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Implementation of Selected Bio-Inspired 
Techniques by Programmable Logic Devices 

ABSTRACT 

This thesis deals with the analyses and the implementation of selected unconventional  
bio-inspired techniques by programmable logic devices. The main objective of the thesis is 
to design and implement three selected bio-inspired techniques.  

In the first part, the focus is given to Cartesian Genetic Programming (CGP). The emphasis 
is put on the utilization in the domain of the evolvable hardware and the evolutionary 
design of digital circuits. The thesis presents modifications of CGP which cause that the 
wasted fitness calculations are omitted. After the analyses, the implementation of CGP 
with introduced modifications by an FPGA device is discussed. The author of the thesis 
introduces a special component detecting active genes in genotypes/chromosomes.  

The second part deals with the design of the FIR filter whose parameters are obtained 
using a Standard Genetic Algorithm. The author explores the usage problems of 
evolutionary algorithms in adaptive systems domain, then discusses the adaptive FIR filter 
implemented by an FPGA device, and continues by the discussion of advantages and 
disadvantages of such implementation. The thesis also compares the use of different 
crossover operators. 

The third part of the thesis describes the implementation of the fast image recognition 
based on n-tuple neural networks. It explores an n-tuple methodology using node 
‘grouping’ and the possible advantages offered by this little-known technique. A novel 
approach to the organization of the neural networks data in the n-tuple memory is 
introduced. The author performs tests on a real-world recognition task – the recognition of 
road signs. Then the test results are presented, discussed and compared with conventional 
methods and other implementations. 

The thesis yields these main contributions: 1) hardware implementation (by an FPGA 
device) of CGP reducing the number of performed fitness calculations; 2) the software tool 
for evolutionary design with the support of the generation of VHDL source codes;  
3) a novel approach to the memory organization of the neural networks data in the n-tuple 
domain. 

KEYWORDS 
CGP; Cartesian Genetic Programming; FPGA; image recognition; n-tuple; neural 

networks; evolutionary design; evolvable hardware  
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Implementace vybraných biologií inspirovaných 
technik v programovatelných logických obvodech 

 

 

ANOTACE 

Tato disertační práce se zabývá vybranými nekonvenčními technikami, které nalézají svoji 

inspiraci v biologii. Hlavní cíl práce je analyzovat tyto techniky, a tři vybrané 

implementovat v obvodech programovatelné logiky. 

První část práce se věnuje Kartézskému genetickému programování (KGP), důraz je 
kladen na jeho využití v oblasti evolučního návrhu a v oblasti vyvíjejících se obvodů. 
Autor představuje modifikaci tohoto algoritmu, která omezuje počet volání hodnotící 
(účelové) funkce. Práce se následně věnuje implementaci tohoto algoritmu v obvodu 
FPGA. Autor představuje speciální komponentu detekující aktivní geny v genotypech 
jedinců.  

Druhá část práce demonstruje návrh FIR filtru, jehož parametry jsou získávány pomocí 
Standardního genetického algoritmu. Autor se věnuje problematice evolučních algoritmů 
v oblasti adaptivních systémů, následně diskutuje vlastní implementaci filtru. Práce také 
porovnává různé varianty rekombinačního operátoru. 

Závěrečné část práce popisuje implementaci systému pro rozpoznávání obrazu, který je 
založen na n-tuple neuronových sítích. Autor seznamuje čtenáře s metodou seskupování a 
možnými výhodami, které nabízejí n-tuple neuronové sítě. Následně autor představuje 
nový přístup k organizaci dat neuronové sítě. Navržený a implementovaný systém pro 
rozpoznávání obrazu je testován na aplikaci rozpoznávání dopravních značek; výsledky 
testů jsou porovnávány s ostatními metodami a implementacemi. 

Hlavní přínosy práce jsou následující: 1) hardwarová implementace (v obvodu FPGA) 
algoritmu KGP omezující počet volání hodnotící funkce; 2) softwarový nástroj pro 
evoluční návrh s automatickým generováním VHDL zdrojových kódů; 3) nový přístup 
k paměťové organizaci v oblasti n-tuple neuronových sítí. 

KLÍČOVÁ SLOVA 

KGP; Kartézské genetické programování; FPGA; rozpoznávání obrazu; n-tuple; neuronové 

sítě; evoluční návrh; vyvíjející se obvody   
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1 INTRODUCTION 

he Industrial Revolution has caused the transition to new manufacturing 

processes. Since then, human work has been gradually replaced by machines. 

Inventions as steam engine, sewing machine or telegraph meant important 

changes in human thinking. Suddenly, people’s power and qualifications were not needed 

for a broad range of activities.  

At the present ‘transistor’ time, electronic systems occupy an important position in our 

lives. The use of cell phones, computers or modern measuring technology is our daily 

bread. It also caused the formation of the branch of artificial intelligence, among others. 

The progressive part of this branch is created by evolutionary algorithms (or evolutionary 

computational techniques in general). These algorithms are inspired by the biological 

evolution (Darwin’s theory) and are successfully used in design domain. A lot of products 

(optical systems, mechanical systems, electronic circuits, antennas, etc.) were designed by 

means of these methods. Several of these products were patented and provide better 

behaviour than solutions developed by qualified and creative human workers. Thus these 

algorithms gradually replace human creative thinking in the same way as steam power 

replaced human work in the past.  

In the domain of new electronic components, the emphasis is placed on their flexibility. 

This feature is represented by the possibility of reconfiguration. The process of 

development and research can be significantly accelerated if the component is able to 

change its functionality dynamically in time. Nowadays, such components exist in digital 

and analogue domain of electronics. However, the modern reconfigurable devices are 

represented mainly by an FPGA device.  These devices may implement large and complex 

digital systems. 

The intersection of these introduced approaches helped to establish a novel scientific field 

that is called evolvable hardware. The primary aim of this branch is the implementation of 

adaptive systems interacting with the environment; eventually, the systems that are 

designed automatically. 

However, there are also other bio-inspired techniques that can be utilised in the electronics; 

the evolutionary algorithms represent only one of them. This thesis deals with the 

implementation of some selected unconventional bio-inspired techniques by FPGA 

devices.  

T 
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1.1 Motivation 

The primary motivation for writing this thesis was an encounter with the Thompson’s 

publication [1]. Thompson implemented and performed a very interesting experiment 

which often serves as task for the understanding of evolvable hardware domain. In this 

case-study, Thompson intended to design a circuit that discriminates between 1 kHz and 

10 kHz input square signals by the setting of an output signal. He chose the Xilinx XC6216 

FPGA device as a target platform. This device supports a partial reconfiguration and the 

format of its configuration data was known. Note that no configuration can damage the 

device – unfortunately it does not apply to today’s FPGA devices. An FPGA design is 

usually developed by means of Hardware Description Language (HDL). However, 

Thompson did not use it; the configuration of the FPGA device was created by the 

evolutionary algorithm. This algorithm was performed by a personal computer connected 

with the FPGA device and generated candidate solutions – candidate configurations. Each 

of these configurations was programmed into the FPGA configuration memory and the 

ability of discrimination was evaluated by an analogue integrator and a tone generator (a 

discriminator response to the input signal was tested). The output of the evaluation process 

was sent back to the PC. According to obtained responses, the evolutionary algorithm 

continues. The evolution process took roughly two weeks. However, after 3,500 generation 

cycles, the discriminator worked almost perfectly – only infrequent glitches were 

detectable, but they were eliminated after another 600 generations. It is necessary to note 

that no clock signal was used. The results of the experiment were impressive. However, the 

result of the evolution did not work perfectly in other FPGA devices. It was always needed 

to run the evolutionary algorithm on each FPGA device. Even when the element with no 

path to output was removed, the function failed. Further investigations showed that the 

correct functionality of the discriminator depended also on the power supply voltage and 

the ambient temperature. This behaviour causes that the solution generated by the 

evolution is not portable. The evolutionary algorithm produced a circuit where 

asynchronous feedbacks and the delays of paths are utilised for the correct function. For 

that reason it is obvious that the functionality is not caused only by the configuration data, 

but it depends also on the material and the manufacturing process. Furthermore, it is 

fascinating that the evolutionary algorithms make it possible to exploit physical properties 

of materials. This fact is called evolution in materio [2]. 
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Another very interesting experiment was performed by Harding and Miller and published 

in [3]; the authors used an LCD display as reconfigurable structure. They fed defined 

places of the LCD by various values of voltage. Indeed, the places and voltage values were 

obtained by an evolutionary algorithm. The authors showed that it was possible to 

configure the LCD so that it worked as a filter, a circuit closer (a transistor), etc.  

The author of this thesis found out that the project published in [4] is considered as the first 

evolvable hardware. This project is based on the use of GAL16Z8 device. 

There are a lot of inspiring projects. For example, the prosthetic hand controller based on 

evolvable chip is published in [5]. It provides the digital PLA circuits with a  

16-bit processor. The PLA circuits implement the controller according to the evolutionary 

algorithm performed by the processor. This approach yields improvement compared to 

other methods. The same hardware was used for the design of a robot navigation system 

[6]. The evolutionary algorithm was also used by NASA for the design of a satellite 

antenna within “Space Technology 5” mission [7]. The above-mentioned and other 

projects are described in [8]. The monographs [9][10][11] deal with the domain of 

evolvable hardware in detail. 

However, as has already been noted, the evolutionary algorithms represent only one group 

of the bio-inspired hardware domain. The kind of biological inspiration is classified by the 

means of the so-called POE model. This model represents the three-dimensional space 

with the axes P (Phylogeny), O (Ontogeny) and E (Epigenesis) [12]. The position in this 

space expresses the degree and kind of biological inspiration. The evolutionary algorithms 

belong to the P axe. The Ontogeny deals with the development of multicellular organisms. 

The cellular automata are a typical representative of this approach. The Epigenesis serves 

as inspiration for immunological electronics [13] and primary neural electronics (neural 

networks). Neural networks represent the second main topic of this thesis; concretely,  

n-tuple neural networks were the subject of research.   

Often, one of the main tasks of neural networks is to recognize the object within the 

neighbourhood and to opt for the best action based upon image understanding. This 

objective is usually very difficult and time-consuming. For this reason, specialised 

hardware systems are designed. The n-tuple methodology was chosen because it is very 

fast in hardware and comparable with other conventional methods in performance. A 

detailed comparison in different applications is published by Morciniec and Rohwer [14]. 
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The original n-tuple methodology of Bledsoe and Browning from 1959 [15] has not been 

realised until later when it could be implemented by means of ‘deterministic’ logic nodes. 

Hence this may be considered to be one of the oldest pattern recognition techniques based 

on logic node neural networks. This method was later popularised by Aleksander [16][17] 

and realised in hardware [18][19][20]. In the early 1990’s, several software simulations 

were created, which led to the design of an improved software system [21]. It included the 

image pre-processing stage [22] and the image recognition stage [23]. The system 

supported the recognition of binary, greyscale, and colour images. The novel derivative for 

this colour image recognition was published in [24][25].  

The n-tuple methodology was originated (by Bledsoe and Browning) for the purpose of 

recognising printed characters and, subsequently, hand-written characters. Nevertheless, 

the use of the n-tuple method is not limited only to this purpose. In the past, systems 

utilising n-tuple nodes were used in many different applications, e.g. face recognition [26], 

texture recognition [27], control and automation [28][29], or medicine [30]. 

