Simulating Real-Time Cloth with Adaptive Edge-based
Meshes

T.J. R. Simnett

R.G. Laycock A.M. Day

School of Computing Sciences, University of East Anglia
Norwich, NR4 7TJ, UK
{t.simnett|robert.laycock|amd}@uea.ac.uk

ABSTRACT

We present an approach to simulating detailed cloth in real-time using an adaptive edge-based mesh, by enhancing
its usability and performance. We show how simple seaming can be used to combine multiple adaptive meshes into
garments, accomplished with the use of discontinuous material co-ordinates. Performance is improved by decou-
pling the mesh adaption and simulation steps, allowing efficient data structures to be exploited for the simulation
and collision detection. Greater memory efficiency is achieved by pre-allocating a pool of memory to be used by
any mesh at any hierarchical level. The collision detection process is integrated into the edge-based adaption tech-
nique, enabling a garment to be coarsened and refined repeatedly, such that no new vertices are created inside of
the object in collision. Our technique is illustrated for a 67k triangle character wearing a T-shirt adaptively refined

to 6k triangles in real-time.

Keywords: Adaptive mesh, cloth simulation, garment

1 INTRODUCTION

The real-time simulation of cloth and particularly cloth-
ing is a challenging task, both the deformation calcula-
tions and collision detection are expensive thus limit-
ing what is achievable with finite resources. Of course
very detailed and realistic cloth animations can be sim-
ulated, albeit offline with very fine meshes. However,
they are limited by how long the user is prepared to
wait for the result. We would like to be able to simu-
late detailed clothing in real-time, since many applica-
tions require it such as virtual reality, games and gar-
ment prototyping. Mass-spring networks are an ap-
proach made popular for simulating real-time cloth by
Provot, where an inverse dynamic procedure to cor-
rect the lengths of super-elongated springs particularly
enhanced its useabilty [Pro95]. Mass-spring networks
are favoured for their speed and real-time applications
compared to more complex physical models [DB99];
however, the cost of the simulation in either case is
proportional to the size of the mesh. Taking into ac-
count hardware advances over the last ten years, more

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.

is achievable in real-time now but the quality of offline
simulations will always exceed that of real-time sim-
ulations. An approach to narrow the gap between of-
fline and real-time systems concerns the use of adaptive
meshes. Instead of using a fine regular mesh, a much
coarser mesh is used, which is subsequently adaptively
refined only in regions considered most important. Im-
portant regions are those that require a greater density
of polygons needed to model important aspects of vi-
sually realistic cloth; most commonly wrinkles in areas
of high curvature, and to accurately resolve collisions
with objects. Coarsening, being the opposite of refine-
ment takes place in regions that no longer require a high
density of polygons.

We continue to build on Simnett et al’s [SLD09]
work, improving the edge-based adaptive refinement
approach, which works on triangular meshes specially
enhanced with connectivity information. The subdi-
vision is the result of splitting edges in the mesh, this
is performed using application specific edge-based
criteria. This approach allows very fast incremental
updates to the mesh, whereby only two adjacent
triangles require updating on each edge split to ensure
a conforming mesh. We use a mass-spring network for
our simulation, with Verlet numerical integration and,
importantly, make use of Provot’s inverse dynamic
procedure to correct the lengths of super-elongated
springs [Pro95]. The mass-spring network shares the
same topology with the adaptive mesh, where the mass
of each vertex is calculated as one third of the adjacent
triangle’s mass, which is updated as the mesh refines.

Journal of WSCG

The main contributions of this paper are:

e Incorporating multiple configurations into the tran-
sition states of edge-based adaptive meshes for im-
proved real-time performance.

Multiple edge-based adaptive meshes are combined
to form garments. A T-shirt, constructed from two
meshes attached at their seams, is illustrated in real-
time.

Collision aware mesh adaption technique enables a
garment to be coarsened and refined resulting in no
vertices of the cloth penetrating the character’s body.

