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ABSTRACT

Distant astrophysical objects like planetary nebulae can normally only be observed from a single point of view. Assuming

a cylindrically symmetric geometry, one can nevertheless create 3D models of those objects using tomographic methods.

We solve the resulting algebraic equations efficiently on graphics hardware. Small deviations from axial symmetry are then

corrected using heuristic methods, because the arising 3D models are, in general, no longer unambiguously defined. We

visualize the models using real-time volume rendering. Models for actual planetary nebulae created by this approach match

the observational data acquired from the earth’s viewpoint, while also looking plausible from other viewpoints for which no

experimental data is available.
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1 INTRODUCTION

When stars not larger than a few sun masses die, they

often eject part of their matter until only a small glow-

ing nucleus is left in the center of a gaseous shell.

These objects are called planetary nebulae. Their

shape is often spherical or bipolar (i.e. cylindrically

symmetric), but irregular shapes exist as well. Due

to the radiation of the central star, the atoms in the

shell get ionized and begin to emit light of character-

istic wavelengths when the electrons recombine. Usu-

ally, there is not much absorption in the shell, so that

only emissive effects have to be taken into account for

reconstruction and visualization. A more comprehen-

sive introduction to planetary nebulae can be found in

[OF06].

In astrophysical research on planetary nebulae, be-

ing able to determine plausible models of their three-

dimensional shape is an important precondition for a

better understanding of the physical processes under-

lying their structure. For example, simulations of pho-

toionization processes rely on a model of gas volume

densities as input data and can in turn validate those

models with respect to their physical realism. Interac-

tive 3D visualizations of planetary nebulae can also be

useful for scientific and educational purposes, such as

digital planetariums.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Figure 1: The Cat’s Eye Nebula. Top: images

taken using filters for 487nm, 502nm and 656nm

that are assigned to the red, green and blue color

channels, respectively. Middle and bottom:

asymmetry-corrected reconstruction, view from

earth and from outer space.
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While some algorithms already exist to reconstruct

the 3D shapes of planetary nebulae using a single in-

put image, we present a fast, GPU-based approach

that not only outperforms existing solutions in terms

of computing time, but also includes asymmetric fea-

tures without requiring further input data.

2 RELATED WORK

While planetary nebulae are a common research

object in astrophysics and astronomy, their three-

dimensional visualization has been purely artistic

work for a long time. One notable exception is

the rendering of the Orion nebula by Nadeau et.

al. [NGN+01], who created a scientifically accurate

fly-through animation of that nebula, but the 3D model

they use had to be worked out by hand by astronomers.

A large amount of astronomical research work is done

on the subject of classifying [Cur18, KK68] and

explaining [KPF78, CP83] the three-dimensional

structure of planetary nebulae and to simulate the

physical processes inside planetary nebulae for the

proposed 3D geometries in order to confirm these

observational findings [MF89, AKR00, EMB+03].

However, the processes leading to the observed

structures are still not well understood, and reliable

determination of their 3D shape is an open problem.

Sabbadin et al. [Sab84, SCB+00] as well as

Saurer [Sau97] take a semi-automatic physics-based

approach for the reconstruction of the 3D geometry of

planetary nebulae. They assume that the velocity of

a certain region of gas around the nebula is strongly

correlated to its distance from the central star. Calcu-

lating the Doppler shift of some well-known emission

lines allows to get the velocity component towards

the observer. Combining these, depth information

can be reconstructed. However, the relation between

velocity and distance from the central star is generally

unknown, and exact Doppler shift measurement

requires elaborate experimental setups, while our

reconstruction approach relies on easily available

photographic images only.

Methods for tomographic reconstruction of axisym-

metric objects based on a single image have been pro-

posed by Hanson [Han93], who applies this approach

to man-made objects with known and theoretically

perfect axisymmetry.

Magnor et al. [MKHD04, MKHD05] present a hard-

ware accelerated reconstruction method for planetary

nebulae that works with a single photograph as in-

put. Their analysis-by-synthesis approach is based on

the assumption of axial symmetry and Constrained In-

verse Volume Rendering (CIVR). While they also pro-

pose corrections for small deviations from axial sym-

metry, these corrections are not realized in the pro-

vided examples. Furthermore, the reconstruction us-

ing their approach is computationally very expensive.

Linţu et al. have proposed a variant of the above al-

gorithm that estimates absorption and scattering using

an infrared image of the same object, allowing to re-

construct the dust density as well and thereby extend-

ing the range of reconstructible objects [LLM+07b,

LLM+07a].

