ellipses and edge gradient

information to divide 5-D parameter space of

classical Hough transform [Sic05].

 Stochastic approaches were also tried to detect

geometric primitives. Ever since geometric primitive

extraction has been shown to be an optimization

problem [Rot93], researchers have tried optimization

algorithms to extract primitives [Rot94], [Pen99].

 Genetic algorithm, GA, is one of the most popular

stochastic approaches to extract geometric primitives.

In the context of natural evolution, genetic algorithm

simulates parallel evolution of individuals to find

approximate solutions to optimization problems for

which no efficient algorithm is known to find the

exact solution otherwise. Since primitive extraction

can be regarded as an optima search problem, genetic

algorithm fit well into the problem of detecting

imperfect instances of geometric primitives. Thus,

many researchers have developed genetic algorithm

oriented methods to detect geometric shapes

[Yao05], [Kaw98], [Rot94].

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.
129 Journal of WSCG

 GA based techniques use the feedback obtained

from population to cluster solutions around optima’s,
whereas HT based methods exhaustively search

image space irrespective of distribution in parameter

space. Although genetic algorithms has inherent

strengths over HT based methods, extracting all

instances of a geometric primitive cannot be directly

translated into problem space of classical genetic

algorithm.

 Detection of single most observable geometric

primitive, on the other hand, can be converted into

unimodal optimization problem. However, in real life

applications, we need to detect multiple primitives

that qualify certain criteria. This corresponds to

multi-modal optimization. Researchers have

proposed variety of multi-modal optimization

stochastic algorithms to extract geometric primitives

from 2-D imagery.

 Lutton et al. proposed sharing genetic algorithm,

SGA, where diversification of population is

maintained by promoting fitness of local optima

[Lut94]. Fitness of similar individuals is shared to

decrease the clustering around global optima while

guiding search towards uninhabited areas.

 Yao et al. proposed multi-population genetic

algorithm [Yao05]. They suggest island oriented

model of population where each individual is

prompted to live on a matching island. New island

generation is also possible if an individual is not

close to any existing island.

 In this study, we have implemented multi-

population genetic algorithm for extraction of

complex geometric primitive on graphics processing

unit. We have chosen Nvidia’s compute unified
device architecture, CUDA, as a development

platform. Our genetic algorithm implementation on

GPU has been tested for detection of ellipses and

shown successful improvement over an optimized

serial implementation.

2. GEOMETRIC PRIMITIVE

EXTRACTION ON GPU
 Our implementation of geometric primitive

extraction starts by detecting edges of image. Edge

image is then partitioned into tiles on which a copy

of our genetic algorithm runs. In CUDA , each block

works on its corresponding isolated island, and each

thread is responsible for an individual on that island,

as it can be seen in figure [1]. After loading data,

threads behave as individuals who mate with other

individuals to produce fitter offsprings for the next

generation. However, these responsibilities are

distributed after coalesced loads of tiles into shared

memory. Current graphics processing units have

sixteen kilobytes of shared memory available per

block. To comply with limitations of graphics

hardware, edges are encoded in bit string.

 Genetic algorithm needs a random number

generator. We have chosen park-miller pseudo-

random number generator, RNG, due to its

simplicity. Each individual has to load the seed for

park-miller RNG from global memory of the device

that was previously set using Mersenne Twister

RNG. As seen in figure [1], each thread block loads

initialization data to shared memory in a coalesced

manner. RNG seeds, on the other hand, are kept in

the local memory of the threads.

 After initialization, genetic algorithm is carried out

in parallel. When to stop algorithm is a challenging

question in general. An indication of convergence

can be checked to terminate the process [Yao05].

More practical applications employ predefined

number of iterations before termination [Won09].

This is a tradeoff between accuracy and

computational complexity. We have chosen to

terminate the genetic algorithm after fixed number of

epochs determined by empirical results.

 Last step is to merge the results of thread blocks to

find potential primitives. Individuals write the best

result they have obtained to global memory of

graphics processing unit. Results are then copied

back to CPU memory, where they are combined to

find candidate primitives sequentially. Merging of

results is required only if segmentation is overlapped

on image. If not, thread blocks can threshold the

population and output a fixed number of qualified

individuals.

Figure 1. Evolution scheme in compute unified

device architecture.

130

 Figure [2] shows phases of geometric primitive

extraction on graphics processing unit. We will

explain details of each step in the following sections

of this document.

Edge detection
 Edge detection is an important part of our process.

Falsely detected edges lead to unreliable primitive

extractor. There are various edge detectors available.

Since we do not have enough memory for contour

images, our expectation from an edge detector is to

produce minimal response to a true edge.

