Giga-Voxel Rendering from Compressed Data
on a Display Wall

R. Parys, G. Knittel
WSI/GRIS, Tuebingen University
72076 Tuebingen, Germany
[parys | knittel]@gris.uni-tuebingen.de

ABSTRACT

We present a parallel system capable of rendering multi-gigabyte data sets on a multi-megapixel display wall at
interactive rates. The system is based on Residual Vector Quantization which allows us to render extremely large
data sets out of the graphics memory. At 0.75 bits per voxel, such large data sets can even be kept on a consumer-
level graphics card. As an example we compress the whole full color “Visible Human Female” data set, approxi-
mately 21GByte in size, down to 700MByte. Taking advantage of the fixed code length and the extremely simple
decompression scheme of RVQ, all decompression is done on the GPU at very high rates. For each frame the data
set is decompressed into small subvolumes which are rendered front to back. Classification and shading can be
moved into the decompression step, speeding up the rendering pass.

Keywords

Distributed and Parallel Graphics, Volume Rendering, GPU Programming

1. INTRODUCTION

Since quite some time volume rendering has made it
from a purely academic research area into a well-
established computer graphics application with high
economic relevance. Still, comprehensive platform
support as in the case of computer games, as an
example, is largely missing. Nevertheless, visualiza-
tion requirements steadily increase: data sets are get-
ting larger, rendering algorithms are getting more
complex, and display resolutions are increasing as
well. In this work we present a fairly extreme exam-
ple: volume rendering of a very large data set (about
7.5G voxels) on a high-resolution display wall
(65,536,000 pixels). This display system (see Fig. 3
at the end of the paper) consists of 16 LCDs with a
resolution of 2560x1600 pixels each. Each display is
driven by a PC, being equipped with a Dual-Core
2.4GHz Intel CPU, 4GByte of main memory and a
8800GT graphics card from NVidia. The latter in turn
has a video memory of 1GByte capacity. The PCs are
connected via GBit Ethernet. As a side note, each
display is connected to its PC via a dual-link DVI
cable no shorter than 20 meters.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistrib-
ute to lists, requires prior specific permission and/or a
fee.

Journal of WSCG

73

While the PC-cluster would otherwise represent a
decent computing platform, given the task at hand it
is somewhat underpowered. Thus, we need to apply
efficient optimizations. Also, the workload should be
placed where the strongest computing resources are,
and notorious bottlenecks such as the network should
be avoided as much as possible, even if this causes
some amount of redundant computation. With respect
to computational power and memory bandwidth
there is an easy choice: GPUs are approaching and
surpassing the teraflops-mark, and peak memory
bandwidth on consumer-level cards approaches
150GByte/s. These numbers are unavailable any-
where else in a typical workstation. From these con-
sideration we derived the design choices of our
rendering system, which will be described in detail in
the following sections.

2. RELATED WORK

Other work related to our project falls into the areas
of parallel volume rendering, data set compression,
and GPU-based volume rendering.

2.1 Data Set Compression

A study on lossless compression for volume data is
presented in [6]. The authors report a maximum of
about 50% reduction in size for selected data sets,
however, the work was targeted at reducing storage
space rather than increasing rendering speed. The use
of vector quantization for volume rendering was first
proposed in [18]. The presented rendering system
operates directly on the compressed data. An
improved version can be found in [22], however, the
method provides only nearest-neighbor interpolation
and is thus limited in rendering functionality. In other
early work the authors used Block Truncation Coding
in a space-filling way to reduce memory bandwidth

ISSN 1213 — 6972

[12]. Wavelet-based encoding, however, has received
the most attention in recent years [9],[17],[20],[21]. A
hierarchical wavelet representation of large data sets
is used in [7]. The authors claim to achieve a com-
pression rate of 30:1 without noticeable artifacts in
the image. A quality measure is derived from the
wavelet representation during rendering to minimize
the number of voxels to process. Interactive rendering
speeds for large data sets can be achieved on standard
PCs. We didn’t follow this approach since decom-
pression is most practically done on the CPU, and
sending pixel data over the bus to the graphics card
can severely limit performance (see Table 1).