Firstly we will survey existing work in related areas and
the rest of the paper is organised into the following sec-
tions detailing our work: Edge-Based Adaptive Mesh
and Configurations, Seaming, Adaptive mesh Memory,
Adaptive Cloth and Collision Detection.

2 PREVIOUS WORK

Adaptive meshes are a good way of reducing the cost
of simulating cloth without sacrificing heavily on the
detail and have been used a number of times previ-
ously, with the adaption criterion most commonly based
on curvature [VLO3][LVO05]. Villard and Boroucharki
found their adaptive mesh improved simulation times
as much as six times [VB05]. Memory usage and ac-
cess can be particularly problematic in the case of large
meshes where disk storage is required [VL03]. Seam-
ing, that is the joining of meshes together, is of partic-
ular interest to cloth simulations, allowing actual gar-
ments to be constructed in a similar way to reality by
way of physically stitching pieces of flat material to-
gether to form garments. Ma et al [MHBO06] presented
a method that automatically constructed a seam surface
along an arbitrary path on the surface of an irregular
mesh. They simulated seam puckering on 3D garments
with a mass-spring network, which produced realistic
wrinkles but it unfortunately requires the use of very
fine meshes beyond the capability of real-time simu-
lation. Pabst et al [PKSTOS] looked at the influence
of seams on the bending of fabric, together with an
accurate bending model. If using a relatively coarse
mesh, they found that it must be locally refined around
the seams to smooth out the abrupt changes that would
otherwise be present in the bending stiffness between
adjacent elements, thus increasing the costs. Their
method produced excellent realism, comparing a real
garment with that of a simulated one with each step tak-
ing 65ms to calculate the bending forces. Durapinar et
al’s [DGO7] virtual garment design and simulation sys-
tem featured automatic pattern generation by cutting a
regular mesh along lines between defined corner ver-
tices. A mass-spring system was used with seaming
taking 4.313 seconds for a skirt with 1400 vertices, fi-
nalized by combining vertices into one by adding each

66

T

s
=
===

i
R

Figure 1: Cloth draped over a sphere, rendered with
smooth lighting and coloured levels together with an
illustration of the adaptive mesh’s hierarchy.

vertex’s spring forces to the other. Seaming is not al-
ways mentioned for character garments and no specific
details were included for the garment using the adaptive
mesh in [LV05], suggesting that a 3D mesh in the shape
of the garment is used instead. We believe a simple ap-
proach is prudent for real-time simulation. We detail
our approach in Section 4 that will allow seaming of
an edge-based adaptive mesh inorder to allow garments
to be created. Collision detection research is a large
field, many algorithms and data structures have been
designed for this. Without suitable collision detection
and response, cloth simulations are severely limited and
complex algorithms are used for high fidelity offline
animations. Bridson et al.’s [BFAO5] work generates
high quality wrinkles with complex collisions. By ro-
bustly processing collisions, contacts and friction, with
a collision aware post processing step a surface is sub-
divided and iteratively smoothed for rendering. Their
approach took approximately two minutes per frame
for a piece of cloth with 150 x 150 nodes. Self col-
lisions for cloth is particularly expensive to compute.
Govindaraju et al. [GKJT05] presented a method that
accurately detected all self-collisions for a 23K trian-
gle cloth dress in 400-550 ms. Their chromatic decom-
position partitions a fixed topology mesh into indepen-
dent sets, and uses a linear-time culling algorithm per-
forming 1D overlap tests on the CPU and a 2.5D on the
GPU. Achieving real-time performance puts tight lim-
its on the complexity of the cloth and collision testing.
Fuhrmann et al. [FGLO03] achieved interactive anima-
tion of cloth with self-collision by approximation; it
considered only pairs of particles and held them apart
using a bounding hierarchy of particles.