Another piece of work by Linţu et al. [LHM+07]

describes a method to reconstruct the volume den-

sity distribution of dust in reflection nebulae using an

analysis-by-synthesis approach. The algorithm does

not rely on symmetry assumptions but exploits the

special properties of light transport in an environment

dominated by scattering and absorption to produce

non-exact but plausible 3D volumes. However, these

properties are not present in planetary nebulae which

are usually dominated by emission, and the method

can therefore not be applied.

3 ALGEBRAIC RECONSTRUCTION

A common approach for getting three-dimensional

volume models from two-dimensional images is tomo-

graphic reconstruction [KS88]. This method is used,

for example, in computed tomography (CT) to get

volume densities out of multiple x-ray images of an

object. While in the case of CT images the density of

the object causes absorption, the contrary is the case

for planetary nebulae, which emit light proportionally

to the density of ionized gas. The intensity Ii of a

certain pixel i in a discrete two-dimensional image

of a planetary nebula is just the integral over all the

emission densities along the incident light ray Ray(i)
of this pixel. Using a discrete volume model, this

can be written as a sum over all volume elements v j,

where each summand is the length of the ray that lies

within the volume element (denoted by |Ray(i)∩ v j|),
multiplied by its emission density ρ j:

Ii = ∑
j

|Ray(i)∩ v j| ·ρ j, (1)

This system of linear equations, usually written as

Ax = b with x j = ρ j, bi = Ii and Ai j = |Ray(i)∩v j|, can

now be solved for the ρ j. Under certain preconditions,

this gives a unique solution for the volume emission

densities.

For the solution to be uniquely defined, the rank

of the matrix A must be at least equal to the num-

ber of volume elements. This is usually achieved by

using images from multiple viewpoints. In practice,

the system will almost always be overdetermined, as

one would rather use more pixels than necessary to get

more stable results. An approximate solution can then

be computed using iterative algorithms that minimize

the 2-norm ||Ax−b||2 of the residual error.

For most astrophysical objects, getting images from

multiple viewpoints is impossible due to the large dis-

tance to those objects. This means that if a regular grid
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of volume elements (or voxels) is used, the linear sys-

tem is not uniquely defined and would in fact not yield

any information about the three-dimensional structure

of the object.

This problem can be solved by making additional

assumptions about the geometry of the object, e.g. an

axial symmetry that is common in planetary nebulae.

Such symmetries can easily be reflected in the choice

of voxels by combining all regions of space that are

assumed to have the same emission density into one

voxel (Fig. 2). This can reduce the three-dimensional

complexity of the voxels (x,y,z) to a two-dimensional

one in the case of cylindrical voxels (r,z) so that the

solution of the linear system is unique.

The appearance of axisymmetric models obviously

depends strongly on the choice of the symmetry axis.

Several possibilities exist for determining a plausible

symmetry axis, most of which involve physical rea-

soning and further observational data. One automatic

way to find a symmetry axis would be to determine its

angle within the image plane by principal components

analysis and then look for elliptical features in the im-

age that are likely to be circles in the real object. The

axis angle with respect to the image plane can then

be calculated from this projection, although a natural

ambivalence between backward and forward inclined

axes remains. For our test cases, the symmetry axes

were usually determined by hand.

Figure 2: A voxel representing the axial

symmetry of the geometry. Since all locations

that lie in the same voxel share the same intensity,

using voxels of this form guarantees axial

symmetry of the result.

While symmetries are common in planetary nebu-

lae, their symmetry is never perfect. To get more real-

istic results, the residual pixel intensities b−Axapprox
for some approximate (and perfectly symmetric) solu-

tion xapprox can be distributed among the voxels that

contribute to the intensity of the corresponding pixel.

Because no depth information is available for these un-

matched emissivity densities, the distribution among

the voxels is not uniquely defined and can in fact only

be chosen using heuristic methods.

4 A FAST RECONSTRUCTION AL-

GORITHM

4.1 Specifying the Linear System

In order to specify the system of linear equations

(eq. 1), we need to calculate the matrix elements Ai j

and the right-hand vector b. While the bi are already

given by the intensities of the pixels, setting up the Ai j

requires further calculations.

We recall that Ai j = |Ray(i)∩ v j| is the length of

the ray through pixel i that lies within the volume ele-

ment j. This means we have to calculate the intersec-

tion points of lines with voxels that have the form of a

hollow cylinder (cf. Fig. 2). Since the viewing angle is

usually very small due to the large distance to the ob-

ject, we can assume that all the incident light rays are

orthogonal to the image plane, so that they are defined

as

r(t) =





px

py

0



+ t





0

0

−1





, (2)

where px and py are the pixel x and y coordi-

nates, respectively. This means we are using a

three-dimensionally extended version of the image

coordinate system for our calculations.