1.2 Goals of Thesis 

The previous sections indicate the fundamental topics of the thesis that are evolutionary 

design of a digital circuit, evolvable hardware and n-tuple neural networks. Indeed, it is 

obvious that the subjects are very extensive. For that reason it is necessary to specify 

several main goals of the thesis. 

• The author of the thesis will analyse Cartesian Genetic Programming (CGP) as the 

tool for evolutionary design and evolvable hardware. The focus will be also given 

to the possibilities of the reduction of fitness function calculations. Furthermore, the 

author will design components for a suitable implementation of this algorithm by 

an FPGA device. The design and implementation process should be discussed and 

documented in detail for easy re-use. The author also considers the implementation 

of a design tool to support the use of CGP.  

• The second main goal is to demonstrate adaptive evolvable hardware implemented 

by an FPGA device. 

• In the n-tuple neural networks domain, the objective is defined as the design of 

general architecture/system for image recognition based on this bio-inspired 

method. This system will be also implemented by an FPGA device. 
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1.3 Thesis Organization 

The rest of the manuscript is organized as follows.  

Chapter 2 describes the basic principles of evolutionary algorithms and Standard Genetic 

Algorithm, as the essential member of this algorithm group, is discussed.  

Chapter 3 deals with the utilization of these algorithms in an evolvable hardware and an 

evolutionary design domain. The chapter defines the differences between these two terms 

and also sets the basic terminology. 

Chapter 4 is focused on Cartesian Genetic Programming. The subchapter 4.1 explains the 

basic aspects of this algorithm needed for understanding of the other subchapters. The 

three above-mentioned theoretical sections are relatively brief, because the author of the 

thesis puts emphasis mainly on his contribution. Subchapter 4.3 analyses the possibilities 

to accelerate the process of evolutionary design. In this subchapter, the author presents 

modifications of CGP which cause that the wasted fitness calculations are omitted. These 

modifications were implemented and verified by the experiments and the results are 

presented in this subchapter. The author outlines the design of the compact version of CGP 

reducing the number of performed fitness calculations. Subchapter 4.4 discusses the 

implementation of CGP by an FPGA device in great detail. The subchapter is divided into 

several subsections. Each of them deals with individual component of the implementation 

– the mutation, the search algorithm, the configuration memory, the active genes detector 

and the fitness function calculation. The author of the thesis supposes that mainly the 

subchapter 4.4.1 is crucial; it describes the design and the implementation of a special 

component which detects active genes in the genotype/chromosome. The chapter also 

presents the benchmark results and FPGA resources utilization. Note that some of the 

subchapters are very comprehensive. The author realizes that this may be an object of 

criticism. However, the author believes that a detailed description contributes to easier 

understanding and reusing. 

Chapter 5 deals with the design of an adaptive evolvable hardware. The chapter presents 

the evolvable FIR filter whose parameters are obtained using Standard Genetic Algorithm. 

Mainly, the conception of adaptive system is discussed. The chapter also presents the use 

of different crossover operators and their influence on the evolutionary process. 

Chapter 6 describes the design and the implementation of the system for fast image 

recognition based on the n-tuple neural networks. At the beginning of the chapter, the basic 
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methodology and terminology in relation to n-tuple neural networks is presented. Further, 

the author describes the designed implementation of the system and discusses its individual 

parts. Mainly, a novel approach to the organization of the neural networks data in the  

n-tuple memory is introduced. The author performs tests on a real-world recognition  

task – the recognition of road signs. Then the test results are presented, discussed and 

compared with conventional methods and other implementations. 

Finally, chapter 7 concludes the manuscript and summarizes the results and the 

contributions of the thesis.  
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2 EVOLUTIONARY ALGORITHMS 

The evolutionary algorithms (EA) form a wide group of profitable tools for the solving 

optimization problems. They are based on the Darwin’s theory of evolution and survival of 

the fittest, and make it possible to solve optimization tasks that can be defined as a search 

for the global/local maximum/minimum of a function.  

The evolutionary algorithms belong to the category of stochastic search algorithms. The 

search space is a space that contains all possible considered solutions of the problem. In 

comparison to other search methods (hill-climbing algorithm, random search, etc.), the 

evolutionary algorithms use more candidate solutions. These candidate solutions are called 

individuals. A group of individuals forms a population. The EAs are iterative algorithms; it 

means that the searching is carried out in cycles. These cycles are called generations. The 

key element of each evolutionary algorithm is the so-called fitness function. This function 

produces a fitness value that expresses the quality of a found solution in the search space. 

In other words, the fitness value indicates how well the solution meets the problem 

requirements. In each generation, a new population or its part is created by the means of 

using genetically inspired operators (mutation and crossover are commonly used). The 

individuals forming the new generation are selected by a selection process. Usually, this 

selection is based on the current fitness of the individuals. A better fitness implies greater 

changes that an individual will live in the next generation. Likewise, they are more likely 

to produce the offspring by genetic operators. These operators produce new individuals 

with novel genetic information (offspring inherit part of the parental genetic information); 

it means that they represent novel solutions of the problem. The fitness value of the 

individuals controls the evolution towards better areas of the search space. The principle of 

the EAs is presented in the Figure 1. The evolutionary algorithm is terminated if a terminal 

conditional is satisfied. Generally, two conditions are defined; the algorithm can be 

terminated if the required solution (fitness value) is found, or if certain number of 

generations is achieved. However, other conditions may also be defined. [10][9][31][32] 

The search functionality of the evolutionary algorithms can be divided into two approaches 

[31][9]: 

• Exploiting – the algorithm looks around the best solution which has been found up 

to now. 

• Exploring – the algorithm explores unknown places in the search space. 
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Figure 1. Control-flow diagram of an evolutionary algorithm [31]  

These approaches should be in balance to achieve the best results. For example, if the 

exploiting is significantly dominant, the algorithm may have a tendency to converge too 

early. It may reach the peak of a local maximum and become stuck. Similar solutions have 

a low fitness while the actual solution is located in different part of the search space. On 

the other hand, if the algorithm performs only ‘exploring’, it passes to a random search 

algorithm – and the neighbourhood of promising solutions is ignored. [9] 

The individual can encode various objects in the search space. For example, the 

representation of an individual can be based on a binary stream, floats, integers, etc. This 

forms a genotype space. The space of mapped actual solutions is called a phenotype space. 

An encoding function (see the Figure 2) defines the relationship between these spaces. The 

fitness function is applied to evaluate phenotypes. While the fitness function works with 

phenotypes, the genetic operators (e.g. crossover, mutation) are defined over genotypes. 

[31] 

The group of evolutionary algorithms is wide. The fundamental evolutionary algorithms 

are the following: Genetic Algorithm, Evolutionary Strategy, Evolutionary Programming, 

and Genetic Programming. [31][10][9] 

Unfortunately, a general-purpose universal optimization strategy does not exist. This fact is 

expressed by the so-called no free lunch theorem (NFL theorem). This theorem states: “If 
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a sufficiently inclusive class of problems is considered, no search method (never 

resampling points of the search space) can outperform an enumeration”. [10][33] 

 
Figure 2. Demonstration of the genotype-phenotype-fitness mapping [31] 

2.1 Standard Genetic Algorithm 

Genetic algorithms (GA) represent the popular group of algorithms inspired by the 

evolution. They were created by John Holland in the 1970’s [34]. The fundamental 

member of this group is the Standard Genetic Algorithm (SGA; this algorithm can also be 

called Simple GA), but there are other versions of GA, such as Messy GA, Compact GA, 

or Extended Compact GA.[35] 

The following paragraphs describe the features of SGA. In publications [36][37][38][32], 

the genetic algorithms are described and discussed in detail. 

Models 

A Genetic Algorithm can be based on two models: 

• Generational 

o The new population is formed only by the products of crossover and 

mutation. 

o All individuals of a population are of the same age. 

• Steady-state      

o The new population is composed of new individuals (offspring) and 

members of the old population. 

o The individuals within one population are of different age. 

Most GAs described in the literature is considered to be ‘generational’. It means that the 

population consists entirely of the offspring formed by parents in the previous generation. 
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Indeed, some of the offspring can be identical to their parents. In a steady-state genetic 

algorithm, the offspring replaces only part of the parents.  

Representation 

An individual of the SGA is defined as a binary chromosome fixed length. This binary 

representation can map various objects. The binary chromosome represents the genotype. 

The decoded values from this chromosome form a phenotype. For example, the binary 

string “1111” represents the genotype. If the chromosomes encode integer (as a two’s 

complement), the phenotype takes the value of -1. [10][38][32] 

Usually, the initial values of the individuals/chromosomes are filled by random values. 

However, a knowledge base, if available, can be used to generate initial individuals. 

Genetic Operators 

There are two genetic operators defined in the SGA – the crossover and the mutation. The 

crossover creates two offspring from two parents. One-point crossover is the simplest 

genetic recombination operator. The principle of this operator is shown in the Figure 3. 

The crossover point is randomly generated. According to this point, two children are 

created. There are also other versions of crossover operator – a two-point crossover, an 

uniform crossover, etc. 

 
Figure 3. One-point crossover 

The second genetic operator – mutation – generally changes the value of one gene (see the 

Figure 4). If the bit representation is considered, the mutation performs the bit negation of 

a gene. In comparison to the crossover, the mutation produces only one child (mutant).  
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Figure 4. Mutation 

The genetic operators are controlled by two parameters. The probability of crossover (Pc) 

says how often the crossover will be performed. Usually, this parameter takes value range 

from 0.6 to 1. 

The probability of mutation (Pm) defines how often a gene of an individual will be 

mutated. The Pm can be in relation to a single gene of the population or to the whole 

chromosome. The value of this parameter is often very low (e.g. 0.1%). In SGA, the 

mutation is considered to be an auxiliary operator. [10][38] 

Selection 

Most often, the selection process is based on fitness values of the individuals. Two basic 

selection operators are discussed in the literature – roulette wheel selection and tournament 

selection.  

The roulette wheel uses the relative fitness value which determines the selection 

probability of an individual. This probability is defined by the formula [10][38]: 

 𝑝(𝑎𝑖) =
𝑓(𝑎𝑖)

∑ 𝑓�𝑎𝑗�𝑁
𝑗=1

 (1); 

where  p(x) ....... selection probability of the individual, 

 ai, ai, .... individual (chromosome), 

 N ........... population size, 

 f(x) ........ fitness function. 

Each value of selection probability determines the sector size in a virtual roulette wheel. A 

randomly generated number specifies the position in the roulette wheel; thereby an 

individual is selected. This process is repeated until the new population is filled. 
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The tournament selection is a high-frequently implemented method. This selection takes a 

random uniform sample of a certain size q > 1 from the population. The best individual of 

these q individuals will survive for the next generation. [10][38] 

The selection techniques are commonly complemented by elitism. Elitism is a technique 

which ensures moving of the best individual (the leader) into the new population. [10]  
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3 EVOLVABLE HARDWARE 

3.1 Basic Concept 

The concept of the evolvable hardware (and the evolutionary circuit design) is based on 

the cooperation of an evolutionary algorithm and an appropriate reconfigurable 

system/circuit/structure. The algorithm searches for the configuration of the circuit in order 

to achieve the required circuit behaviour. Thus the task needs to define a suitable 

representation of the chromosome/genotype and a fitness function. The algorithm 

generates new individuals/chromosomes that are evaluated by the fitness function and the 

input stimuli. According to the calculated fitness value, the algorithm continues searching 

for the required functionality. The basic concept is shown in the Figure 5. [9][10] 

 

Figure 5. Basic concept of the Evolvable Hardware 

The fitness function is based on the correspondence between the response of the candidate 

circuit/solution and the required response. The case of a combinational circuit is the 

simplest; the input stimuli (vectors) are applied to the inputs of the candidate circuit. The 

obtained responses form the truth table of the circuit that is compared with the correct 

(required) truth table.  