3 EDGE-BASED ADAPTIVE MESH

The Edge-Based approach to adaptive meshes allows
fast incremental changes to the mesh, refining or coars-
ening by one level at a time. Edges in the mesh are

split in order to subdivide the mesh, and curvature, edge
length and edge collisions have proved suitable crite-
ria for controlling this for cloth modelling. Coarsening
of the mesh is achieved by rejoining previously split
edges. When an edge is split, a new vertex is gen-
erated at the centre and two child edges are created.
Triangles are dealt with using a state based retriangu-
lation scheme, where the triangles adjacent to the split
(or rejoined) edges are internally retriangulated. This is
undertaken to build a conforming mesh with new addi-
tional internal edges and internal triangles. Upon reach-
ing a full subdivided triangle (1-to-4 split), further re-
finement of child edges and triangles are allowed. The
adaptive mesh forms a complex hierarchical tree struc-
ture of levels, with edges containing two child edges
and a central vertex, triangles contain upto four internal
triangles and three edges. The highest level in use of
any part of the mesh constitutes the whole mesh used
for the cloth simulation. Figure 1 shows a simple simu-
lation of a piece of cloth draped over a sphere, for which
the hierarchy is illustrated.

3.1 Configurations

>

S0 Co
/:,\ / »
S1C1 S2 (2 S3 3
(4 o (8
05 (7 €9
S4 S5 S6

>

S7C10

Figure 2: Triangle states and configurations show-
ing internal triangulations of a parent triangle.

The state based triangulation approach enabled the
fast determination of the new triangulation by check-
ing the change in status of external edges [SLDO09].
We have since expanded this approach to include the

67

other three triangulations missing from the previously
defined eight states. Each of the three new triangu-
lations share the same state as an existing one, that is
the status of the edges are the same. We therefore re-
quire an additional identifier other than state for the tri-
angulations; we call this a triangle’s “configuration”.
There are a total of eleven configurations starting with
an empty parent triangle to a completely sub-divided
one (1-to-4 split) and all the possibilities in-between.
We map every state to a configuration, except in three
cases where now each of those states maps to two possi-
ble configurations. See Figure 2 for the states and con-
figurations.

Deciding on the configuration to use is straight for-
ward in the case of the 1-1 mappings. For the other 3
states, we can consider a transition from the previous
configuration to one that provides the minimal change,
this helps to keep the forces more consistent between
steps as the cloth adapts. For example: consider that
when transitioning from C1 to C4/C5, the algorithm
would choose C4 as the configuration that provides
minimal change. Therefore, if C5 was chosen instead
the change would be visually detectable in the rendered
cloth (unless the vertices were co-planar).

It can be seen that many transitions between two con-
figurations have common features. This is because it is
not ideal to have to configure the whole parent trian-
gle when it is re-triangulated. Instead, a lower level
approach to re-triangulation that exploits the similari-
ties is possible, although it increases code complexity
considerably. The previous configuration is reused as
much as possible, changing only as necessary. There
are a total of 100 possible transitions that may be used
by the adaptive mesh. Table 1 shows a comparison of
the speed up that is achieved with this approach for a
selected number of cases.

Transition Time Improved Time
(us) (us)
COtoCl | 0.218079 0.199257
CltoC4 | 0.316416 0.177083
CltoC5 | 0.312889 0.236971
C2toC5 | 0.312540 0.173625
C4toCl | 0.238927 0.070819
C4to C10 | 0.435041 0.257016

Table 1: Time comparison of the new faster re-
triangulation approach compared to the work in
[SLD09].

Some transitions such as CO to C4/C5, are both
equally costly and we need to either use a default
selection or select it based on some criteria. We have
investigated the use of three simple approaches based
on edge curvature, edge length and edge rest length.
The two length criteria choose the configuration that
gives the shorter new edge length, based on either

Journal of WSCG

the deformed length or rest length. The curvature
criterion looks to see which way the parent triangle is
bending and selects the best configuration to conform
to this. Figure 3 shows very small differences between
different selection criteria. The reason for this is that
in most cases there is a faster transition available that
will be used in precedence to the selection criteria,
such that it will have little effect overall. Therefore we
consider the use of a default criteria, since it requires no
additional processing while not negatively impacting
on the refinement.