4.2 Solving the Linear System

The linear system Ax = b must now be solved for

the voxel intensities x. Since the system is usually

overdetermined, in general only an approximate solu-

tion minimizing the residual norm ||Ax−b||2 is possi-

ble. This solution can be determined by iterative algo-

rithms such as the Conjugate Gradient Least Squares

(CGLS) method [Han96].

The fundamental idea of the Conjugate Gradient al-

gorithm is that solving Ax = b with A symmetric and

positive definite is equivalent to minimizing f (x) =
1
2
xTAx − bTx. Starting from x = 0, each iteration

step k modifies the intermediate solution vector xk by

descending in the direction of the gradient of f (x),
so that xk+1 = xk + εk∇ f (x)|x=xk

(where ∇ is the

gradient operator). For fast convergence, it is im-

portant that εk is computed such that xk+1 ends up

close to the one-dimensional minimum in direction

∇ f (x)|x=xk
, and that the directions of descent are con-

jugate to each other, that means that for all directions

di = ∇ f (x)|x=xi
, dj = ∇ f (x)|x=x j

: di
TAdj = 0.

In our case, however, the matrix A does not fulfill

the above conditions. But since for any matrix A the

matrix product ATA is symmetric and positive defi-

nite, we can multiply our system Ax = b by AT and

solve ATAx = ATb instead. The CGLS implementation

does this multiplication implicitly, preserving sparsity

of the matrix A, which allows for more efficient (mem-

ory saving) algorithms.
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Since the norm ||x||2 of the intermediate solutions

increases monotonically during the iteration, it is nec-

essary to start the iteration with x = 0 in order to not

exclude any possible solution. The residual norm, on

the other hand, is guaranteed to decrease monotoni-

cally, so convergence is guaranteed if numerical er-

rors can be neglected. In practice, the iteration can be

stopped as soon as the convergence speed falls below

a chosen minimal value.

In the original algorithm, the value range for the vec-

tor x is not restricted in any way. Particularly, the en-

tries of the solution vector can be negative. Since neg-

ative emission intensities are impossible (they cannot

even be regarded as a physically valid model for ab-

sorption), the intermediate solutions have to be pro-

jected onto the subspace of positive solutions after

each step so that the positivity of the solution is guar-

anteed [IM04].

After this step, we have obtained a radial map of the

model, that is a 2D grid of densities whose axes are

the r and z cylinder coordinates of the corresponding

voxel. Rotating this map around the z axis gives the

full axisymmetric 3D model.

Implementations of iterative least-squares solvers

for linear systems are widely available (Matlab’s

x=A\b operation, for example), but normally do not

allow for additional restrictions to the solution vector

x. Since we need to guarantee x j ≥ 0 for all vector

components, we adapt an existing implementation

[han] to suit our needs.

For the matrix manipulations that are used in the

algorithm we make use of the GPU’s parallel com-

puting power using the nvidia CUBLAS 1 library.

This approach speeds up the reconstruction process

by two orders of magnitude (Fig. 3) with respect to a

purely CPU-based implementation of the same library
2. However, the matrix size in the GPU accelerated

version is limited by the graphics card memory and

the maximum texture size3, but the resulting limit on

the model size is usually not much smaller than the

limit imposed by the quality of available input images.

4.3 Correcting for Asymmetries

While from a macroscopic point of view many plane-

tary nebulae show axial symmetry, on a smaller scale

there is always some deviation from perfect symmetry.

This can be seen in the residual image that is left when

the projection of the reconstructed model onto the im-

age plane is subtracted from the real image. We dis-

1 http://www.nvidia.com/object/cuda_develop.

html
2 The UBLAS library from http://www.boost.org/doc/

libs/1_35_0.
3 On our setup with 768 MB of video RAM, the model is restricted

to about 7000 entries in the radial map, or about 120 slices and 60

rings.

Figure 3: Comparison of computing time for CPU

and GPU based implementations, in logarithmic

scale, for matrices of size 1x1 up to size

14000x14000.

tribute this residual intensity among the voxels of our

model so that the projection equals the original image

(cf. Fig. 5).

Since there is no depth information available for the

asymmetric part of the intensity, this distribution will

always be ambiguous, so we have to choose a “dis-

tribution function” that gives subjectively good results

when viewed from different angles.