 Canny’s edge detection algorithm is commonly
used in the domain of computer vision. Its aim is to

produce single response for an edge while

maintaining the purpose of detecting all edges in the

image. In this study, Canny’s algorithm is selected

for GPU implementation.

 Yuancheng et al. have already implemented

Canny’s algorithm on CUDA [Yua08]. They have

released source code of their implementation.

However, their implementation is partial since it

makes fixed number of iterations to find the

connected components at the last stage of Canny’s
algorithm. They have tested their edge detector

implementation on Lena, and reported limited

improvement on edges for more than four iterations

to find connected components. As it can be seen from

figure [3], one needs more adaptive implementation

to detect all edges.

 In our implementation of Canny’s algorithm, we

have used parallel breadth first search algorithm to

detect connected edges, proposed by Pawan et al.

[Paw07]. This adaptation has also accelerated

Yuancheng’s implementation, which is illustrated in

figure [5]. Details of algorithm to find connected

components are given in figure [4].

Individual representation
 There are different proposals for chromosome

encoding of an individual for geometric primitive

extraction. Yao et al. suggested encoding minimal

number of points to uniquely define geometric

primitive [Yao05], whereas Lutton et al. proposed

storing parameters of the equation of geometric

primitive [Lut94].

 Both approaches have their own advantages and

disadvantages. The former needs re-computation of

parameters of primitive on each fitness evaluation,

while keeping search focused on existing edge points

and primitives. The latter, on the other hand, is

computationally efficient on fitness evaluation while

spending considerable time on non-existent

primitives.

 Since we have implemented ellipse detection on

graphics processing unit, computation of ellipse

parameters is negligible compared to time spent on

fitness evaluation. Therefore, we have decided to

encode a chromosome of an individual with five

points. General ellipse equation has five coefficients

to be determined. Note that, the latter approach

should be considered on more complex shapes,

where number of unknowns is large.

Figure 2. Architecture of primitive extractor on

graphics processing unit.

Figure 4. Algorithm to find connected edges on

graphics processing unit.

Figure 3. Original 512x512 image (a), edge

image after 4 iterations (b), after 90 iterations

(c)

131 Journal of WSCG

Initial population generation
 One possible population generation is each thread

composing its own individual based on edge points

on block’s shared memory. A thread can compose an
individual by randomly sampling edge points from

block’s tile. One exceptional case is where there is

not enough number of edge points on the tile. In that

situation, block is terminated immediately since there

is not enough evidence to hypothesize the existence

of geometric primitive on the tile. Roth et al. has

applied the same scheme of initial population

generation, but noted that approach usually leads to

ill-defined representation of entire geometric

primitive [Rot94].

 An alternative generation of initial population is

total random point generation irrespective of edge

existence on that point as suggested by [Pen99].

Although this approach is less computationally

demanding, it does not consider existing edges to

compose a candidate geometric primitive. However,

number of points on chromosome is insignificant

considering the points on the primitive it represents.

 We have chosen second approach since first results

in bank conflicts between threads. Thus, each thread

generates a random chromosome consistent with tile

dimensions.

Fitness Evaluation
 Most of the proposed methods for fitness

evaluation of ellipse simply matches template on the

boundaries of it. Variations exist, however, in

calculation.

 Mainzer suggests punishment of displacement from

boundary of an ellipse [Man02]. It is intuitive to

distinguish edges near the primitive and the ones far

from it. Value of the fitness function is given in

eq.(1), where c is 0.7 and E(x,y) is 1 if there exists an

edge pixel on point (x,y) 0 otherwise. ��� � ݔ + ݅, ݕ + ݆ − ݅ + ݆ � ∀ ݅ ,݆ ݔ(1) ݕ,

 Yao et al. suggest two measures of fitness

concurrently converging on the optima [Yao05].

They name these fitness measures as similarity and

distance. Similarity determines how much the actual

pixels match the perimeter of an ideal complete

ellipse. Distance, on the other hand, is a measure of

how far or close the actual pattern to the ideal ellipse

is.

 We have implemented fitness evaluation suggested

by Mainzer [Man02]. If we had the capability of

storing contour of tile on the shared memory of our

GPU, this approach would be less time consuming

since contour images can supply the distance from

edge. In our implementation, we have checked

neighborhood of boundary edge of ellipse. Since

most time consuming task of genetic algorithm is

fitness evaluation, contour image usage on larger

shared memory can directly reduce bank conflicts,

effectively increasing bandwidth of transaction

between shared memory and co-processors.

Evolution
 Selection and diversification dictate the main

process of evolution. Selection eliminates individuals

of low fitness value, promoting fitter individuals.

However, it is important not to cluster all solutions

around global optima while using elitism for

selection. Since our genetic algorithm

implementation divides the population into islands,

side-effects of elitism have been eliminated.