Figure 3: Four spheres are illustrated using four dif-
ferent transition selection methods. (Top Left: De-
fault Choice, Top Right: Edge Length, Bottom Left:
Edge Rest Length, Bottom Right: Edge Curvature)
A selection method is used for transitions that are
equally costly, otherwise the fastest minimal change
transition is used.

4 SEAMING

Complicated models for seaming do not currently ap-
pear feasible for real-time simulations; therefore we
take a simple approach and perform seaming on the
base level of our adaptive mesh. We accomplish this
by merging the vertices and connecting the edges of
seams together. Firstly the user can interactively select
links between groups of vertices and pairs of bound-
ary edges using the mouse or alternatively use previ-
ously stored links. The mesh can be simulated using
the coarse mesh if desired before actual seaming oc-
curs to bring the meshes together, (linked seam vertices
are constrained together). Next we perform the actual
merging; where initially the vertices and edges are re-
moved from the meshes. A new vertex is created for
each group of vertices that are linked and is stored as
part of the garment, each new vertex has a total mass
of all the combined vertices together with a merged ad-
jacent triangle list. The connectivity of the boundary
edges and triangles in the meshes must be updated as
to reference the new merged vertex rather than each of

68

the group. Consequently, we can use the merged ver-
tices instead of the old ones in the simulation. Finally
boundary edges are connected into pairs, setting their
pointers to point to each other, which are now stored
in a seam edge as part of the garment. Seaming for a
T-Shirt is illustrated in Figure 4, using a mesh for the
front and one for the back with seams above the shoul-
ders, under the arms and down the sides.

Figure 4: Interactive Seaming, Top Left: initial base
meshes (rendered with normals), Top Right: seam-
ing links defined (vertex links in orange, edge links
in blue), Bottom Centre: after seaming, seams in
green.

4.1 Discontinuous Material Co-ordinates

There is a challenge with managing material co-
ordinates for the meshes; 2D material co-ordinates
allow the quick determination of un-deformed lengths
needed for the physics calculations between any two
points of the mesh and they are readily acquired from
flat textile patterns. Ultimately there exists discon-
tinuous co-ordinates along the seam lines between
multiple meshes and this is also the case for a single
mesh (e.g. a single mesh seamed to form a cylinder).
Storing the material co-ordinates in the vertices,
alone cannot support this. We present a method that
supports discontinuous co-ordinates between any base
triangle in the mesh, and continuous co-ordinates
are used within triangles as they are subdivided. To
support this, material co-ordinates were needed to be
moved from the vertices into the edges. Since an edge
between adjacent triangles consists of two oppositely
directed pieces, each side can have its own material
co-ordinates. ~Where the material co-ordinates are
continuous, both sides of the edge will hold references
to the same material co-ordinates. In the case of dis-
continuous co-ordinates, each side will hold reference
to a different set of co-ordinates. Figure 5 illustrates

this, three meshes are to be seamed together with three
sets of continuous material co-ordinates. Vertices are
merged but the material co-ordinates are not, then
edges are connected together. It should be noted that
the boundary edge lengths should match between pairs
for best results, as one edge is designated as the control
edge whose length will be used for the spring forces in
the simulation.

/\/\4Q\
NASAN
o<——>0\:\/}/~\
JAYAY:

e—>0——>¢

N

0
I

=N\ NS

PE— 9 «— 0

«

=/ \

Figure 5: Three meshes each with their own set
of material co-ordinates (red,orange,green), seamed
together with discontinuous material co-ordinates
(MC) along their boundary edges (BE). Vertices are
shown in blue (V).