To break up the axial symmetry, the model of cylin-

drical voxels is first converted into a model of cubic

voxels. For efficiency, the model is aligned to the im-

age plane, so that its x and y resolution equal the im-

age x and y resolution. The z resolution is chosen such

that the whole model fits into the voxel volume. Since

by that choice of the cubic voxel model every voxel

only contributes to a single pixel, we do not need to

take interdependencies between voxels into account.

So the only decision that is left is which voxels that

share common x and y coordinates will get how much

of the residual intensity of the pixel (x,y).
A convenient distribution function turns out to be

the following: Each voxel gets an amount of residual

intensity that is proportional to the amount of intensity

it already contributes to the pixel intensity4. So if the

reconstructed pixel intensity is Ip = ∑v∈V Iv where V

is the set of all voxels that contribute to the current

pixel, the residual intensity is Ir and the original pixel

intensity is Io = Ip + Ir, the new voxel intensities are

I′v = Iv +
Iv

Ip

Ir = Iv

(

1+
Ir

Ip

)

= Iv

(

Io

Ip

)

. (3)

As this is just a multiplication of all voxels that are

projected onto the same pixel with a common value

4 Alternative approaches could use more assumptions about where

asymmetries are likely to occur. For example, one might assume

that the exploding star itself is perfectly symmetric and only when

the expanding gas cloud hits small space debris, it is asymmetrically

deformed. This would imply that the residual should preferably be

applied to the outer regions of the shell.
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Io
Ip

, this is efficient to calculate knowing the projected

intensity Ip and the residual Ir. The function is also op-

timal in the sense that it guarantees non-negative voxel

intensities whenever possible, which in our case is al-

ways the case because the pixel intensities are always

non-negative. This means that the rendered model will

exactly reproduce the observed image when rendered

from the original point of view, provided that the voxel

resolution is large enough. It also preserves visual

coherence between neighboring voxels which usually

have similar intensities.

4.4 Visualizing the Results

The output of the reconstruction algorithm is a

three-dimensional grid of cubic voxels, each of which

has a certain emission density. To visualize this

grid from an arbitrary viewpoint, volume ray casting

can be used. Since the model is purely emissive,

this means that from each screen pixel a ray is cast

through the volume and intensities along the ray are

summed up. This volume ray casting process is well

suited for implementation on graphics hardware. The

voxel model, for example, can easily be represented

as a three-dimensional texture, and integrating the

intensities along a given ray can be approximated

by summing up the texture values at a number of

fixed-distance sampling points along the ray using a

fragment shader.

In order to get an impression of the chemical compo-

sition of a planetary nebula, reconstructed voxel mod-

els for different wavelengths can be shown simultane-

ously, assigning a color to each of them. Since the

interesting spectral lines are often too close to each

other (like the hydrogen and nitrogen lines at 656nm

and 658nm, respectively) or even invisible to the hu-

man eye, false-color display is used. In the simplest

case, when three different source images are to be dis-

played, these are naturally assigned to the red, green

and blue color channels.

5 RESULTS

5.1 An Artificial Test Case

In order to verify the accurateness of our reconstruc-

tion, we first reconstruct an artificial model with per-

fect axisymmetry. For this, a radial map of intensities

is drawn and projected into the image plane at differ-

ent inclination angles. The resulting images are then

reconstructed and the reconstructed intensity maps are

compared to the original. We can show that for inclina-

tions at least up to 45 degrees, the reconstructed radial

map very closely resembles the original (see Fig. 4).

5.2 NGC7009 (Saturn Nebula)

The Saturn Nebula (Fig. 5), discovered by William

Herschel in 1782, shows a bright, slightly S-shaped

Figure 4: An artificial “nebula” used for testing

the reconstruction (from top to bottom and left to

right): radial map, rendered view with 35 degrees

inclination, reconstructed radial map

(reconstructed with somewhat lower resolution

and scaled to the size of the original radial map)

and difference image of the radial maps

structure in the center, surrounded by a darker, barrel-

shaped one. The S-shaped structure has noticeable

reddish glowing tips. The original images were mod-

erately disturbed by stars, so slight preprocessing had

to be done.

5.3 Mz3 (Ant Nebula)

The Ant Nebula, discovered in 1922 by Donald Men-

zel, has a number of different gaseous outflows from

its bright center. The most visible outflow consists

of two approximately spherical lobes, but more sub-

tle “rays” can also be observed outside these lobes.