Indeed, the evolutionary algorithm can also be used to optimize an already designed 

solution – this approach is called the evolutionary optimization.  
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3.2 Evolvable Hardware vs. Evolutionary Circuit Design 

The cooperation of the evolutionary algorithms with the reconfigurable structures 

(systems) can be used in two similar domains – the Evolvable Hardware and the 

Evolutionary Circuit Design. Nevertheless, these terms should not be confused.  

The evolutionary design deals with the design of a circuit by the means of 

evolutionary techniques. The evolution is used only for the design phase. This method of 

circuit design makes use of the mathematical model of the reconfigurable structure or of 

the system with variable parameters. This model is used for the fitness calculation. In other 

words, the fitness function is calculated by the means of a circuit simulator. Generally, the 

special software is designed and implemented for this purpose. A new and innovative 

solution to the circuits can be found by these techniques. The resulting circuit can be 

implemented as real hardware. The final real hardware does not use an evolutionary 

algorithm in any way. The evolutionary design is not limited by the circuit design; for 

example the publications [39][40] discuss the evolutionary design of antenna. [10] 

In the case of the evolvable hardware, both parts – the reconfigurable circuit/structure and 

the evolutionary algorithm – have to be really implemented. The evolution process can run 

whenever. It means that the circuit/hardware can change its function dynamically in time. 

A circuit performing various functions can be obtained by this approach. To change its 

function, it is necessary to define the new required functionality first and then the evolution 

can be started. If the evolution finds a suitable configuration/solution, the system performs 

the new required function. Unfortunately, there are several problems that complicate the 

use of these techniques. The developer has to implement the evolutionary algorithm and 

the valid configurable circuit (structures) effectively. The key element of these systems is 

the fitness function. The valuation of the candidate solutions (individuals) can be very 

difficult – time-consuming. For that reason, the speed of evolution (searching for 

configuration) depends especially on the implementation of the fitness function. In the 

evolvable hardware domain, it is very important to find a suitable solution in a reasonable 

time, in contrast to the evolutionary design where the quality of the final solution is the 

most important point of view. [9][10] 

The fitness function of the evolvable hardware is not static; it is modified when the 

superior system changes the required functionality or when the environment of the 
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evolving system changes. From this point of view, the system may be classified into 

several categories [10]: 

• Embedded evolutionary circuit design 

The evolution of this system is started rarely. Despite of this, the evolutionary 

process is required. The system works for a long time with unchanged 

functionality; but from time to time, the request of functionality change arises. 

After this request, the evolution starts and searches for a solution corresponding 

with the new specification. If this solution is found, the evolution is terminated and 

the system uses the result of the evolutionary process. A significant feature of these 

systems is the fact that their function can be interrupted when it is necessary to 

perform the evolution. An example of this system is published in [5] and it 

describes the controller of a prosthetic hand. [10] 

• Self-adaptive systems 

These systems perform the evolution continually. They have to react to the changes 

of the environment and the functional specification. The demonstration of this 

system is discussed in detail and implemented in the chapter 5. The self-adaptive 

system implements usually two reconfigurable circuits/structures. The first circuit is 

used for the processing of useful data. The second one makes it possible to 

calculate the fitness function so that the processing of useful data is not interrupted 

or affected. [10] 

• Self-triggered evolution 

This category lies between the two previous categories. The system detects an event 

when the evolution has to be started. In general, these events occur periodically. 

[41] 

• Online evolution 

This kind of evolution is mentioned in relation to robot controllers published in [6]. 

3.3 Evalution of Candidate Solutions 

The quality of the candidate solutions is given by the fitness value which is a product of the 

fitness function. Indeed, there is no a universal fitness function and its definition is  

task-dependent. In spite of this, in the digital circuit domain, two basic cases are defined. If 

a circuit can be described by the truth table, the fitness function calculates the 
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correspondence between the real response of the candidate circuit (solution) and the ideal 

(required) truth table. In other cases (e.g. design of filters), the fitness function based on 

the Method of Least Squares can be used.  

Except the definition of the fitness function, it is necessary to determine the approach to 

the evaluation. The following approaches have been introduced:  

• Extrinsic evolution 

The candidate circuits are evaluated using a circuit simulator; it means the software. 

The results of the evolution are not tied to any particular hardware. For example, 

the system evaluates the candidate solution by the means of the SPICE simulator. 

The evolved circuit is defined by the netlist/diagram and it may be implemented by 

an arbitrary real hardware (TTL circuits, FPGA, CPLD, etc.). Generally, the 

evaluation using a simulator is slower. [10] 

• Intrinsic evolution 

All candidate solutions are evaluated in real hardware (reconfigurable circuit). It 

should accelerate the evaluation process. [10] 

• Mixtrinsic evolution 

This approach was developed by Stoica [42] to overcome the portability problem. 

A part of the individuals is evaluated extrinsic in target hardware, and some 

individuals in the software simulator within the same population. [10] 

The next two categories deal with the portability and implementation of reconfigurable 

circuits: 

• Unconstrained evolution  

In the chapter 1.1, the Thompson’s experiment has been introduced [1]. This 

experiment is a perfect demonstration of an unconstrained evolution. The evolution 

algorithm can use the selected cells of the FPGA device in any way. The final 

evolved circuit used asynchronous feedback and delays of data paths. For the sake 

of these techniques, the final configuration bitstream was not portable to other 

FPGA devices (of the same type). [10] 

In other words, the candidate solution (circuit) may take different fitness values if it 

is evaluated using different reconfigurable circuits (of the same kind). This 
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behaviour is known as the portability problem [42]. It can be stated that the 

unconstrained evolution exploits physical properties of the chip/device. [10] 

• Constrained evolution 

In comparison to the unconstrained evolution, this approach ensures that the 

candidate circuits take just one fitness value even when it is evaluated by different 

reconfigurable circuits. Hence, the portability problem is eliminated. [10] 

3.4 Reconfigurable Circuits 

The choice of a suitable reconfigurable circuit is strictly task-dependent. It is also 

necessary to define the fit level of abstraction. This level determines the fundamental 

elements that are represented by a chromosome. The representation of a chromosome 

usually reflects the architecture of a given reconfigurable circuit. For example, a circuit can 

be based on logic gates, discrete components (transistor, resistor, etc.), higher functional 

elements (multipliers, adders, multiplexers, etc.), nanostructures, etc.  

Generally, the following features are required for the reconfigurable circuit/structure to be 

used in the evolvable hardware domain [10]: 

• Fast reconfiguration 

The reconfiguration of target circuit has to be performed as fast as possible. The 

possibility of partial reconfiguration is welcome. 

• Unlimited number of reconfigurations 

The circuit can be reconfigured an unlimited number of times. For example, the old 

GAL devices do not meet this requirement.  

• Safe configuration 

It must be ensured that any configuration does not destroy the circuit. 

• Documented bitstream 

It is necessary to know the data format of configuration bitstream. It has to be 

available and open to the user. 

• Controllability and observability 

The inputs and outputs of the used circuit can be easily available. The system feeds 

the inputs of the circuit by the stimuli and reads its output response. 
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Nowadays, the main emphasis is put on the FPGA devices. However, all FPGA devices do 

not support partial reconfiguration; and above all, the format of their configuration 

bitstream is not usually documented and opened. Further, an uncorrected configuration 

(random mistakes in the bitstream are protected by a CRC) of an FPGA also may destroy a 

chip. Despite these facts, there are projects that modify the FPGA bitstream directly. 

Except the above-mentioned Thompson’s project, the FPGA devices from Xilinx Corp. 

were used in projects focused on the adaptive image processing [43][44]. The new 

promising FPGA devices contain hard processor cores that can perform genetic operators 

and dynamic partial reconfiguration is supported [45]. It is also possible to use the  

reverse-engineering for obtaining the configuration format of an FPGA device [46]. 

To avoid using the native reconfiguration of an FPGA device, the concept of the Virtual 

Reconfigurable Circuit (VRC) has been established in [47]. This concept represents an 

implementation of a domain-specific reconfigurable circuit on the top of an FPGA device. 

The designer can implement such structure that is fit for the defined task. 
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4 CARTESIAN GENETIC PROGRAMMING 

4.1 Background 
This section describes the algorithm that was introduced by Miller and Thompson in 

1999/2000 in the publications [48][49]. It grew from a method of evolving digital circuits 

developed by Miller et al. in 1997 [50]. 

Cartesian Genetic Programming (CGP) is a powerful tool suitable for the evolutionary 

design of combinational logic circuits. However, it can be also used in other tasks. In CGP, 

programs are represented in the form of directed acyclic graphs. This graph forms a 

reconfigurable structure which is used for evolving circuit. The Figure 6 shows an example 

of a CGP graph representing a digital circuit. The reconfigurable structure is modelled as a 

set of computational nodes in a grid/matrix organization. The nodes can represent gates or 

other elements of a digital circuit. The author of this thesis also uses the term cell instead 

of node. The size and topology of a structure is defined as nc (columns) x nr (rows). Each 

node (cell) has nn inputs and one output; it can implement one node/cell function out of the 

group of defined functions. It can be imagined that the node implements a look-up table 

function. Only one selected function of this table is performed. Other parameters of CGP 

are the number of primary inputs (ni) and program/primary outputs (no); these two 

parameters define the number of inputs and outputs of the designed logic circuit. The 

configuration information of the structure (chromosome) determines the function of 

particular nodes/cells, the interconnection among them, the interconnection between the 

primary inputs and the cells, and the interconnection between the program/primary outputs 

and the cells. For the interconnection in the structure, there are several rules. The feedback 

is not allowed; its implementation results in a difficult evaluation of the structure. The 

primary input can be connected as an input to all cells. The connectivity among cells is 

limited by the so-called levels-back parameter (l-back parameter), which determines the 

columns whose outputs can be connected to the current cell. For example, if l-back = 1, 

only the cell outputs of the immediately previous column may be used as input for the 

current cell. If the l-back parameter is set to maximum (nc), there are no limits for the 

connectivity among cells. A higher value of the l-back parameter enables a greater 

possibility of connectivity; thereby a more complicated circuit may be generated. 

However, we must take into account that a high value of the l-back increases the space 

where the algorithm searches for suitable solutions. CGP uses an integer representation 
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(one gene of a chromosome is represented by one integer); each cell is defined by nn+1 

integer values/genes. The first nn genes determine the input nodes of the cell; these genes 

are called connection genes. The last integer/gene is called function gene and it 

determines/addresses certain function which is performed by a node. The end of a 

chromosome is constructed by genes which define the nodes/cells representing primary 

outputs. The total length of the chromosome is defined as: [51][52] 

 𝛬 = 𝑛𝑟𝑛𝑐(𝑛𝑛 + 1) +  𝑛𝑜 (2); 

Note to the formula (2): The total length of the chromosome is represented by the symbol Λ or ΛCGP in 

publications [52] and [9]. This convention is used in the rest of this thesis. However, Miller [53] uses the 

symbol Lg.  

The values of the genes (i.e. alleles) are highly constrained. The function gene must take a 

valid address of the allowed cell/node function. The connection genes take values that 

point to achievable nodes. It means that the valid gene values depend on a type of the gene 

and its position within a chromosome. 