S ADAPTIVE MESH MEMORY

Memory considerations are often overlooked in real-
time simulations where we favour pre-computation
wherever possible, and consider algorithm efficiency
of most importance. However, adaptive meshes require
a large amount of memory to store subsequent levels
even for small base meshes. Real-time constraints often
force the use of pre-allocation for all levels that may be
needed, this is because the operating system’s managed
dynamic memory imposes a relatively large overhead
for creation and deletion. In regards to real-time cloth,
the purpose of the adaptive mesh is to allow refinement
only in areas that require more triangles (typically high
curvature). There is a limit on the overall number of
triangles in a piece of cloth that can be simulated and
rendered in real-time, and the adaption criteria should
be chosen accordingly. We can make use of this to
achieve large memory savings, by only pre-allocating
the maximum memory needed by the mesh over
the course of a real-time simulation. The memory
is divided into pools, one for each of the principle
building blocks of the mesh: triangles, edges, vertices
and material co-ordinates. As the mesh is refined and
coarsened the pools are used dynamically, in a similar
way but with almost no overhead compared to system

managed memory. We use a linked list approach with
two lists, which allow constant time access to the pools.
One list stores unused objects to be taken from the
pool, and the other holds list nodes ready for when an
object is put back onto the pool. There is an additional
advantage to this approach, the pools may be shared
simultaneously by multiple meshes; each mesh does
not need significant resources allocated to it which
may not be fully utilised. It is difficult to predict the
exact requirements for a complex simulation especially
with collisions, however, experimentation can yield
good results. Taking the simulation in Figure 10 as
an example, the base mesh requires 0.3 MB and an
additional 7.2 MB in the memory pools was needed
with allowances to support upto approximately 7,000
triangles. The full refinement to level 3 would require
15.6 MB in total, this means in this example, our
approach has saved 8.3 MB or around 53% of the
memory needed over that of pre-allocation for the
adaptive mesh.

6 ADAPTIVE CLOTH

6.1 Separation of Adaption and Simula-
tion

The original approach in [SLD09] was to perform both
adaption and simulation in the same algorithm and do
this at each update. We have found this not to be effi-
cient in cases of very small time steps, often these very
small steps are needed to ensure numerical stability of
the simulation when using finer meshes. All the edges
in the mesh will be checked against the criteria for each
time step for adaption. When very few changes have
taken place, the cost of checking will surpass the actual
cost of updating the mesh structure per step. Therefore,
we have since decoupled the adaption and simulation
allowing more resources for the simulation to run at a
rate required for stability. The adaptive mesh will up-
date a constant number of times each second (typically
at 30Hz), we refer to this as a major step. Minor steps
refer to the simulation steps, which are performed after
each major step, the number of these depend on the time
step required to give stable results. Collision detection
and response is performed once at the end of each ma-
jor step rather than every minor step to save time when
vertices are only moving very small distances.

To further increase performance, it is not necessary
to recalculate the triangle normals (using the cross
product) and vertex normals (average of adjacent
triangles) during the adaption step since the vertices are
not moved. Also, new vertices are initially co-linear
with their parent edge, and therefore fast interpolation
is sufficient to determine their normal.

6.2 Data Structure Traversal

Our adaptive mesh’s hierarchy enables an efficient al-
gorithm for refinement but imposes an overhead for the

Journal of WSCG

simulation where the hierarchical data structure must be
traversed many times each step. We have alleviated this
cost by constructing a temporary list of pointers to tri-
angles, edges and vertices each time the adaptive mesh
is updated, they are particularly effective now that the
adaption is decoupled and the lists may be valid and
used for a number of simulation steps. Table. 2 shows
the time in milliseconds for each simulation step, the
cost of creating the list, and the improved simulation
timing that results from using the list, hence the cost
of the data structure traversal to the simulation can be
seen.