2.2 GPU-based Volume Rendering

The use of graphics hardware for volumetric data pro-
cessing dates back to [1], [3] and [4]. Originally, 3D
texturing hardware was used for volume rendering.
Screen-aligned slices were swept through the 3D tex-
ture and blended in back-to-front order. Thus, a vol-
ume data set was treated as a light-emitting,
translucent material. Later improvements included
gradient shading [15], multi-dimensional transfer
functions [11], pre-integrated transfer functions [5],
and the processing of pre-segmented data sets [8].
Where it is possible and useful we try to integrate
these techniques into our framework. Some features
have lower priority, though. For example, data sets of
the size considered here are rarely pre-segmented due
to the large effort it takes. Thus, support for this fea-
ture is postponed to later versions.

2.3 Parallel Volume Rendering

Basically, parallel rendering can be done in two ways:
object-space partitioning, and screen-space partition-
ing (see Section 3.2.6). To a large degree, the perfor-
mance of systems using object-space partitioning is
limited by the alpha blending of the intermediate
images. Solutions are proposed in [14], [23] and [24].
In [24], it is described that for alpha-blending the
CPU is used instead of the much better suited GPU.
This highlights the difficulties of handling such large
data streams in the network.

Rendering to a display wall of about 63M pixels is
described in [16]. Here, isosurfaces are rendered from
a total of 470M triangles. An example is shown with a
rendering time of 15 seconds, demonstrating the chal-
lenges presented by these display systems.

3. THE GIGA-VOXEL SYSTEM

As previously mentioned, we prioritize the graphics
card for all computations, even if this means a certain
amount of redundant processing. A few benchmark
figures might further motivate this choice. On a Dell
XPS700 workstation, equipped with an Intel Core 2
Duo CPU at 2.13GHz and an NVidia GTX280
(optionally an 8800GT), we obtained the following
results (measured with the SiSoft Sandra benchmark
suite and “bandwidthTest” from the NVidia CUDA
SDK [19]):

Journal of WSCG

74

Test Bandwidth
CPU <« Cache 98,520
CPU < Memory, 16MB Blocks 2,100
CPU < Graphics Card (PCle 1.x) 1,500
GPU < Video Memory GTX280 110,028
GPU < Video Memory 8800GT 43,357

Table 1: Actual Bandwidth Measurements [MB/s]

Interestingly, the tools report the internal CPU cache
bandwidth to be lower than the bandwidth to the
external video memory on the GTX280. Thus the
design target was set to keep all necessary data locally
in video memory, and to use the GPU for all compute-
intensive tasks. As a side effect, this frees the CPU to
do supporting activities such as tissue simulations. In
a cluster environment this means that the data must be
replicated, and that pixel traffic must be kept to a min-
imum. Clearly, given the size of typical volume data
sets, the former can only be achieved using data set
compression. The compression scheme, however, has
to fulfil contradicting requirements: it must provide a
high compression rate at still high image quality, and
the decompression must be simple and extremely fast.
We found Residual Vector Quantization (RVQ) to be
an interesting candidate for this purpose.

Thus, rendering a data set using the Giga-Voxel Sys-
tem is a two-stage process: first the data set needs to
be compressed in an offline step, and then it can be
loaded on the graphics cards and rendered. We’ll start
the description of the process chain with the compres-
sion step.

3.1 Residual Vector Quantization

Residual Vector Quantization has first been described
in [10]. An excellent survey of RVQ and related tech-
niques can be found in [2]. RVQ is an extension to
standard vector quantization (VQ). In VQ, a (large)
set of vectors is replaced by a (small) set of represen-
tative vectors (here called codevectors), while trying
to minimize overall error. Often, clustering methods
are used to find a proper set of codevectors (collec-
tively called a codebook). A frequently used method
is k-means [13]. Starting from an initial set of random
codevectors (seeds), each vector is assigned to its
nearest codevector, thereby forming clusters. Once
finished, the codevectors are moved to the center of
their respective cluster, and then clustering is started
anew. This process is repeated until the system
reaches a stable state. Each vector will now be
replaced by the index of its codevector in the code-
book. Decompression merely consists of a table look-
up.