 
Figure 6. Example of a CGP graph [52] 

The whole chromosome represents a genotype. The decoding of a genotype → a phenotype 

creates final program/circuit. It is obvious that if any node output is not utilised in the 

calculation of the output response, the size of the phenotype is smaller than the genotype 

size. In other words, the genotype represents all nodes/cells in a grid graph/structure; the 

phenotype contains only the cells that are needed for the output data calculation. In 

evolutionary circuit design domain, it means that the phenotype is formed by 

gates/components implementing the digital circuit. The cells/nodes which are not used in a 

phenotype are called ‘inactive’, the used cells called ‘active’.  
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4.1.1 Evolutionary Algorithm 

The algorithm that is used for the search for solutions is very similar to the Evolutionary  

Strategy – (1 + λ)-ES, where the character λ defines the number of mutants/offspring and 

the constant number 1 represents the fact that the algorithm uses only one parent. It is 

necessary to ensure that, so that the genes take correct values only. 

 
Figure 7. Principle of the search algorithm 

The principle of the search algorithm is shown in the Figure 7. At first, the initial 

population is generated randomly. The process of mutation produces (by a point mutation 

operator) λ mutants (offspring) by random changing of a few genes. After the calculation 

of the fitness function, the selection is performed. It selects the best individual which will 

represent the parent in the next cycle of the evolution. A special case can occur when there 

are mutants (or one mutant) with the same fitness value as the parent and there is no 

offspring better than the parent. In this case the algorithm prefers the mutant (products of 

mutation) to its parent. This step is very important for CGP; it makes good use of 

redundancy in CGP genotypes.  

This genetic redundancy is needful for the good progress of the evolution. In CGP there 

can be genes having no influence on the phenotype. This phenomenon is called neutrality 

and it is beneficial to the efficiency of the evolutionary process. [49][53][54][55][56] 

If the fitness function is performed, only active nodes/cells have to be calculated; inactive 

nodes can be neglected. Listing 1 shows the procedure of determining active nodes. The 

symbol M denotes the maximum number of addresses in the CGP graph; G is an array of 
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genotype; the boolean array NU determines the used/active nodes. The number of used 

nodes is given by the symbol nu. The NP denotes array where the addresses of the used 

nodes are stored.  

The other algorithm’s procedures created by Miller are published in [53]. 

 
Listing 1. Determining active nodes [36] 

If the digital circuits are designed by CGP, a minimal solution/circuit is often required. The 

following fitness function takes into account the circuit functionality and the number of the 

used cells [52][9]. 

 𝑓 =  � 𝑏
 𝑏 +  (𝑛𝑐𝑛𝑟  −  𝑧)

     𝑤ℎ𝑒𝑛 𝑏 <  𝑛𝑜2𝑛𝑖 ,
     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;  (3); 

where b represents the circuit functionality (according to the required truth table) – it is 

number of correct output bits obtained as response for all possible assignments to the 

inputs; and z denotes the number of used/utilised cells. Usually, the circuit is optimized to 

decrease the number of used cells. The algorithm takes into account the number of used 

cells only in cases when the full functionality is found. This procedure is very important. 

The alternative function was introduced by Gajda and Sekanina in [52]. 

1: NodesToProcess(G,NP) // return the number of nodes to process 
2: for all i such that 0 ≤ i < M do 
3:  NU[i] = FALSE 
4: end for 
5: for all i such that Lg −no ≤ i < Lg do 

6:  NU[G[i]] ← TRUE 
7: end for 
8: for all i such that M−1 ≥ i ≥ ni do // Find active nodes 

9:  if NU[i] ← TRUE then 

10:   index ← nn(i−ni) 

11:   for all j such that 0 ≤ j < nn do // store node genes in NG 

12:    NG[ j] ← G[index+ j] 
13:   end for 
14:   for all j such that 0 ≤ j < Arity(NG[nn −1]) do 

15:    NU[NG[ j]] ← TRUE 
16:   end for 
17:  end if 
18: end for 
19: nu = 0 
20: for all j such that ni ≤ j < M do // store active node addresses in NP 
21:  if NU[ j] = TRUE then 
22:   NP[nu]← j 
23:   nu  ← nu +1 
24:  end if 
25: end for 
26: return nu 
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4.1.2 Mutation Process 

As mentioned above, the mutation used in CGP is a point mutation operator. The mutation 

process randomly chooses the gene position in a chromosome. The gene on this location is 

replaced by a valid random value.  

The actual number of genes mutated within one mutation process is given by the parameter 

called mutation rate. It uses the symbol µg. The mutation rate can also be expressed 

relatively as a percentage of the total number of genes in the genotype/chromosome – the 

symbol µr is used for it. It implies µg = µr Λ. Note that in this thesis, the absolute value (it 

means µg) of the mutation rate is used.  

The Figure 8 shows an example of the mutation. The program output gene OA was 

mutated; the gene value changes from 6 to 7. This mutation causes a significant 

modification of the phenotype. The active cells (gates in this case) are represented by a 

solid line; the inactive ones by a dashed line. [53] 

 
Figure 8. Example of the point mutation operator [36]; a) before the mutation, b) after the mutation  
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4.1.3 Other versions of CGP 

In recent years, other versions of the algorithm were derived from CGP. Some authors 

removed the restriction related to the use of the feedback. By this, the Cyclic CGP was 

created. [53][56] 

The Embedded CGP (ECGP) is a CGP which incorporates sub modules/subprograms. In 

the ECGP, modules are created and destroyed during the evolutionary process.  

The Self-Modifying CGP (SMCGP) is also established, it implements self-modification 

functions/instructions that cause alteration of the code itself. Both algorithms are described 

in [53]. 
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4.2 Software Design Tool 

4.2.1 Proposed Design System 

The design of a system based on CGP can be divided into several main parts which need to 

be implemented. Naturally, the Evolutionary Algorithm (Evolutionary Strategy) represents 

only the core of the system; the other parts are very significant as well. The designer also 

has to implement an appropriate reconfigurable structure and a suitable fitness function. 

These tasks may be highly time-consuming. It must be taken into account that the use of 

evolutionary algorithms is represented by a large number of experiments. Usually it is 

necessary to change parameters during the evolutionary design process. It is clear that the 

design of a comprehensive design tool (system) based on an evolutionary design may be 

very useful. This tool could significantly decrease the amount of time required for the 

design of a system based on the EA.  

The benefit of a design tool can be more important if the tool supports the export of results 

to an embedded system – it means an automated generation of source code for a processor 

or an FPGA device. Such design tool can represent a rapid-prototyping system. From the 

user’s point of view, it enables a simple simulation and an implementation of issues. 

Unfortunately, the scientific community offers only few projects which implement the 

evolutionary design by means of CGP. Most of them are provided in source codes, e.g.[57] 

refers to CGP programs (in the C programming language) that can be compiled into 

programs that can handle three kinds of data with CGP, namely Boolean, integer and 

floating point. These source codes were created by Julian Miller (the CGP architect). Other 

known implementations are available in Java programming language or in the codes for 

Matlab [58][59]. However, the focus on the design of digital circuits is given in the tools 

described in [60]. These tools produced by Vašíček and Sekanina make it possible to 

design any combinational logic circuit by the means of CGP. Their tool called Cgpviewer 

enables to display the CGP chromosome (a result circuit), simulate it and convert it to a 

VHDL file. Despite these facts, the available tools do not provide a user-friendly 

environment and the user always has to modify the source codes to set the desired 

parameters of CGP.    

In this thesis, the author’s goal was to design a tool with a suitable user-friendly 

environment, which requires only a minor understanding of the evolutionary design and 

the CGP domain. This design tool is mainly focused on the utilization of CGP for the 
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evolutionary design and the implementation of evolvable hardware. The support of FPGA 

devices as a target platform is assumed. The proposed system should enable fundamental 

design steps – the definition of the problem, the simulation (sensitivity analysis) and the 

implementation of the result of the evolutionary design. It was also assumed that the tool 

enables the generation of source code for particular parts of evolvable system (structure for 

the CPG primarily). The Figure 9 describes the design flow used with the proposed system. 

 

Figure 9. Design flow of the proposed system 

After the general definition of a task, the user has to determine the parameters of the search 

algorithm and the reconfigurable structure. The system should offer several predefined 

kinds of fitness function. However, it is obvious that the possibilities of the predefined 

fitness function are limited, because it isn’t feasible to cover all requirements of real-world 

applications. The preparation of training data is the part of design whose implementation 

isn’t assumed within the proposed design tool. This data depends strongly on the 

application. The tool has to offer only an appropriate interface for its import. 

Of course, the core of the design tool is the performance of the evolutionary design. This 

functionality should be supplemented by the possibility to perform analysis, observing 

influence of algorithm parameters, etc. The results of the evolutionary design must be well 

interpretable – the automatic generation of final designed circuit’s diagram is essential.  
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However, the results could be described by other ways – a logical expression, a SPICE 

netlist or hardware description language (for example: Verilog or VHDL). The author 

assumed the use of a circuit diagram and a VHDL description. The design result expressed 

by this description can be directly implemented by an FPGA device. Nevertheless, a 

simulation after the implementation is recommended. 

In the following subchapters, the successfully implemented parts of the system and its 

functionality are introduced. 

4.2.2 Implementation of Tool 

The design tool was named as Evolutionary Designer; it was designed by the means of the 

C# programming language and it is available for Windows platform. 

4.2.2.1 Search Algorithm 

The designed tool implements the search algorithm coming out of CGP. That is derived 

from the Evolutionary Strategy algorithm. The algorithm is determined by the expression 

(n + λ); where n represents the number of parents and λ determines the number of mutants. 

This implies that the implemented search algorithm enables various variants of 

Evolutionary Strategy; not only the (1 + λ) type which is supposed to occur in the CGP 

domain. The principle of the search algorithm is shown in the Figure 7 in the chapter 4.1 

and it is also discussed and described in this chapter. Note the fact that the implemented 

algorithm always selects an offspring (a mutant) if one or more mutants take the value of 

fitness which is equal to a parents’ fitness. 

In the Figure 10, the dialog window for algorithm setup is shown. The user may set several 

parameters of the search algorithm – the number of parents and mutants, the mutation rate, 

the maximum of generational cycles (the maximal number of performed generations) and 

the maximum of fitness. 

The mutation rate determines directly the number (an absolute value) of genes which will 

be mutated within the mutation process. The item Cycles Limit represents the termination 

condition. The algorithm is terminated if the set value of generation cycles is achieved. The 

user can turn this condition off if this Cycles Limit is set to zero. The second termination 

condition is determined by the item Max Fitness. This value doesn’t mean only the 

maximum of fitness value. It can be used even when the algorithm looks for the minimum 

of fitness value. In other words, the algorithm is terminated if this fitness value is achieved. 
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Figure 10. Dialog window of algorithm setup 

4.2.2.2 Definition of Reconfigurable Structure 

The designed tool offers a detailed setup of possibilities of a structure for CGP. At the 

beginning of the setup procedure, the user defines sets of cell functions (only two-input 

cells are supported; the user may define one or more of these sets). A particular set 

contains functions which are available in a single cell/node of CPG structure. The structure 

can utilise only one set of cell/node functions – cells form homogenous structure. It can 

also use various sets of functions – various cells form a heterogeneous structure. The user 

can compile his/her own set of cell functions. This process is very easy; the user uses a 

simple dialog window (see the Figure 11) – Cell Sets Manager.  