 Diversification is realized by crossover and

mutation. Crossover mates two individuals to

produce fitter offsprings. In CUDA, every thread

selects her own mate to crossover randomly. We

have implemented tournament selection on GPU as

in Pospichal’s study [Pos09]. However, their

adaptation of tournament selection is deterministic

since every thread mates with one next to it. In our

implementation, we have used RNG to select a mate,

which is more intuitive for stochastic algorithms but

problematic in terms of bank conflicts.

 Although other selection algorithms are possible,

they are more computationally demanding on CUDA.

For example, roulette wheel selection requires that

every thread branch divergently in a loop, which

immediately causes divergence of whole warp.

 Mutation, in our implementation, simply changes a

random bit of a chromosome with low probability of

occurring. There are different mutation methods

proposed for primitive extraction. Yao et al.

suggested localized mutation operator that utilizes a

trace tracking algorithm to find potential ellipse

[Yao05]. Yin, on the other hand, proposed flipping a

bit of a pixel such that it remains in the image

[Pen99]. We have adapted Yin’s implementation of
mutation due to its lower processing requirements.

3. EXPERIMENTS & RESULTS
 In this section, we inspect various aspects of our

implementation and describe our results. Most of our

experiments are focused on comparison of sequential

and parallel implementations of ellipse detection.

 A moderate improvement on canny edge detector

has been achieved in our study. CUDA

implementation of Yuancheng has been improved in

terms of reliability and efficiency. Figure [5] shows

efficiency gained by our adaptation of Pawan’s
parallel breadth first search algorithm for finding

connected edges [Paw07]. Difference between two

GPU implementations stems from work distribution

among threads. In Yuancheng’s implementation,
each thread executes its own breadth first search,

132

while in our implementation every thread is

responsible for a single edge.

 Our ellipse detector is effective against high

resolution imagery. Ellipse detection algorithm has

been tested with over 600 images contained in our

database. CPU implementation has been tested on

Intel Core™ i7 at 2.67 GHZ, while GPU
implementation has been tested on Nvidia GeForce

GTX 260 graphics card. Figure [6] shows us that

sequential computational resources could not exhibit

scalability accomplished by our parallel

implementation of ellipse detection. Note that GPU is

not fully utilized for a 512 x 512 image since there

are more processors than image segments.

 To test our ellipse detector, we have constructed

image database from both synthetic and real world

images. Figure [7] shows a real-world image

contained in our database along with result of the

experiment. To test the accuracy, geometric

properties of contained ellipses have been recorded.

Table [1] shows statistical results obtained from

ellipse detection experiments on GPU.

 As input size is multiplied by four, average running

time is doubled for small inputs. The reason is under

utilization of GPU on low resolution images. Also

note that, accuracy of our computation decrease as

we increase number of ellipses. This is the result of

clustering on global optima. Although we have

adapted multiple island model of genetic algorithm,

test cases where more than one solution falls into

single island did not produce accurate results. To

overcome this problem, variations of genetic

algorithm, such as sharing genetic algorithm, can be

implemented on CUDA.

D
im

en
si

o
n

s

o
f

 I
m

a
g

es

(
p

ix
el

s
)

N
u

m
b

er
 o

f

Im
a

g
es

A
v

er
a

g
e

N
u

m
b

er
 o

f

E
ll

ip
se

s

A
v

er
a

g
e

R
u

n
n

in
g

T
im

e
(

s
)

A
cc

u
ra

cy

(
%

)

512x512 124 1.3 0.311 82.4

1024x1024 241 2.4 0.627 81.9

2048x2048 248 5.2 1.340 77.3

4. CONCLUSION
 In this study, we have shown an implementation of

geometric primitive extraction on graphics

processing unit. Genetic algorithm has been fully

utilized on GPU side, while CPU’s computation time
is saved. We have achieved up to 15x speed up

relative to our sequential implementation of genetic

algorithm on state of the art Intel CPU. Main

0

20

40

60

80

100

120

140

160

180

200

512 x 512 1024 x 1024 2048 x 2048

E
x

e
cu

ti
o

n
 T

im
e

 (
 m

s
)

Dimensions of image (pixels)

Yuancheng's canny edge detector

Our implementation

0

5

10

15

20

25

512 x 512 1024 x 1024 2048 x 2048

E
x

e
cu

ti
o

n
 T

im
e

 (
 s

e
co

n
d

s
)

Dimensions of image (pixels)

CPU implementation of GA

GPU implementation of GA

Figure 5. Comparison of our canny edge

detector implementation with Yuancheng’s
implementation on CUDA.