If the set of vectors is too large, or unknown at the
time of codebook construction, a subset of vectors
(training set) can be used to build the codebook. Any
further vector is then replaced by the index of the
best-matching codevector within the existing code-
book.

For RVQ, the set of difference vectors is constructed,
i.e., vector - codevector. This set of vectors, equal in
number and dimension to the original vectors, is now

ISSN 1213 — 6972

subjected to yet another VQ, giving a second set of
indices and codvectors. Each original vector is now
replaced by two indices, and the corresponding code-
vectors are simply added to give the decompressed
version of the vector. This process can be repeated for
the desired number of levels.

There are a number of quantities which affect the per-
formance of RVQ. The number of codevectors per
codebook and the number of codebooks define the
length of the index set (the codelength) in bits. The
number of dimensions of the original vectors and the
width of each component define the compression rate
relative to a given codelength.

From experiments with a large number of images we
have found that larger codebooks should be favored
over a high number of levels, since the image quality
in terms of PSNR is higher for a given codelength.
Clearly, however, there is a practical limit in code-
book size, both with respect to memory consumption
and compression time. Compared to an on-chip
decompressor, we can take advantage of the much
larger but still fast video memory. A number of tests
have shown that a high image quality can be achieved
using four levels, with a codebook of 4k codevectors
on each level. This gives a codelength of 48 bits.
Since our test data set is the “Visible Human Female”
in the full-color version, a pixel is a 24-bit RGB quan-
tity. A vector is formed by a 4x4x4 pixel cube in the
image stack, and so the vector dimension is 192. The
64 pixels in a cube are compressed into 48 bits, giving
a compression rate of 32:1, or 0.75bpp.

For the components of a codevector we use a higher
precision to account for rounding errors. The RGB-
fields of one pixel are packed into one 32-bit word in
11-11-10 format. Thus, a codevector consists of 64x4
= 256 Bytes. A codebook occupies 1MByte accord-
ingly, for a total of 4MBytes for all levels.

3.1.1 Compressing the Visible Human Female
Originally, these images have a resolution of

2048x1216 pixels [25]. There are a total of 5189
images. The cadaver was submerged in a blue gel,
which we have set to a black “empty space”. How-
ever, there is too much empty space around the data,
so we have cropped the images to a final resolution of
1608x896 pixels. This gives an input data set size of
20.9GByte.

Compression time for a data set of this size would be
too long, so we have selected a training set equivalent
in size to 300 images. Construction of the four code-

b.)

books took roughly 21 hours. However, the code was
running on CPUs (actually on an eight-core machine).
Since this is not the focus of this work, we haven’t yet
implemented a parallel cluster version, nor a GPU
version. Since codebook construction mainly consists
of nearest-neighbor searches which can easily be par-
allelized, there is reason to assume that compression
speed can be improved significantly.

Compressing a slice of 1608x896x4 using the exist-
ing set of codebooks takes roughly 30 seconds. Thus,
this second step adds about 10 hours to the overall
compression time.

We give the image quality in terms of PSNR. All
4x4x4 cubes which are completely background have
not been included into the PSNR computation. The
overall PSNR is about 27dB. An example of an origi-
nal image versus the decompressed image is shown in
Fig. 1b and c. Both images form a stack of four 64x64
pixel cut-outs of the same image portion. Fig. la
shows a codebook on level 0.