By the means of this dialog, the user creates a new set – the ID of this set and the number 

of functions must be defined. The function sets can contain a different number of 

functions. The design tool supports from 2 up to 64 functions for each set. If the set is 

created, it may be edited by the dialog Cell Functions Setup depicted in the Figure 12. In 

this dialog, the user adds and removes functions to form the required set; the figure shows 

the definition of the function set called “basic_gates” containing 4 cell functions – AND, 

OR, XOR and NOR. 

 
Figure 11. Cell Sets Manager dialog 
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Figure 12. Cell Functions Setup dialog 

For each available function, the tool defines four parameters. Three of them are easily 

deducible – the function name, the function description and the function source code. The 

name and the description are shown in the Cell Functions Setup dialog; the source codes of 

the functions are used when the tool calculates a fitness function. The last parameter is the 

reference to VHDL file describing the function. This VHDL model is in unified form and it 

can be used for the implementation of the function in an FPGA device (this features will be 

discussed in the following sections). In the Listing 2, the VHDL model of the XOR logical 

function is shown. 

 
Listing 2. VHDL model 

The name of the entity is formed by the merger of the string “func_” and the name of the 

function. The entity contains one generic parameter – data_width – that determines the bit 

width of the ports. In the port declaration, there are three obligatory items – the inputs ports 

input_data_A, input_data_B and the output port output_data. The architecture (which is 

very simple in this case) has to be implemented so that the VHDL model is correct for 

arbitrary valid (positive) value of the generic parameter data_width. 

library ieee; 
use ieee.std_logic_1164.all; 
 
entity func_xor is 
 generic 
  ( 
  data_width : positive := 8 
  );       
 port 
  ( 
  input_data_A : in  std_logic_vector(data_width-1 downto 0); 
  input_data_B : in  std_logic_vector(data_width-1 downto 0);         
  output_data  : out std_logic_vector(data_width-1 downto 0) 
  );       
end; 
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If at least one set of cell functions is established, the other CGP structure parameters can 

be set by means of the dialog shown in the Figure 13. The user can define the following 

basic items: the number of rows and columns, the number of primary inputs and outputs, 

the l-back parameter and a default set of cell functions. The item Cell Function Set 

determines the used default set of cell functions and is valid if the user does not use the 

“Advanced Structure…” choice. This choice makes it possible to define the structure using 

more sets of cell functions. The user may determine a function set for each cell. This 

feature is controlled by the dialog Advanced Structure Setup – see the Figure 14. The user 

can specify whether the selected function set belongs to an individual column, row or 

cell/node. By using these choices, a heterogeneous structure can be defined – the cells 

implement different function sets. This described functionality is not usual, but it can serve 

as a tool to analyse irregular structures.  

Note that the tool does not allow direct connecting a primary input to a primary output! 

CGP definition enables this type of connection; however, the author considers that it is 

needless (this type of connection could be beneficial only in trivial tasks). 

 
Figure 13. Structure Setup dialog 

 
Figure 14. Advanced Structure Setup 
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In addition, there are other two ’unusual’ parameters – the Input Availability and the 

Output Availability. These parameters affect the connectivity of a structure. The Input 

Availability specifies the columns whose cells can be connected to primary inputs. For 

example: if this item takes the value of two, only the first two columns of the grid structure 

can be fed by the primary inputs. Usually, this type of connectivity is not limited. The 

latter parameter – Output Availability – reduces the connectivity of the primary outputs 

conversely. This means, if it takes the value of 1, only the last column can represent the 

primary outputs of the structure. It follows the maximum of both parameters is equal to the 

number of columns. The author established these new parameters because they reduce the 

search space of the design process; their effect may appear more interesting when the 

implementation of a structure by an FPGA device is supposed. 

All signals in the designed software tool are represented by 8-bit vectors. This fact does not 

limit the bit-oriented functions in any way.  

4.2.2.3 Fitness Function 

The tool contains several options to determine the kind of a fitness function. Two basic 

tasks are assumed – the signal of the structure represents a one-bit signal or an 

unsigned/signed vector. According to the signal meaning, the kind of fitness function can 

be defined. The fitness function with one-bit signals is based on the correspondence 

between the real and the required truth table. This correspondence is expressed by means 

of Hamming Distance – the algorithm searches for minimum Hamming Distance between 

the real and the required response of a circuit. If the signal of the CPG describes an 

unsigned/signed vector, the system can utilise the fitness function using the principle of 

Least Square Method. Both kinds of fitness function can optimize the size of the result 

circuit – this feature is enabled or disabled by the user. It means that the evolution can 

search for a circuit with a correct function and the minimal hardware requirements.  

The fitness function for the tasks using bit signal is defined by the formula (3) mentioned 

in the chapter 4.1. If the full functionality of the circuit is found, the number of unused 

cells/nodes is added to the resulting final value. For example, assume that the CGP 

structure is 7x7 cells and the 5-bit majority circuit is desired. The full functionality of the 

circuit implies the fitness value equal to 32. If the circuit is constructed of 25 cells, the 

number of unused cells is 24 (= 49 – 25); and the result fitness value is equal to 56. The 

algorithm takes into account the number of used cells only in the cases when the full 

functionality is found. This is very important. The tool also enables to mask certain bits of 
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primary outputs. It means that the user defines bit’s positions that won’t be included into 

the fitness calculation.  

For the design circuit as the image filter, etc., the signal of the CGP structure represents an 

unsigned/signed number. In these cases the system uses another fitness function. It is based 

on the difference between the real and the ideal response circuit to the training/test data; it 

can be defined as: 

 𝑓 =  � ��𝑖𝑟𝑗𝑖 − 𝑟𝑟𝑗𝑖�
𝑁−1

𝑖=0

𝑛0−1

𝑗=0

 (4); 

where irji denotes the ideal and rrji the real response of the circuit to training data; N is the 

number of training vectors; n0 defines the number of primary outputs. From (4) it is 

obvious that the evolutionary design performs the minimization of the fitness function, by 

contrast to (3) where an algorithm searches for a circuit with the maximum value of fitness. 

The designed tool enables to include the size of candidate circuit into the fitness function 

even when a fitness function given by (4) is used. In this case, the number of used cells is 

added to (4), if the full correspondence between ideal response and real response is found. 

4.2.2.4 Training Data Import 

The well-known format – CSV file – was chosen as the interface for the import of the 

training data. This format is supported by MS Excel and its structure is very simple. The 

items in lines are separated by a semicolon; the <CR> char is a final mark of a line.  

The first line of the file with the training data must contain the integers notifying the 

number of inputs and outputs of the circuit. These numbers serve to check the training 

data. Next lines contain the training vectors; the input stimuli and the corresponding ideal 

responses. The data in the file must be 8-bit integers; it means values in the range from 0 to 

255, -128 to 127 (signed). If a classical truth table is required, it has to be transformed to  

8-bit vectors (one line of training covers 8 lines of the classical truth table of the logic 

circuit).  

The Figure 15 shows the transformation truth table of 5-bit majority circuit to the CSV file. 

This circuit has 5 inputs and 1 output – this is noted in the first two cells in the CSV file. 

The second line of the file describes the first training vector – the first five integers (MSB 

is the leftmost) represent input stimuli corresponding with eight lines in the truth table. 

And the rightmost items define an ideal (required) response of the designed circuit. After 
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this simple transformation, the training data can be used for the fitness function 

calculation. In the case of a fitness function that works with signals in terms of integers, no 

transformation is needed. 

 

Figure 15. CSV file with the training data 

If the cells in the CGP structure contain only strictly logic functions (AND, OR, etc.), the 

tool composes training vectors to 64-bit vectors. It enables to use parallel processing and 

accelerate the calculation of the fitness function; 64 cell responses can be obtained within 

one logic operation. 

4.2.2.5 Result Viewer 

The tool is equipped by a viewer that displays the evolution result in a diagram (see the 

Figure 16). This viewer can show all cells/nodes and their interconnectivity or it can show 

only the active cells/nodes. In additional, the user can depict only active cells related to 
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particular primary outputs. The viewer shows the functions which are implemented by the 

cells. 

 
Figure 16. Structure diagram dialog 

4.2.2.6 VHDL Output 

The designed tool can generate VHDL files that describe the result of the evolutionary 

design. This feature requires only few settings which are obvious from the following 

figure.  
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Figure 17. VHDL Implementation dialog 

The user selects the destination folder, the name of the file and the name of the top-level 

entity. The result of the evolution can be implemented either as an asynchronous 

combinational circuit or as a circuit with input/output register. However, if the circuit 

contains more cells and these cells implement complex functions, the delay caused by logic 

elements can be too long. For that reason, the tool also offers pipelined processing of the 

result. This choice divides the resulting circuit into several pipeline stages by the insertion 

of the registers amongst particular cells. The Evolutionary Designer performs the whole 

process automatically, but it needs the VHDL models of the used cell functions (see the 

section 4.2.2.2 and the Listing 2). 

 
Listing 3. Automatically generated VHDL code – 5-bit majority 

The example of the entity of the automatically generated VHDL source code describing the 

5-bit majority circuit is shown in the Listing 4 (full source code is available in the 

Appendix A). 

library ieee; 
 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
entity parity is 
 port 
  ( 
  -- clock and reset port  
  clk           : in std_logic; 
  reset_n       : in std_logic; 
    
  -- input ports 
    input_data_0  : in std_logic; 
   input_data_1  : in std_logic; 
   input_data_2  : in std_logic; 
   input_data_3  : in std_logic; 
   input_data_4  : in std_logic; 
    
     -- output port 
   output_data_0 : out std_logic 
  ); 
end; 
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Listing 4. Automatically generated VHDL code – 5-bit majority 

4.2.2.7 Generation of Virtual Reconfigurable Circuit 

By analogy to the VHDL implementation of the evolution result, the generation of the 

VHDL source codes implementing Virtual Reconfigurable Circuit (VRC) can be performed 

very easily. The VRC can be used for designing an evolvable system in the FPGA devices. 

It exactly describes the structure which is used for the calculation of the fitness function by 

CGP. The VRC represents quite a complex circuit with many parameters. The automatic 

generation of source codes of the VRC can reduce the time needed to implement the 

evolvable system based on CGP.  