Level | Simulation | List Creation | Sim. with List
(ms) (ms) (ms)
Base | 0.049832 0.001453 0.033908
1 0.214280 0.006593 0.136197
2 0.880447 0.033203 0.573544
3 2.964748 0.136163 2.407764

Table 2: Simulation times for a single step us-
ing standard traversal and temporary lists updated
each adaptive step. A base mesh of 128 triangles is
used and the cost of list creation can be seen.

7 COLLISION DETECTION

Although geometric shapes provide straight forward
collision checks by use of their parametric equations,
building complex objects out of them is not easy. The
decision was made to implement a general method that
can be used with any 3D triangle model. The only re-
quirement is that the triangles of the mesh must be out-
ward facing (determined by the vertex winding) form-
ing a surface where the cloth will not be allowed to
penetrate through into the object. A problem with the
highly flexible nature of cloth is that even if the vertices
are not penetrating the object, edges and triangles may
intersect the object’s surface causing very noticeable vi-
sual artefacts. The use of the adaptive mesh, greatly in-
creases the cloths ability to approximate the underlying
surface it is in contact with, but this alone is not suf-
ficient. A full triangle-triangle collision approach pro-
vides a potential solution although at a cost to process-
ing compared to only vertex-triangle collision detec-
tion. We seek a compromise for use with real-time sim-
ulations; a suitable approach is to leave a region above
the surface to hide these intersections. If too great a
region is used, the gap will be very noticeable and un-
realistic; relatively too small and intersections will still
be visible. To enable this, we use a separate mesh for
collision and rendering. The original mesh is loaded,
and then sent to the graphics card to be stored in a ver-
tex buffer object. To construct the collision mesh, we
first calculate smooth normals for the vertices (which
may be the same as used for rendering). Using these
normals we expand the mesh by moving the vertices in

70

the direction of their normals with an adjustable offset.
The result is a shell around the original object, giving us
the region to hide intersections within. The originally
loaded mesh can be deleted from main memory if de-
sired, leaving it only on the graphics card for rendering
so that memory requirements are not doubled by using
the collision mesh. We allow the mesh to be arbitrar-
ily rotated and translated, by calculating and storing the
transformations using a 3x3 matrix for the rotation and
a 3D vector for the translation. The cloth is simulated
in world co-ordinates, and vertices are first transformed
into the object’s local coordinate space to undergo the
collision checks. Considering a cloth vertex (mass) has
a current position and a previous position (which was
outside of the object), the collision with a static object
can be determined by checking that the vertex’s path
has not intersected the object.

The object is potentially a large triangle soup, and
therefore we initially must partition it into a more effi-
cient structure for collision testing inorder for real-time
computation. A 3D grid of cells is used, where each cell
is an axis aligned bounding box that contains a list of all
the triangles that are inside or partially overlapping.

The main collision algorithm between a cloth vertex
and a object proceeds as follows. The previous and cur-
rent position are transformed into the object’s coordi-
nate space, the transformed points are hence referred to
as A and B. Each grid Cell that the path AB intersects
is tested for collisions by testing the vertex with each
triangle within the cell. Figure 6 illustrates the vertex
triangle collision test, firstly the segment AB is inter-
sected with the triangle’s plane to find an intersection
point (IP). If TP exists, the barycentric co-ordinates are
calculated to determine if this lies within the triangle
face; if this is so, the surface point (SP) is calculated
by projecting B in the direction of the triangle’s normal.
The current position is moved to the SP after transform-
ing it back into world co-ordinates.

B

Surface Point

Figure 6: Vertex-triangle collision: The vertex’s cur-
rent position (B) is moved to the surface point, if the
intersection point is within the triangle.

Figure 7: A T-Shirt draped on a static character,
with the adaptive hierarchy of the front mesh illus-
trated.