The result of the compression step is an array of
402x224x1297 = 116,792,256 index sets of 48 bits
each, for total size of 700,753,536 Bytes. Thus, the
entire compressed data set along with the codebooks
fits on a graphics card with 1GByte of video memory.
In this work we only consider the case that the com-
pressed dataset fits entirely into the video memory.
Otherwise swapping from main memory or even hard
disk would be required, which, however, would also
benefit from the high compression rate.

3.2 Rendering

In general, rendering is done by repeatedly decom-
pressing subvolumes of the compressed data set into
an intermediate 3D-texture in video memory, render-
ing this 3D-texture using a raycaster, and blending the
resulting images. The raycaster we use is supplied
with the SDK from NVidia. Classification using a 3D
lookup-table, and optionally gradient extraction and
shading, are integrated into the decompression step in
order to not slow down the raycaster. Early-ray-termi-
nation is included on a per-ray basis in this raycaster,
we added early-exit on a per-subvolume basis using
occlusion culling. Empty-space-skipping is applied to
subvolumes after classification, i.e., whenever the
visible contribution of a subvolume according to the
actual transfer function is below a user-supplied
threshold. Multi-resolution rendering can also be inte-
grated in an elegant way.

c.)

Fig. 1:a.) Codebook example on Level 0. b.) Original image. c.) Decompressed image.

Journal of WSCG

75

ISSN 1213 — 6972

We will now discuss the individual steps in more
detail. A diagram depicting the overall flow is shown
in Fig. 2.

3.2.1 Decompression

We have implemented the decompressor as a CUDA
kernel, taking advantage of advanced features of the
NVidia GPUs. Most notably, we make heavy use of
the on-chip shared memory buffer. Processing is as
follows.

Decompression is done in units of 256 index sets
(worth 16k voxels), which are loaded into the shared
memory. Each index set consists of 6 Bytes, which
are unpacked into four 16-bit indices again into
shared memory. For each voxel to be generated, there
is one thread in the kernel. Each thread reads the
unpacked index set, and fetches from memory those
parts of the codevectors which it needs for its voxel.
After unpacking the codevector components (from
11-11-10-format, see Section 3.1), and accumulation,
the RGB-components of the voxel are written into
shared memory.

These quantities are also used to access a 3D lookup-
table which contains opacity (o) values. The a-value
is again written into the shared memory, which com-
pletes the voxel generation. The system keeps track of
the visible contribution of all voxels in a subvolume
(color components multiplied by alpha), if the contri-
bution of a subvolume to the final image is too low
after classification, the subvolume is excluded from
rendering (empty-space-skipping on the subvolume
level).

When a certain number of threads have finished their
voxel, the contents of the shared memory are written
to video memory, that is, to the intermediate 3D tex-
ture.

By means of this process order we can make sure that
memory transfers are mostly large bursts, and so
bandwidth is high. Decompression performance is
1.86G voxels/s on the GTX280, and 0.60G voxels/s
on the 8800GT.

Partitioning the volume into subvolumes always
causes problems at the subvolume boundaries. During
raycasting, the reconstruction filter (tri-linear interpo-
lation) is missing voxels from the neighboring sub-
volume, during gradient extraction (see Section
3.2.2), the kernel hits the same problem. Most often,
this problem is solved by using overlapping subvol-
umes, and we adopt this method. Each subvolume is
extended in x-, y- and z-direction by two layers of
4x4x4 voxels. Net subvolume size was chosen to be

1283, and so final subvolume size is 136x136x136.
The added overhead is about 20%. Decompression
performance for different levels of detail is summa-
rized in Table 2.

3.2.2 Gradient Extraction and Shading

Once a given subvolume has been decompressed, the
system can optionally perform gradient shading. In
this work, we derive the gradient from the opacity,
since steep changes in opacity represent the surfaces
of regions of interest.

Journal of WSCG

76

GPU Level | Voxels/s Subvolumes/s
8800GT 0 0.60G 254
GTX280 0 1.86G 776
8800GT 1 0.20G 716
GTX280 1 0.72G 2463
8800GT 2 0.03G 841
GTX280 2 0.06G 1667

Table 2: Decompression Performance

For smooth surfaces, we use a variant of a 3x3x3
Sobel filter (see Fig. 2). Two problems need to be
addressed, however:

* high computation costs due to the large kernel,
* acertain amount of noise still in the image.