 
Figure 18. VRC implementation dialog 

library ieee; 
 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
entity parity is 
 port 
  ( 
  -- clock and reset port  
  clk           : in std_logic; 
  reset_n       : in std_logic; 
    
  -- input ports 
    input_data_0  : in std_logic; 
   input_data_1  : in std_logic; 
   input_data_2  : in std_logic; 
   input_data_3  : in std_logic; 
   input_data_4  : in std_logic; 
    
     -- output port 
   output_data_0 : out std_logic 
  ); 
end; 
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Listing 5. Automatically generated VHDL code – VRC implementation 

Due to facts described in the next part of this thesis, there is only one limitation – the  

l-back parameter of the generated VRC is reduced to maximal value equal to 2. In other 

-- Virtual Reconfigurable Circuit 
-- Entity name: vrc_top 
-- 
-- VRC parameters: 
-- Number of columns: 5 
-- Number of rows: 5 
-- L-back: 1 
-- Input availability degree: 5 
-- Output availability degree: 5 
-- Config interface: Parallel 
-- 
-- Generated by the Evolutionary Designer - 4.5.2013 23:30:21 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
use work.vhdl_designer.all; 
 
entity vrc_top is 
 port 
  ( 
  -- primary input 
  primary_input_0 : in std_logic_vector(7 downto 0); 
  primary_input_1 : in std_logic_vector(7 downto 0); 
  primary_input_2 : in std_logic_vector(7 downto 0); 
  primary_input_3 : in std_logic_vector(7 downto 0); 
  primary_input_4 : in std_logic_vector(7 downto 0); 
  primary_input_valid : in std_logic; 
 
  -- primary outputs 
  primary_output_0 : out std_logic_vector(7 downto 0); 
  primary_output_1 : out std_logic_vector(7 downto 0); 
  primary_output_2 : out std_logic_vector(7 downto 0); 
  primary_output_3 : out std_logic_vector(7 downto 0); 
  primary_output_4 : out std_logic_vector(7 downto 0); 
  primary_output_valid : out std_logic; 
 
  -- config data port 
  column_0_config_data : in std_logic_vector(39 downto 0); 
  column_1_config_data : in std_logic_vector(49 downto 0); 
  column_2_config_data : in std_logic_vector(49 downto 0); 
  column_3_config_data : in std_logic_vector(49 downto 0); 
  column_4_config_data : in std_logic_vector(49 downto 0); 
  output_0_config_data : in std_logic_vector(4 downto 0); 
  output_1_config_data : in std_logic_vector(4 downto 0); 
  output_2_config_data : in std_logic_vector(4 downto 0); 
  output_3_config_data : in std_logic_vector(4 downto 0); 
  output_4_config_data : in std_logic_vector(4 downto 0); 
 
  clock_config : in std_logic; 
 
  config_column_0_wr : in std_logic; 
  config_column_1_wr : in std_logic; 
  config_column_2_wr : in std_logic; 
  config_column_3_wr : in std_logic; 
  config_column_4_wr : in std_logic; 
  config_output_0_wr : in std_logic; 
  config_output_1_wr : in std_logic; 
  config_output_2_wr : in std_logic; 
  config_output_3_wr : in std_logic; 
  config_output_4_wr : in std_logic; 
 
  -- other signals 
  clk_vrc    : in std_logic; 
  clk_vrc_en : in std_logic; 
  reset_n    : in std_logic 
  ); 
end; 
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parameters, the generated source codes precisely match the CGP structure defined in the 

section 4.2.2.2. 

From the dialog shown in the Figure 18, it is obvious that the user can specify two main 

parameters – the Data Width of data signals and the type of configuration interface 

(parallel is set by default; serial interface can be set optionally). The Listing 5 demonstrates 

an automatically generated top-level entity (only entity’s declaration); the complete VHDL 

source code is available in the Appendix B.  

The implementation of the VRC is described in the chapter 4.4.3.1 in detail.  

4.2.2.8 Test and Validation 

The designed tool was used for the experiments performed in the rest of the thesis. The 

results of these experiments demonstrate the work of the Evolutionary Designer tool. For 

that reason, a special chapter dealing with the examples of functionality and benchmarks 

has not been written. Nevertheless, the author presents a brief comparison of the result of 

the designed tool with results obtained with Tools4CGP developed by Vašíček and 

Sekanina [60]. 

The evolutionary design of the multiplier 3x2 bits was used. The configuration of CGP 

was the following:  the generation limit = 500,000; set of the cell functions: AND, OR, 

XOR, identity; the number of primary inputs and outputs was 5. The evolution looks for 

the full functionality of the circuit; it means that the required fitness value is  

equal to 160 (= 5 x 25).  

There were 100 runs of the algorithm performed. The used topologies and the l-back 

values together with the results are presented in Table 1. From the table it is clear that both 

tested implementations of CGP provide very similar results. However, all runs of 

Evolutionary Designer found solution successfully. Seven runs of the Tools4CGP did not 

find a circuit with the full functionality. If the mean number of generations needed for 

successful evolution is compared together, it can be observed that the results given by the 

Evolutionary Designer are slightly more favourable. However, the differences are not 

significant and are caused by the fact that the Evolutionary Designer does not support the 

direct connection of the primary inputs to the primary outputs (see the subchapter 4.2.2.2).    
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Table 1. Comparison with Tools4CGP 

Topology 
nc x nr 

l-back Mut. Rate 
Tools4CGP [60] Evolutionary Designer 

(Burian) 

Mean # Gen. Run Successful 
[%] 

Mean # 
Gen. 

Run Successful 
[%] 

5 x 5 

1 

1 95,815 98 84,080 100 

2 79,233 98 67,572 100 

3 102,059 98 72,511 100 

5 

1 71,179 99 54,847 100 

2 59,349 100 43,603 100 

3 70,961 100 55,704 100 

10 x 10 10 

1 58,351 100 50,940 100 

2 31,966 100 25,951 100 

3 22,693 100 20,873 100 
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4.3 Reduction of Fitness Calculations 

This chapter deals with evaluation issue in the Cartesian Genetic Programming domain. It 

explores the possibilities of reduction of candidate solutions needed to evaluate. This 

reduction may accelerate the process of the evolution – evolutionary design, etc. The 

chapter presents the approach that detects changes in the phenotype and, based on that, the 

algorithm can omit the valuation of the candidate solution. The effectiveness of this 

approach is presented on evolutionary design of multipliers. 

4.3.1 Time-Consumption of Evolutionary Design 

Generally, the evolutionary design is relatively time-consuming. It is not possible to 

predict exactly the time needed for the evolution process. However, it may be expressed by 

the following formula [10]: 

 𝑇𝑒 = 𝑁𝑔 (𝑇𝑝 +  𝑁𝑖 .𝑇𝑓) (5); 

where Te .......... the whole time of the evolution (algorithm run), 

 Ng ......... the number of generations, 

 Tp ......... the time of production of population, 

 Ni .......... the number of individuals, 

 Tf .......... the time needed for the evaluation of an individual. 

This formula is valid for evolutionary algorithms generally. In the case of CGP, the 

parameter Ni represents the number of mutants produced in each generation of algorithm.  

According to this formula, the possibilities of the acceleration of the evolutionary process 

may be discussed. It is clear that the parameter Ng is very significantly related to the speed 

of evolution. This parameter depends on the effectiveness of the search (evolutionary) 

algorithm and the area of the search space. If the common search algorithm of CGP is 

assumed, the number of mutants and topology of re-configurable structure can be affected. 

These parameters can reduce the number of generations. The parameter – Tp – depends on 

the implementation of the evolution process on the target platform. It presents the 

computational time related to the preparation of the population; it means the selection and 

mutation process. The remaining two parameters are the most significant because the 

calculation of the fitness function (i.e., the valuation of individual) is the key element of 

each application based on evolutionary algorithms. A good implementation of this function 
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could reduce the time needed for the evolution very markedly. If trivial tasks are not 

considered, this infers that the latter statement is applied. 

 𝑇𝑝 ≪  𝑁𝑖 ∙  𝑇𝑓 (6). 

It is obvious that the evolution time depends mainly on the product Ni ∙ Tf. In other words, 

the evolution time is related to the time of the fitness calculation of the individual and to 

the number of individuals which have to be evaluated during the whole evolutionary 

process. This fact can be expressed as: 

 𝑇𝑒 ≈ 𝑁𝑔 ∙  𝑁𝑖 ∙  𝑇𝑓 (7). 

4.3.2 Proposed Approach to Reduction of Number of Fitness Calculations 

To accelerate the process of evolution (evolutionary design), it is necessary to focus on the 

formula (7) mentioned in the previous subchapter. The parameter Tf is dependent on the 

used implementation and the target platform used.  

In this thesis, the author assumes that Tf is constant and deals with the remaining 

possibility of acceleration of CPG. It consists in the reduction of the number of individuals 

requiring the fitness calculation (evaluation). 

As mentioned in section 4.1, after the creation of mutants (offspring), it is necessary to 

calculate the fitness function of these new individuals – each new individual is evaluated 

(the fitness function is calculated). However, this approach includes certain redundancy.  

Initially, it is assumed that the parent’s chromosome contains inactive (unused) cells 

(genes); if the mutation process changes only this inactive part of the chromosome (it 

means that the phenotype of the individual remains unchanged), the new created individual 

(mutant/offspring) must take the same value of fitness function. This feature is called silent 

mutation by Miller in [72]. In other words, if the mutant process does not change the 

phenotype of the individual, the fitness calculation of such an individual is not necessary! 

The modified algorithm which detects the changes in the phenotype can reduce the number 

of individuals requiring a fitness calculation. The proposed and designed modified 

algorithm is described by the following diagram. 
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Figure 19. Design flow of proposed modified algorithm 

In each generation, the designed algorithm detects active genes of all parent chromosomes 

(in the case that more than one parent is used; CGP, generally, uses one parent only). The 

mutation process performs changes in the chromosomes. According to the information 

about active genes, the mutation process can determine whether the phenotype has been 

modified or not. If this kind of chromosome modification occurs, the fitness calculation of 

a new individual has to be performed. If the mutation process modifies only inactive genes, 

the fitness value of the parent is assigned to the mutant (offspring). Note that in the first 

generation, the fitness calculation of the parent/s is necessary.  

Further, it must be discussed whether the detection of active and inactive genes in the 

chromosome entails a burden. At first glance, it can seem that this detection represents an 

additional computing time. However, this detection is often part of the fitness calculation. 

Because it is profitable to evaluate only used cells (used cells are encoded by active genes).  
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If the fitness calculation uses this feature, the result of the detection is stored and can be 

used in other parts of the algorithm. For that reason, the detection of active genes does not 

represent a radical increasing demand factor of processing time. 

Indeed, it is not necessary to search for active genes in every generation of evolution. In 

generations where the mutation process changes only inactive genes, the algorithm doesn’t 

need to investigate any chromosome and can only copy information about active genes 

from the parent. 

If it is assumed that Tp (time needed for production of population) and the overhead of the 

algorithm are marginal and they can be neglected; the time of algorithm run is given by the 

formula: 

 𝑇𝑒 ≈ 𝑁𝑔.𝑁𝑖 .𝐹𝑣 .𝑇𝑓 (8); 

where Fv (this parameter has been established by the author of this thesis) means Factor of 

Valuation and takes the value range of (0; 1] and expresses the ratio between the number of 

individuals which must be evaluated and the total number of produced individuals. In the 

standard version of CPG, Fv is equal to 1; in the designed modified algorithm it can be less 

than one, this means the number of fitness calculations also can be reduced. The value of 

Fv depends on a few parameters of CPG. In the following experiments, the relationship 

between the value of Fv and the parameters of CGP is shown. 

4.3.3 Experiments and Results 

4.3.3.1 Experiments Description 

Several experiments were performed to verify the proposed modifications of the algorithm. 

The author chose the design of multiplier circuits (2x2b, 3x2b, 4x3b) as benchmarks. All 

testing was performed by means of the software tool for the evolutionary design of a 

digital circuit which was introduced in the section 4.2. The modifications mentioned in the 

previous chapter have been implemented into this tool. In all tests, CPG used two-input 

cells with one output and four cell functions – AND, OR, XOR and identity (it copies the 

value from one input into an output directly; this function is represented by ‘wire’ in a real 

digital circuit). The mutation rate was variable in the value range from 1 to 7. It was 

considered that this range of mutation rate covers the optimal mutation rate for the 

benchmarks tasks used in the experimentation.   
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For individual tests, various CGP topologies (nc x nr) and maximal value of generations 

were used. To obtain relevant statistical results, each run of the algorithm was repeated 

100 times in the case of multipliers 2x2b and 3x2b and 10 times for the multiplier 4x3b.  