Figure 6. Comparison of sequential

implementation of ellipse detection versus

parallel implementation on CUDA.

Table 1. Statistical results obtained from

experiments on our ellipse detector.

Figure 7. 1024 x 1024 image from our test

database (a), image with highlighted ellipse (b).

133 Journal of WSCG

problem of our GPU implementation is low shared

memory per multiprocessor. Usage of bit strings to

represent image has produced bank conflicts during

fitness evaluation, which is the most costly process of

genetic algorithm. Advantage of our sequential

implementation is the use of contour images to store

edges. Such a data structure to store edge images is

expected to accelerate fitness evaluation on GPU

side. But current memory limitation has forced us to

use bit strings. This problem might be alleviated by

image compression techniques. Hardware solutions,

on the other hand, are also possible for this kind of

problem. As graphics processing hardware scales

rapidly, more efficient ellipse detector can be

implemented easily.

 Experimental results confirmed the trend in

parallelization of algorithms in the domain of

computer vision. Scalability of current parallel

architectures transforms many domains, including

computer vision, into an era of parallel computation.

Our study was aimed to contribute to this

transformation.

5. ACKNOWLEDGMENTS
 The author acknowledges the support of METU-

TAF Modsimmer, and thanks Prof. İşler for his
rigorous assistance to this paper.

6. REFERENCES
[Tia96] Tianzi Jiang; Song De Ma, Geometric

primitive extraction using tabu search, Pattern

Recognition, 1996., Proceedings of the 13th

International Conference on , vol.2, no., pp.266-

269 vol.2, 25-29 Aug 1996.

[Rob98] Robert A. McLaughlin, Randomized Hough

Transform: Improved ellipse detection with

comparison, Pattern Recognition Letters, Volume

19, Issues 3-4, Pages 299-305, ISSN 0167-8655,

March 1998.

[Rot94] Roth, G.; Levine, M.D., "Geometric

primitive extraction using a genetic algorithm,"

Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol.16, no.9, pp.901-905, Sep

1994.

[Pen99] Peng-Yeng Yin, A new circle/ellipse

detector using genetic algorithms, Pattern

Recognition Letters, Volume 20, Pages 731-740,

Issue 7, July 1999.

[Kul90] Kultanen, P.; Xu, L.; Oja, E., "Randomized

Hough transform (RHT)," Pattern Recognition,

1990. Proceedings., 10th International

Conference on , vol.i, no., pp.631-635 vol.1, 16-

21 Jun 1990.

[Sic05] Si-Cheng Zhang, Zhi-Qiang Liu, A robust,

real-time ellipse detector, Pattern Recognition,

Volume 38, Issue 2, Pages 273-287, February

2005.

[Rot93] G. Roth and M. D. Levine, “Extracting
geometric primitives,” Comput. Vision. Graphics
Image Processing: Image Understanding, vol. 58,

pp. 1-22, 1993.

[Yao05] Yao J., Kharma N., Grogono P.,A multi-

population genetic algorithm for robust and fast

ellipse detection , Pattern Analysis &

Applications, vol. 8 pp. 149-162,2005.

[Kaw98] Kawaguchi, T.; Nagata, R.-I., "Ellipse

detection using a genetic algorithm," Pattern

Recognition, 1998. Proceedings. Fourteenth

International Conference on, vol.1, no., pp.141-

145 vol.1, 16-20 Aug 1998.

[Lut94] Lutton E, Martinez P, A genetic algorithm

for the detection of 2D geometric primitives in

images. In: Proceedings of the 12th international

conference on pattern recognition, Jerusalem,

Israel, 9–13 October 1994.

[Yua08] Yuancheng Luo; Duraiswami, R., Canny

edge detection on NVIDIA CUDA, Computer

Vision and Pattern Recognition Workshops,

2008. CVPRW '08. IEEE Computer Society

Conference on, vol., no., pp.1-8, 23-28 June

2008.

[Paw07] Pawan Harish and P. Narayanan.

Accelerating large graph algorithms on the gpu

using cuda. pages 197–208. 2007.

[Man02] Mainzer T., Genetic algorithm for shape

detection, Technical report no. DCSE/TR-2002

06, University of West Bohemia, 2002.

[Pos09] Pospichal P. , and Jaros J. , GPU-based

Acceleration of the Genetic Algorithm, from

contest GPUs for Genetic and Evolutionary

Computation, 2009.

[Won09] Wong M. L. , Parallel multi-objective

evolutionary algorithms on graphics processing

units, Proceedings of the 11th Annual Conference

Companion on Genetic and Evolutionary

Computation Conference, pages 2515-2522,

2009.

134

	!_2010_J_WSCG_1-3.pdf
	F47-full.pdf