We solve both problems by using downsampled ver-
sions of the subvolume for gradient estimation (see
also section 3.2.5, Multi-Resolution Rendering). The
system generates two additional levels of detail: a
683, and a 34> subvolume. The gradients are com-
puted only on the lowest-resolution grid, again using
a CUDA-kernel. Performance is given in Table 3.

GPU Gradients/s Subvolumes/s
8800GT 17.8M 570
GTX280 63.9M 2045

Table 3: Gradient Estimation Performance

Gradient extraction and shading are done at the voxel
positions, the contributions from specular reflection
are added to the just decompressed RGB-quantities.
Thus, the operation of the raycaster is not at all
affected by the shading operation, and is therefore not
slowed down. On the other hand, decompression
speed does not suffer too much because of the still
regular memory access pattern.

For gradient extraction the system can use a Central
Difference (CD) operator, or a Gradient shading is
again implemented as a CUDA-kernel. As before,
each thread processes one voxel. Each thread reads a
certain subset of the required voxel neighborhood, so
that by the end of this step a large block of voxels
resides in shared memory.

To speed up shading we assume light sources at infin-
ity, and a constant viewing direction throughout the
volume (only for the shading, not for the raycasting).
Thus, the halfway vectors are all constant, and don’t
need to be computed for each voxel. It is true that the
placement of the highlights will be incorrect, how-
ever, such artifacts are rarely disturbing. Exponentia-
tion is done by a look-up in a precomputed table.

Gradient shading speed for CD and one light source is
summarized in Table 4.

ISSN 1213 — 6972

On the GTX280 graphics card, the rendering time of

this raycaster was measured to be an average of

3.97ms per subvolume (early-ray-termination dis-

abled), and so to be about 4 times slower than the pure

decompression. Thus, rendering time is largely domi-
nated by raycasting; the time spent in the recurring

decompression can be tolerated fairly well.

GPU Level | Voxels/s Subvolumes/s
8800GT 0 0.227G 111
GTX280 0 0.411G 201
8800GT 1 0.309G 966
GTX280 1 0.546G 1712
8800GT 2 0.271G 7426
GTX280 2 0.482G 13158

3.2.4 Blending and Occlusion Culling

Table 4: Gradient Shading Performance (CD)

3.2.3 The Raycaster

As previously mentioned we use the raycaster in the
SDK from NVidia. Since it is not the focus of this
work, no attempt was made to optimize this code.

The subvolumes are rendered in front-to-back order,
according to their Manhattan Distance to the viewer.
The result of the rendering of one subvolume is a pri-
vate frame buffer of RGBa-values. This buffer is o-
blended with the compound frame buffer, which in
the end contains the final image.

-

4 Codebooks with 4096 Codevectors (plus prefiltered versions).
Each Codevector represents 4x4x4 voxels.

T T T T
EEEEE EEEEE EEEEE EEEEE
T Level 0 {1 T Level 1 {13—» Level 2 {17 T Level 3 I
HH HH HH T
TTTTT] [T1TT] [T11T] [TTTT]
(L A THOAT T AT T

Index Set Array of
402x224x1297 elements.

Each element contains
four 12-bit indices.

3D Opacity
look-up Table

Compressed Intermediate
Data Set Subvolumes | ‘g
136x136x136, J‘/ , R
68><68><68, 8 bit a
34x34x34 Processing is shown for
one kernel thread.
Step 1: Decompression & Classification
Filter Kernel used for X N Interpolated NS
Gradient Estimation. - - i
radient Estimation O I, - const Gradients -O-

Applied to lowest-

h P A N
resolution volume only. IR \ | v
H, = const
1,1,0) =] C. .o
a(-1,1,0) P R,GB = R,G,B+9(G - H)
w=025 V = const A k
Step 2: Gradient Shading Intermediate Subvolumes
Private Framebuffer a=oa+o0,-(1-a) If o > Threshold
S S Z=Zpon
rons
Q ~—a [ne *
Private Compound
Framebuffer Framebuffer Z-Buffer
Step 3: Raycasting Step 4: Alpha-Blending & Z-Buffer Update

Fig. 2: Process Flow Diagram.