In the results of the test the value Valuation Reduction [%] (VR [%]) is introduced. This 

coefficient expresses how much the number of fitness calculations (valuations) is reduced. 

For example, if VR takes the value of 25%, the algorithm executed by a quarter less fitness 

calculations than the standard version of CGP. The VR has an inverted relationship  

(VR = 1 - Fv) with respect to the Factor of Valuation (Fv). 

4.3.3.2 Experiments 1 

This section deals with experimental results presented by Table 2, Table 3 and Table 4. 

Table 2. Design of multiplier 3x2b (topology 5x5 cells) 

Mutation 
Rate 

Mean # 
Generations 

Mean # 
Valuations 

Mean # 
Individuals VR [%] Max. 

Fitness 
Min. 

Fitness 
Mean 

Fitness 

Evolution 
Successful 

[%] 

1 54,847 127,462 219,387 41.9 160 160 160.00 100.0 

2 43,603 142,680 174,413 18.2 160 160 160.00 100.0 

3 55,704 204,557 222,818 8.2 160 160 160.00 100.0 

4 69,702 268,844 278,809 3.6 160 160 160.00 100.0 

5 105,604 415,487 422,416 1.6 160 160 160.00 100.0 

6 142,743 566,451 570,972 0.8 160 160 160.00 100.0 

7 210,576 839,401 842,305 0.3 160 158 159.82 88.0 

 

The first of these tables (Table 2) describes the results obtained for the evolutionary design 

of the multiplier 3x2b. The topology of 5x5 cells of CGP was used; the maximal number 

of generations was set to 500,000. The evolution design searched only for the full 

functionality of the multiplier; it follows that the maximal fitness value is 160. The table 

shows the mean number of generations which were executed by the algorithm. Further, it 

presents the mean number of individuals produced in algorithm by the mutation process. 

The two key items in the tables are the mean number of valuations and VR [%] (see 

previous section). The standard version of CPG performs the same number of fitness 

calculations as in the number of produced individuals (Mean # Individuals). The column 

Mean # Valuations shows the number of executions of fitness function in the modified 

algorithm.  It can be observed that for a mutation rate equal to 1 the reduction of valuations 

is over 40%. The VR decreases according to the growing value of the mutation rate. 
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From the presented values it is obvious that the evolution with a mutation rate equal to 2 

needs the lowest number of generations but the variant with a mutation rate set to 1 

executes the minimum number of valuations. For the proposed formula (8) a mutation rate 

equal to 1 appears to be optimal. 

The remaining columns of the tables show the maximum, minimum and mean values that 

were obtained during the evolution runs. The last column Evolution Successful indicates 

how many evolution runs reached the maximal fitness value (i.e., full logic functionality 

was found). 

Table 3 shows results of the similar experiments. However, the design of a multiplier of 

2x2b was used. In contrast to the previous table, this table does not contain some columns 

expressing the successfulness of the evolutions runs. The reason for this is simple; all runs 

of the experiments were successful. The maximum value of fitness (representing full 

functionality) was 64 for this benchmark. Each run of evolution performed 250,000 

generations at the most. 

Table 3. Design of multiplier 2x2b (topology 5x5 cells) 

Mutation Rate Mean # Generations Mean # Valuations Mean # Individuals Valuation Reduction  [%] 

1 7,068 12,521 28,275 55.7 

2 3,871 10,425 15,485 32.7 

3 3,205 10,255 12,820 20.0 

4 3,499 12,268 13,995 12.3 

5 2,942 10,887 11,768 7.5 

6 3,759 14,346 15,038 4.6 

7 4,639 17,994 18,557 3.0 

 

As in the previous case, an analysis of the obtained results for the multiplier design can be 

made. From the point of view of the mean number of generations, a mutation rate equal to 

5 provides the best results (i.e., the quickest evolution). However, from the point of view of 

the mean number of valuations, the variation with the mutation rate that takes the value of 

3 is better. Indeed, it is necessary to note that the number of generations and valuations are 

very balanced, and are independent of the value of the maturation rate. Despite this fact, it 

can be observed that there is a meaningful benefit in the term of the mean number of 

valuations. The most efficient configuration with a mutation rate equal to 3 reduces the 
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number of valuations by an average of 20 percent in comparison with the standard version 

of CGP with the same value of mutation rate. 

The described experiments were repeated with other settings of topology (nc x nr). The 

additional design of the multiplier 4x3b was also performed; only the topology 1x100 was 

tested for this design. The fitness maximum of this benchmark is 896 (= 7 x 27); the limit 

of generations was set to 100 million. 

Table 4 summarises the results of all benchmarks for the various topologies. It shows only 

the cases with the optimal value of the mutation rate. 

The item VR to Min [%] (Valuation Reduction to Minimum) represents the benefit of the 

modified algorithm in contrast to the standard CPG with the optimal value of mutation 

rate. The meaning of this can be described by the means of Table 3. The configuration with 

the mutation rate equal to 3 is optimal from the point of view of the number of valuations. 

The modified process of valuations yields approximately the reduction of 20% for the 

given value of the mutation rate. If the standard version of CGP is assumed, a mutation 

rate equal to 5 ensures the best (fastest) runs of evolution. The comparison between these 

two situations is represented by the value VR to Min. In other words – in the case of  

Table 3 – the algorithm modification yields a reduction of roughly 13% against the 

standard concept of CGP when a range [1; 7] of mutation rate is supposed. If the item VR 

to Min doesn’t contain a value, it means that the optimal behaviour for both versions of 

CPG is reached with the same value of mutation rate. 

From the results in Table 4, the reader can see that – across various topologies of CGP – 

the minimum reduction of the mean number of fitness calculations (valuations) is 12.9%. 

Indeed, the optimal value of mutation rate is henceforward very significant. 

Table 4. Summary of experiments 

Circuit of Multiplier Topology Mutation Rate Mean # Valuations Valuation Reduction [%] VR to Min 
[%] 

2x2b 5x5 3 10,255 20.0 12.9 

2x2b 1x10 1 25,236 22.2 - 

2x2b 10x10 7 6,035 19.4 - 

3x2b 5x5 1 127,462 41.9 26.9 

3x2b 1x20 1 148,918 30.4 - 

3x2b 10x10 5 43,701 23.3 20.7 

4x3b (1) 1x100 2 7,656,913 17.1 - 

Note to table: 

(1) Only 10 runs of algorithm were performed. 
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4.3.4 Analysis of Reduction 

Referring to formula (8) in chapter 4.3.2, and from the experimental results, a more 

detailed analysis may be made regarding the dependence of the evolution time. The 

moment which affects the number of fitness calculations occurs after mutation, the 

individuals with a modified phenotype undergo a fitness calculation, and the other 

individuals do not.  The probability determining (it will be denoted as Pmig – Probability of 

mutation of inactive genes) whether phenotype of individual will not be changed can be 

expressed by: 

 𝑃𝑚𝑖𝑔 = �
𝐺𝑖𝑎𝑐𝑡
𝛬

�
𝜇𝑔

 (9); 

where Giact ...... the number of inactive genes, 

 Λ ........... the total length of the chromosome (see chapter 4.1), 

 µg ......... the mutation rate (the number of genes mutated within the 

mutation process). 

It follows that the probability of complementary event – Probability of mutation of active 

genes (Pmag): 

 𝑃𝑚𝑎𝑔 = 1 − 𝑃𝑚𝑖𝑔 (10). 

 
 

 
Figure 20. Progression of evolution run (mut. rate = 1) 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10,000 20,000 30,000 40,000 50,000

[-]     

Generations 

Fv Fitness value (normalized) Pmig



Cartesian Genetic Programming 
 

48 
 

 
Figure 21. Progression of evolution run (mut. rate = 2) 

In other words, the greater the difference between the numbers of used cells (genes) and 

the total number of cells (genes; chromosome length) the greater the probability that an 

individual does not need to be evaluated. Indeed, this individual cannot yield any benefit in 

terms of the fitness value; however, the genotype is changing.  

The progressions of the two evolution runs (design of multiplier 3x2; 5x5 topology; 

maximal value of l-back) are shown in the Figure 20 and the Figure 21. The first run was 

performed with the mutation rate equal to 1, the latter with the mutation rate equal to 2. 

These two runs were chosen randomly for demonstration purposes. Other evolution runs 

can proceed differently. 

In both runs of the algorithm, the number of active cells was low – 4 and 8; this matches  

17 and 29 active genes respectively. During the evolution runs, the number of active genes 

finally grew up to 50 and 53 active genes. The total length of the chromosome is 80 genes, 

in the results of which the value of Pmig decreased. It can be seen that Pmig is lower in the 

run with the higher value of mut. rate – see formula (9). The progression of the value Fv 

shows the current reduction of fitness calculation. The behaviour of Fv aids to explain the 

results in Table 2. Whilst the first run takes more algorithmic generations, it is economical 

from the point of view of fitness calculations. The higher value of mutation rate also means 

a higher probability of change of active genes and thus the fitness calculation. In the 
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presented two runs, the following values of Fv were reached: 0.54 for mut. rate equal to 1 

and 0.81 for the mut. rate equal to 2. 

The value of Fv is directly related to the value of Pmag. However, it is valid only for mean 

values. If the mean values (weighted average) of parameter Pmag are calculated, respective 

values of values 0.54 and 0.85 are obtained. The parameter Fv (established in section 4.3.2) 

can be approximately expressed as: 

 𝐹𝑣 ≈ 𝑀𝑒𝑎𝑛 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑚𝑎𝑔) (11). 

Note: Mean Value () expresses calculation of the weighted average over the whole evolution run. 

4.3.4.1 Experiments 2 

In the previous experiments, only the finding of full functionality was performed. The 

minimal solution from the point of view of the used cells/gates is often desired in the 

evolutionary design domain. 

The subsequent experiments executed the evolution of the 3x2b multiplier with a topology 

of 1x20 using a maximal value of l-back parameter and a limit of 1,000,000 generations. In 

additional, the algorithm searches for full functionality of the circuit and such a solution 

which, at most, is composed from 13 cells (see formula (3)).The results of the experiments 

are shown in Table 5.  

Table 5. Design of multiplier 3x2b (topology 1x20 cells) – 7 cells maximal 

Mutation Rate Mean # Generations Mean # Valuations Valuation 
Reduction [%] 

Evolution 
Successful [%] 

1 385,976 1,127,302 26.98 71.0 

2 175,488 647,443 7.77 95.0 

3 164,750 642,683 2.48 97.0 

4 281,979 1,119,463 0.75 92.0 

5 384,035 1,532,196 0.26 84.0 

6 487,082 1,946,490 0.09 82.0 

7 720,415 2,880,476 0.04 58.0 

 

The best behaviour shows that the mutation rate is equal to 3. Unfortunately, in this 

configuration the modified algorithm does not bring any significant benefit. The topology 

1x20 was chosen purposely. It is expected that the value Pmig will be low; thereby Fv will 

be greater. 
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Table 6  illustrates the progression of one run (worse than average) of evolution with a 

mut. rate equal to 3. The value of Pmig decreases very quickly. It can be seen that the last 

four rows describe the optimization of circuit size (the circuit already has reached full 

functionality). If focus is given to the last two rows, it is clear that the pass from 14 cells to 

a circuit with 13 active cells took a very long time – roughly 250,000 generations. During 

this searching, the value of Pmig is minor; because of this, a great number of fitness 

calculations is performed. When optimization of the circuit size is performed this 

behaviour is usual.   