7.1 Collision within Mesh Adaption

Collision routines are called from within the adaption
step, as necessary, in a number of places. When an
edge is split, the newly created vertex in the centre of
the edge can be created inside other objects, a situation
that is prevented under normal circumstances. We must
be able to determine when this has occurred and find
a suitable location to relocate the vertex to. We tackle
both of these problems in one step, by constructing a
ray pointing outwards from the object and testing it for
collision with the collision mesh. The direction we use
is the average of the edges two end normals. If there is
a collision, then the vertex is moved to the intersection
point adjusting the previous position to preserve the ve-
locity, see Figure 8. Figure 9 shows three snap shots of
the cloth simulation on a character, and demonstrates
how the coarse base mesh may be used to speed up the
initial placement of the garment.

Vertex Normal A
Ray
New Verlex Intersection Point
v Surface
Edge
Vertex Normal B

Figure 8: Resolving a new vertex that has been gen-
erated inside an object. It is moved to the intersec-
tion point between the directed ray and the surface.

7.2 Conflicting Criteria: Edge Collision
and Curvature.

When using multiple criteria to control the refinement
an coarsening of the mesh, problems can arise from
these conflicting. An edge may be in collision and
therefore should be split, but the curvature criteria may
determine that the edge should not be split and would

71

Figure 9: Left: coarse mesh, Centre: immediately
after two adaption steps (incremental approach im-
plies a change of one level for each step and level two
is required in some areas to resolve the collisions),
Right: after 1 second (30 adaption and 120 simula-
tion steps), the cloth has relaxed.

therefore be rejoined in the next step. Previously Sim-
nett et al. [SLDO09] used a rejoin wait count, with the
aim to prevent rapid flipping between coarsening and
refining an edge by specifying a number of steps be-
fore an edge was allowed to rejoin after having been
split. This was although visually effective, caused the
flipping to still occur each time the rejoin wait was com-
pleted. We have changed how it is used in order to im-
prove upon this and the performance. If edge collision
splitting is enabled for the cloth; before an edge is re-
joined, it is checked for collisions. The purpose being is
that if there is an edge collision and it is rejoined, it will
almost certainly be split again at the next step. The edge
in collision will be prevented from rejoining, saving the
costs of the edge join and retriangulation. The addi-
tional collision check has a cost associated with it too,
so we make use of the rejoin wait count again but now it
saves the cost of collision and curvature checks. How-
ever, there is a trade off as rapid coarsening can bring
force, integration and collision savings for the simula-
tion. A balance between a too long rejoin wait and not
long enough is important; we find a rejoin wait count of
ten steps works well, which will basically spreads out
the cost of the rejoin checks over the ten steps as they
are not synchronized.

8 RESULTS

We implemented our cloth simulation using C++ and
used Opengl for rendering, the results presented in this
paper were performed using a PC with a Intel 2.66 GHz
Core i7 920 using a single thread with 6GB of RAM.
The limit of our approach is approximately seven thou-
sand triangles, with the simulation times being the lim-
iting factor where mesh adaption takes less than 10%
of the total time for each major step. Figure. 10 shows
a mesh of this size, worn as a T-shirt by a static char-
acter that is simulated in real-time. Each major step
takes 22ms running at 30Hz, with 4 minor or simula-
tion steps running at 120 Hz. Figure 7 shows the cor-
responding adaptive hierarchy for the front mesh of the
T-Shirt. The accompanying video features the charac-
ter, where two meshes are initially seamed together and
the cloth is simulated in real-time. To demonstrate the
adaptive mesh and collision detection more robustly, a

Journal of WSCG

Figure 10: A T-shirt is draped on a static charac-
ter with 67Kk triangles. The cloth is constructed from
two base meshes seamed together, which totals 316
triangles, and are adaptively refined to 6199 out of
a possible 20224 (Level 3) triangles. It takes ap-
proximately 22ms for each adaption and 4 simula-
tion steps, running at 30Hz in real-time.

force on the cloth is introduced from a movable vir-
tual fan. The video can be found at the following url:
http://www.crowdsimulationgroup.co.uk/Cloth.wmv