Interestingly, all these features share a common axis

of symmetry, so in principle the simultaneous recon-

struction of all important features would be possible

(Fig. 6). However, due to the large difference in inten-

sity and the linear scale chosen in the visualization,

these structures cannot be observed together in one

output image. Anyway, the interesting fine-grained

asymmetries of the spherical lobes are visible in the

asymmetry-corrected output (Fig. 7).

Due to the presence of many bright stars in the orig-

inal images, heavy preprocessing5 needed to be done.

This may have caused loss of fine-grained structures

in some areas.

Magnor et. al also reconstructed the Ant Nebula us-

ing their CIVR approach. The algebraic reconstruc-

tion algorithm that we implement outperforms CIVR

– which leads to results that are optically very simi-

5 including removing the background by thresholding, and removing

stars by masking and filling the masked regions by diffusion
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lar to the purely symmetric part of our reconstruction

– by far: while using CIVR, “the reconstruction of

a 128x32-pixel density map takes approximately one

day on a 2.4 GHz PC in conjunction with an nVidia

GeForce FX 3000 graphics card” [MKHD04], our al-

gebraic approach can reconstruct the nebula with com-

parable resolution in a matter of seconds, including

asymmetry correction.

5.4 NGC6543 (Cat’s Eye Nebula)

The Cat’s Eye Nebula (Fig. 1), discovered by William

Herschel in 1786, has a very complex and not quite

axisymmetric structure. Its reconstruction is neverthe-

less quite accurate due to the asymmetry correction.

Due to its relatively large brightness compared to the

surrounding stars, no preprocessing was needed to get

clean results.

6 CONCLUSIONS

We have presented an efficient algebraic reconstruc-

tion approach to derive 3D information from single

images of axisymmetric and purely emissive objects

like planetary nebulae. Axial symmetry is broken in a

controlled way in order to achieve closer resemblance

between the model and observational data. The cal-

culations are carried out efficiently by making use of

the GPU’s parallel computing power, and the resulting

models closely resemble the actual photographs.

There are, however, some limitations inherent to our

approach. The asymmetry correction is not based on

any physical measurement and can only be heuristi-

cally and ambigously determined, as long as no ad-

ditional data is provided. The reconstruction is also

only possible for nebulae whose axis of symmetry is

not too far inclined with respect to the image plane be-

cause no reliable 3D information can be derived if the

axis is close to parallel to the viewing direction. For

the same reason, objects without symmetry cannot be

reconstructed at all.

However, for axisymmetric objects the results

closely resemble the original. The CGLS algorithm

is guaranteed to converge, and small asymmetric

features can be included in such a way that the origi-

nal image is exactly reconstructed. For objects with

spherical symmetry, the algorithm is also applicable,

though it could be optimized further to benefit from

the stricter constraints.

The resulting three-dimensional models can be ren-

dered from arbitrary perspectives. This allows for a

wide field of applications, in scientific as well as artis-

tic contexts. They may help understanding the com-

plex structure of planetary nebulae and the physical

mechanisms that underlie their formation.

In ongoing research we evaluate the possibility of

allowing a wider variety of symmetry constraints. A

user-supplied set of model parts such as cylinders,

spheres, and other geometric primitives that may rep-

resent a physical explanation of the shape of the object

could be used instead of just a single cylinder. This

would allow to model more complex symmetries such

as the helix that is present in the Saturn Nebula.

In order to assure physical realism, depth informa-

tion from Doppler shift measurements could easily be

incorporated into the error function, which would al-

low to loosen the symmetry constraints where better

depth information is available.
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Figure 5: The Saturn Nebula. From top to

bottom: images taken using filters for 502nm,

555nm and 658nm that are assigned to the red,

green and blue color channels, respectively;

reconstruction without asymmetry correction;

reconstruction with asymmetry correction, from

earth; reconstruction with asymmetry correction,

from outer space. Note how the S-shape of the

original image is lost during reconstruction

because it violates the axisymmetry constraint,

and how the asymmetry correction restores this

important feature.
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Figure 6: Reconstruction of the Ant Nebula

without asymmetry correction: radial map (top)

and reconstructed view from earth (middle) and

from outer space (bottom). The red, green and

blue color channels are assigned to 673nm,

658nm and 487nm, respectively.

Figure 7: The Ant Nebula. Top: images taken

using filters for 487nm, 658nm and 673nm that

are assigned to the red, green and blue color

channels, respectively. Middle and bottom:

asymmetry-corrected reconstruction, view from

earth and from outer space. In the bottom image,

artifacts of the asymmetry correction due to

overly bright regions in the input image can be

observed as lines parallel to the viewing direction

of the original image.
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