Journal of WSCG

77 ISSN 1213 — 6972

During blending, the system also updates a Z-buffer.
Whenever the a-value of a pixel in the compound
frame buffer exceeds a threshold, the corresponding
entry in the Z-buffer is set to Z-front. This is then
used to exclude subvolumes which are occluded by
opaque structures in the data set from decompression
and rendering. To this end, an occlusion query is sub-
mitted with the bounding box of the subvolume,
which returns the number of visible pixels. Depend-
ing on a user-defined threshold, the subvolume is ren-
dered or rejected.

Occlusion queries can be accelerated by submitting a
batch of bounding boxes. In our system, all subvol-
umes with the same Manhattan Distance could be ren-
dered in parallel and in any order, so they are queried
in one batch. Subvolumes which are located at any of
the visible faces of the entire volume will be rendered
in any case and are excluded from occlusion query.

3.2.5 Multi-Resolution Rendering

To avoid subsampling of the data during raycasting,
and to speed up rendering of distant subvolumes, the
system can generate decompressed subvolumes at dif-
ferent resolutions. Here we can take advantage of the
fact that a downsampled version of the subvolume
can be generated from a downsampled version of the
codebooks. Thus there is no need to keep a separate
index set array for each level of detail in video mem-
ory, all we need is a small amount of extra memory
for the downsampled codebooks.

The system supports decompressed subvolumes with
136, 68, and 34 voxels along each axis. By the use of
normalized texture coordinates, the raycaster auto-
matically performs proper voxel access and filtering.
Only the opacity must be adjusted, we accomplish
this by using a separate 3D look-up table for each res-
olution.

During rendering, the proper resolution of each sub-
volume is selected according to the raypoint spacing
on neighboring rays, or, of course, according to user
mput.

3.2.6 Parallel Rendering on the Cluster

In general, the work can be partitioned in two ways:
object-space partitioning (OSP), and screen-space
partitioning (SSP). In OSP, a workpackage consists of
a subvolume. This is rendered to a private frame buf-
fer including the alpha-channel. Since a subvolume
can project to any part of the global frame (spanning
all displays), at least a subset of pixels need to be sent
over the network for blending into the local com-
pound frame buffer at the receiving node. Depending
on how many subvolumes contribute to a given
screen pixel, each final pixel may have caused multi-
ple transfers over the network. Although sophisticated
schemes have been developed to optimize this opera-
tion [14],[23], this pixel traffic still represents a
severe bottleneck, especially over relatively slow
GBit Ethernet. The upside is, though, that any subvol-
ume is processed at most once.

In SSP, a workpackage consists of a rectangular
region on the screen (a tile). A machine having been
assigned a certain rectangle renders this tile to com-
pletion, and sends the final pixels to the destination

Journal of WSCG

78

screen. Since the viewpoint can be at an arbitrary
location, each node needs a complete copy of the
data. Most obviously we have selected this method,
and use the RVQ-compression to fulfil this require-
ment.

In SSP, the view frustum of a given tile can intersect a
number of subvolumes, which contribute only par-
tially to the tile pixels. Such subvolumes need to be
processed again for neighboring tiles, which intro-
duces a certain overhead. Since the raycaster will not
process rays redundantly, but decompression will
only generate complete subvolumes, the overhead
mainly consists of redundant decompression (plus
redundant occlusion queries). Since the decompres-
sion is very fast, we opted for sacrificing GPU cycles
in favor of reduced network traffic.