9 CONCLUSION

We have presented a number of improvements to
the edge-based adaptive mesh approach presented in
[SLDO09], such as increased performance by decoupling
mesh adaption from simulation, using a more efficient
data structure for traversal and introducing new con-
figurations to speed up re-triangulation. Furthermore,
we have implemented a robust collision detection
scheme for the cloth with arbitrary triangle meshes
and have integrated this into the adaption process,
which together with seaming allows the real-time
simulation of a detailed T-shirt on a virtual character.
The improved handling of memory has provided a
saving of 53% for this simulation, compared to the
pre-allocation of the complete hierarchy. In the future
we would like to simulate garments on moving char-
acters, and also on multiple characters simultaneously.
We anticipate changes will be needed to our collision
handling in order to allow non-static objects, and
the grid based approach will need to be modified to
support jointed characters. Our work shows that the
adaptive mesh would work well with additional level
of detail approaches, since an off-screen character can
be simulated using purely their base mesh. Figure 9
shows that our refinement method could quickly return
to detailed garments if the character were to come back
into view. The fact that the base meshes are small in
terms of memory requirements compared to the refined
mesh, allows the memory pool to be used by multiple
meshes effectively.

72

REFERENCES

[BFAO5] R. Bridson, R. Fedkiw, and J. Anderson. Robust
treatment of collisions, contact and friction for
cloth animation. In International Conference on
Computer Graphics and Interactive Techniques.
ACM Press New York, NY, USA, 2005.

M. Desbrun and A. Barr. Interactive animation
of structured deformable objects. In In Graphics
Interface, 1999.

F. Durupinar and U. Gudukbay. A virtual garment
design and simulation system. In IV’07. 11th In-
ternational Conference, pages 862—-870, 2007.

[DB99]

[DGO7]

[FGLO03] A. Fuhrmann, C. Gross, and V. Luckas. Interac-
tive animation of cloth including self collision de-

tection. Journal of WSCG, 11(1):141-148, 2003.

N.K. Govindaraju, D. Knott, N. Jain, 1. Kabul,
R. Tamstorf, R. Gayle, M.C. Lin, and
D. Manocha. Interactive collision detection
between deformable models using chromatic
decomposition. Proceedings of ACM SIGGRAPH
2005, 24(3):991-999, 2005.

L. Li and V. Volkov. Cloth animation with adap-
tively refined meshes. In Proceedings of the
Twenty-eighth Australasian conference on Com-
puter Science-Volume 38, pages 107-113. Aus-
tralian Computer Society, Inc. Darlinghurst, Aus-
tralia, 2005.

Liang Ma, Jinlian Hu, and George Baciu. Gener-
ating seams and wrinkles for virtual clothing. In
VRCIA ’06: Proceedings of the 2006 ACM inter-
national conference on Virtual reality continuum
and its applications, pages 205-211, NY, USA,
2006. ACM.

Simon Pabst, Sybille Krzywinski, Andrea
Schenk, and Bernhard Thomaszewski. Seams
and bending in cloth simulation. VRIPHYS,
382(1):24-41, 2008.

X. Provot. Deformation Constraints in a Mass-
Spring Model to Describe Rigid Cloth Behaviour.
In Graphics Interface, pages 147-147. Canadian
Information Processing Society, 1995.

T.J.R Simnett, S.D. Laycock, and A.M. Day.
An edge-based approach to adaptively refining a
mesh for cloth deformation. In EG UK Theory
and Practice of Computer Graphics 2009, pages
77-84, 2009.

J. Villard and H. Borouchaki. Adaptive meshing
for cloth animation. Engineering with Computers,
20(4):333-341, 2005.

V. Volkov and L. Li. Real-time refinement and
simplification of adaptive triangular meshes. VIS
2003. IEEE, pages 155-162, 2003.

[GKJT05]

[LVO5]

[MHBO06]

[PKSTO8]

[Pro95]

[SLD09]

[VBO5]

[VLO3]

	!_2010_J_WSCG_1-3.pdf
	D31-full.pdf