Tiles are assigned dynamically on demand. Thus,
there is a scheduling thread in the system which hands
out tiles to requesting nodes. As a further optimiza-
tion, each requesting node first gets tiles from its own
display.

4. PERFORMANCE

A photo of the display wall showing a rendering of
the Visible Human Female is shown in Fig. 3. The
alpha-threshold for occlusion culling was set to 0.95.
Renderings like these rotating around the z-axis take
an average of 3.9 seconds per frame. If using only
downfiltered subvolumes, average rendering time

decreases to 2.8 or 2.3 seconds per frame, for 68> and

343 subvolumes, respectively. Tests have shown that
image completion time is reduced by roughly 50% if
empty pixel packets are transferred, i.e., only syn-
chronization messages are sent. This confirms our
choice of rendering mode, since the network is
already saturated with this minimal amount of pixel
data. We have included lossless image compression
before sending tile pixels (a LZW-variant), but coinci-
dentally the reduced transmission time was exactly
offset by compression and decompression times.
Thus, reducing network overhead remains a research
topic in this project.

5. CONCLUSIONS

We have presented a parallel volume graphics system
for rendering very large data sets on a high-resolution
display wall. It provides the following features:

e Compression of the data set down to 0.75bpp,
thereby enabling data set replication on all nodes,
as well as placement of large data sets entirely in
fast video memory,

» fast and simple decompression, entirely handled
by the GPU,

* on-the-fly classification and gradient shading,

* empty-space-skipping on a per-subvolume basis,
* occlusion culling on a per-subvolume basis,

* multi-resolution rendering,

» and parallel rendering with screen-space parti-
tioning.

ISSN 1213 — 6972

The system can render our compressed version of the
Visible Human Female at interactive speed. Still fine
details of the anatomy, such as thin blood vessels, are
preserved.

Future work will be directed at improving the image
quality, and at increasing the rendering speed.
Improving the image quality is not a matter of better
rendering in the first place, but of better compression.
Thus we will try to increase the PSNR and alleviate
the block artifacts in the decompressed image. As a
first step the use of even larger codebooks will be
investigated, which will most likely not affect render-
ing speed.

The latter can still be improved by further optimizing
the CUDA kernels. It is not always intuitive which
codes lead to a speed-up and why. Thus, kernel opti-
mization often means time-consuming try-and-error.
We are confident, however, that significant speed
gains can still be achieved.

6. REFERENCES

(1]
(2]

K. Akeley, “RealityEngine Graphics”, Proc.
ACM Siggraph 93 Conference, pp. 109-116

C. F. Barnes, S. A. Rizvi, “Advances in Resid-
ual Vector Quantization: A Review”, 1EEE
Trans. on Image Processing, Vol. 5, No. 2, 1996
B. Cabral, N. Cam, J. Foran, “Accelerated Vol-
ume Rendering and Tomographic Reconstruc-
tion Using Texture Mapping Hardware”, Proc.
ACM Symposium on Volume Visualization
1994, pp. 91-97

U. Cullip, U. Neumann, “Accelerating Volume
Reconstruction with 3D Texture Hardware”,
UNC Tech Report TR93-0027, 1993

K. Engel, M. Kraus, T. Ertl, “High-quality pre-
integrated volume rendering using hardware-
accelerated pixel shading”, Proc. Eurograph-
ics/SIGGRAPH Workshop on Graphics Hard-
ware, 2001

J. E. Fowler, R. Yagel, “Lossless Compression
of Volume Data”, Proc. ACM Symposium on
Volume Visualization 1994, pp. 43-50

S. Guthe, M. Wand, J. Gonser, W. Strasser,
“Interactive Rendering of Large Volume Data
Sets“, Proc. IEEE Visualization Conference
2002, Boston, MA, pp. 53-60

M. Hadwiger, C. Berger, H. Hauser, “High-
quality two-level volume rendering of seg-
mented data sets on consumer graphics hard-
ware*, Proc. IEEE Visualization Conference
2003, pp. 301-308

I. Thm, S. Park, “Wavelet-based 3D compres-
sion scheme for very large volume data”, Proc.
Graphics Interface 1998, pp. 107-116

B. H. Juang, A. H. Gray, “Multiple Stage Vec-
tor Quantization for Speech Coding”, Proc.
IEEE Int. Conf. Acoust., Speech, Signal Pro-
cessing, Vol. 1, Apr. 1982, pp. 597-600

J. Kniss, G. Kindelmann, C. Hansen, “Interac-
tive volume rendering using multi-dimensional
transfer functions and direct manipulation wid-
gets”, Proc. IEEE Visualization Conference
2001, pp. 255-262

G. Knittel, "High-Speed Volume Rendering
Using Redundant Block Compression", Proc.

(9]

[10]

[11]

[12]

Journal of WSCG

79

[13]

[14]

[15]

[16]

[19]

[20]

[24]

[25]

IEEE Visualization ’95 Conference, Atlanta,
GA, October 29 - November 3, 1995, pages
176-183

S. P. Lloyd, “Least squares quantization in
PCM”, IEEE Trans. on Information Theory,
Vol. 28, 1982, pages 129-137

K.-L. Ma, J. S. Painter, C. D. Hansen, M. F.
Krogh, “Parallel volume rendering using
binary-swap compositing”, TEEE Computer
Graphics and Applications, Vol. 14, No. 4,
1994, pp. 59-68

M. Meissner, U. Hoffmann, W. Strasser,
“Enabling Classification and Shading for 3D
Texture Mapping Based Volume Rendering®,
Proc. 10th IEEE Visualization Conference
1999 (VIS '99), p. 32

K. Moreland, D. Thompson, “From Cluster to
Wall with VTK”, IEEE Symposium on Parallel
and Large-Data Visualization and Graphics
2003, October 20-21, 2003, Seattle, Washing-
ton, USA, pp. 25-31

K. Nguyen, D. Saupe, “Rapid high quality com-
pression of volume data for visualization®,
Computer Graphics Forum 20, 13, 2001

P. Ning, L. Hesselink, “Vector Quantization for
Volume Rendering”, Proc. ACM Workshop on
Volume Visualization 1992, Boston, MA, pp.
69-74

NVIDIA Corporation, “CUDA Zone”, http://
www.nvidia.com/object/cuda_home.html#

F. Rodler, “Wavelet based 3D compression with
fast random access for very large volume
data”, Proc. Pacific Graphics 1999, pp. 108-
117

S. Roettger, S. Guthe, D. Weiskopf, T. Ertl, W.
Strasser, “Smart Hardware-Accelerated Vol-
ume Rendering”, Proc. EG/IEEE TCVG Sym-
posium on Visualization 2003, pp. 231-301

J. Schneider, R. Westermann, “Compression
Domain Volume Rendering®, Proc. 14th IEEE
Visualization Conference 2003 (VIS’03), p. 39

A. Stompel, K.-L. Ma, E. B. Lum, J. Ahrens, J.
Patchett, “SLIC: Scheduled Linear Image Com-
positing for Parallel Volume Rendering®, IEEE
Symposium on Parallel and Large-Data Visual-
ization and Graphics 2003, October 20-21,
2003, Seattle, Washington, USA, pp. 33-40

M. Strengert, M. Magallon, D. Weiskopf, S.
Guthe, T. Ertl, “Hierarchical Visualization and
Compression of Large Volume Datasets Using
GPU Clusters”, Proc. EG Symposium on Paral-
lel Graphics and Visualization 2004, pp. 41-48

United States National Library of Medicine,
“The Visible Human Project”, http://
www.nlm.nih.gov/research/visible/
getting_data.html

ISSN 1213 — 6972

Fig. 3: The Display Wall.

Journal of WSCG 80 ISSN 1213 — 6972

	!_J_WSCG2009_Numbered.pdf
	C43-full