Table 6. Example of evolutionary progression of design of multiplier 3x2b 

Generation Valuation Fitness 
Value 

Used 
Cells Pmig Fv 

1 6 101 8 0.170 0.67 

2 10 103 9 0.131 0.77 

4 18 111 9 0.131 0.86 

7 28 119 9 0.131 0.85 

11 43 121 10 0.098 0.88 

16 60 125 11 0.072 0.87 

23 85 133 6 0.270 0.88 

40 136 137 9 0.131 0.82 

317 1,143 139 11 0.072 0.90 

679 2,495 141 12 0.050 0.92 

751 2,761 143 10 0.098 0.92 

815 2,996 145 12 0.050 0.92 

1,313 4,922 147 15 0.012 0.94 

2,764 10,530 149 12 0.050 0.95 

3,049 11,607 151 12 0.050 0.95 

3,870 14,651 153 13 0.034 0.95 

12,002 46,213 155 12 0.050 0.96 

14,147 54,289 157 12 0.050 0.96 

21,549 82,422 158 14 0.021 0.96 

132,666 516,875 159 16 0.006 0.97 

132,744 517,181 164 16 0.006 0.97 

132,923 517,894 165 15 0.012 0.97 

133,656 520,785 166 14 0.021 0.97 

387,205 1,513,339 167 13 0.034 0.98 
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4.3.5 Compact Version of Cartesian Genetic Programming 

Because of the results of tests obtained in previous sections, it may lead to change of 

understanding of the whole conception of CGP. Assume the (1+1) version of CGP. The 

process of algorithm can be very simplified because only few simple operations are 

performed. If the modifications introduced in previous sections are inserted, it can result in 

slightly different flow diagram of the algorithm – the working title ‘Compact Cartesian 

Genetic Programming’ with abbreviation CCGP was established. The diagram of this 

algorithm is shown in the Figure 22.   

The initialisation of the parent (in this case, there is the only parent) is performed in the 

usual way; it means that the parent can be initialized randomly or by some seed. During the 

calculation of the fitness function of the initialized parent, the algorithm detects active 

genes in the genotype – in other words, the genes forming the phenotype are marked. After 

this evaluation and the marking of the genes, the mutation is performed.  

The number of mutated genes depends on the mutation rate value, similarly to the standard 

version of CGP. However, the algorithm can detect the mutation of genes forming parent 

phenotype in this phase. In other words, there is a list of active genes generated during 

fitness calculation of the current parent. Because of this list, the mutation process can 

immediately determine whether active genes of the chromosome will be modified or not. 

Of course, the mutation of active gene itself doesn’t mean that the phenotype of the 

individual was changed. Specific situations can occur when a new value of the gene is 

equal to a previous value, or when the next gene mutation neutralizes preceding 

modification in chromosome. The algorithm may implement processes that check these 

situations and avoid them. In this moment – for simplicity – these protections are not taken 

into account. The next steps of algorithm are derived from the result of the mutation 

process. If active genes (phenotype) of parent were changed, it is necessary to evaluate the 

newly formed individual. If only inactive gene/s was/were mutated, the current parent is 

replaced by a mutant (result of last mutation process) and this individual undergoes the 

next cycle of mutation. If the mutation produces an individual with new phenotype, the 

fitness calculation is performed for one; in this phase, the algorithm also detects active 

genes of an individual. If the obtained fitness value of the evaluated individual is better 

than or equal to the fitness found until now, the individual takes a position of parent for the 

next generation cycle and ‘the list of active genes’ is updated according to this individual. 

If the obtained fitness value is worse, the formed mutant is dropped and the next generation 
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continues with the current parent. However, the test of terminal conditions is necessary 

before the next generation cycle when better fitness was achieved. 

 

Figure 22. Design flow of the CCGP 

At the first glance, the presented algorithm is simpler from the point of view of the 

implementation, memory requirements, etc. On the contrary, the algorithm loses ability of 

diversity which is essential in the Evolutionary algorithms domain. Only the wide research 

of one may indicate possible benefits. The next section of this work shows several 

experiments and tests with this designed algorithm. 

4.3.5.1 Testing of CCGP 

For basic testing of the CCGP, the benchmarks introduced in section 4.3.3 were used. 

Recall that the tests from this section performed search algorithm with λ = 4; it means  

(1 + 4) type of algorithm. This value of λ is used very often. For that reason, mainly 

algorithm runs with this value of λ will represent fundamental subjects to comparison.  
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First, the test multipliers 3x2 and 2x2 with the topology of 5x5 cells were performed. The 

terminal condition of maximum number of generation cycles was increased to 2 million 

generations in the case of the multiplier 3x2 and to 1 million generations for multiplier 

2x2, because the λ value is equal to 1. By this modification of the terminal condition is 

ensured that both version of algorithm can generate the same number of individuals (by 

means of mutation process). 

The test results of these two benchmarks are shown in Table 7 and Table 8. The former 

table describes test for multiplier 3x2. It is clear that the best results were obtained with the 

mutation rate equal to 1; roughly 166 thousand individuals were generated in average and 

approximately for 40 percent of them the fitness calculation was performed. Now, the 

focus should be given on Table 2 describing the same benchmark for λ = 4. If the results 

presented by this table are compared with the results obtained for CCGP, it is clear that 

CCGP needs markedly more generations. However, this behaviour was expected, because 

CCGP generates only one mutant within one generation. The mean number of generated 

individuals is the same order of magnitude for both algorithm variants. Even the VR is 

almost identical. Regardless of these facts, the CCGP with mutation rates equal to 1 and 2 

performs less evaluations than the CGP with λ = 4 with optimal mutation rate. CCGP 

required about 24 percent fewer evaluations.  

The Table 8 describes the same benchmark for the multiplier 2x2b. This table has to be 

compared with Table 3. It can be seen that CCGP provides ‘better’ results again. In 

comparison with the multiplier 3x2b, the mean numbers of generations and generated 

individuals don’t increase constantly; however, the CCGP with mutation rate equal to 1 

performs about 39% less fitness calculations. 

Table 7. Test of CCGP – Design of multiplier 3x2b (topology 5x5 cells) 

Mutation 
Rate 

Mean # 
Generations 

Mean # 
Valuations 

Mean # 
Individuals VR [%] Max. 

Fitness 
Min. 

Fitness 
Mean 

Fitness 

Evolution 
Successful 

[%] 

1 166,303 96,836 166,304 41.8 160 160 160.00 100.0 

2 137,033 111,922 137,034 18.3 160 160 160.00 100.0 

3 179,654 165,451 179,655 7.9 160 160 160.00 100.0 

4 222,244 214,287 222,245 3.6 160 160 160.00 100.0 

5 356,551 350,685 356,552 1.6 160 160 160.00 100.0 

6 602,020 597,857 602,021 0.7 160 158 159.98 99.0 

7 867,326 864,265 867,327 0.4 160 158 159.87 90.0 
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Table 8. Test of CCGP – Design of multiplier 2x2b (topology 5x5 cells) 

Mutation 
Rate 

Mean # 
Generations 

Mean # 
Valuations 

Mean # 
Individuals VR [%] Max. 

Fitness 
Min. 

Fitness 
Mean 

Fitness 

Evolution 
Successful 

[%] 

1 14,473 6,206 14,474 57.1 64 64 64.00 100.0 

2 12,146 8,111 12,147 33.2 64 64 64.00 100.0 

3 10,513 8,501 10,514 19.1 64 64 64.00 100.0 

4 13,284 11,725 13,285 11.7 64 64 64.00 100.0 

5 13,271 12,306 13,272 7.3 64 64 64.00 100.0 

6 13,566 12,942 13,567 4.6 64 64 64.00 100.0 

7 13,917 13,540 13,918 2.7 64 64 64.00 100.0 

 

The presented tests of two benchmarks show promising results. For greater relevance, the 

next tests/experiments were carried out and are summarized in Table 9 (table shows only 

the mean number of valuations, the number of generations is not presented for better 

lucidity). The experiments were extended to other values of λ. The experimental designs 

were focused only on searching for full functionality of design circuits (a minimal solution 

isn’t required). Note that each run of evolution was repeated 100 times in the case of 

multipliers 2x2b and 3x2b and 10 times for the multiplier 4x3b. All runs of design 

multiplier 4x3b were limited by 100 million of generations. 

Table 9. Test of CCGP – Design of multipliers with variable number of mutants 

   

λ = 1 / CCGP λ = 4 λ = 10 λ = 14 CCGP 
Mean 
Red. 
[%] Circuit l-back nc x nr 

Mut. 
Rate 

Mean # 
Valuations 

Mut. 
Rate 

Mean # 
Valuations 

Mut. 
Rate 

Mean # 
Valuations 

Mut. 
Rate 

Mean # 
Valuations 

Mult. 
2x2b max. 5x5 1 6,206 3 10,255 4 14,592 2 16,975 39.5 

Mult. 
2x2b 1 5x5 3 11,861 1 16,078 2 25,458 4 29,506 26.2 

Mult. 
2x2b max. 1x10 1 20,611 1 25,236 2 35,730 2 37,893 18.3 

Mult. 
2x2b max. 10x10 1 3,630 7 6,035 6 9,178 4 11,611 39.8 

Mult. 
3x2b max. 5x5 1 96,836 1 127,462 2 203,573 2 219,732 24.0 

Mult. 
3x2b 1 5x5 1 159,671 1 208,729 2 280,543 2 347,049 23.5 

Mult. 
3x2b max. 1x20 1 124,069 1 148,918 2 206,369 2 245,894 16.7 

Mult. 
3x2b max. 10x10 3 26,248 5 43,701 7 55,779 7 74,004 39.9 

Mult. 
4x3b max. 1x100 1 5,057,139 2 7,656,913 3 21,516,024 3 19,460,123 34.0 

 

If obtained results are analysed, an interesting behaviour can be observed. In all cases, 

CCGP was more effective (on the average) in terms of fitness calculations than classical 
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CGP generating 4, 10 or 14 mutants in one generation. Almost in all cases, the number of 

fitness calculations needed for evolution run increases linearly with the increasing value of 

λ. The item called CCGP Mean Reduction [%] expresses the reduction of fitness 

calculations performed by CCGP compared with the ‘best situation’ of the algorithm with 

λ greater than 1. 

Indeed, the great number of mutants produced in each generation causes the decreasing of 

the number of performed generations. This trend is readable from the Figure 23 which 

shows the mean number of generations in multiplier 3x2b benchmark. The growth of the 

number of generations when λ is equal to 1 is markedly. However, it has to be taken into 

account that only one mutant is produced in this case (compared with λ=14 => 14 times 

more mutants are generated within one generation). 

 
Figure 23. Trend of number of generation with variable λ (multiplier 3x2b) 

 
Figure 24. Number of produced individuals (multiplier 3x2b) 

The Figure 24 shows the mean number of produced individuals. From this chart is clear 

that CCGP generates least individuals (mutants). Because of introduced modifications of 

0

50,000

100,000

150,000

200,000

250,000

300,000

5x5; l-back = max. 5x5; l-back = 1 1x20; l-back = max. 10x10; l-back = max.

M
ea

n 
nu

m
be

r o
f g

en
er

at
io

ns
 

λ = 1 λ = 4 λ = 10 λ = 14 

0
50,000

100,000
150,000
200,000
250,000
300,000
350,000
400,000
450,000

5x5; l-back = max. 5x5; l-back = 1 1x20; l-back = max. 10x10; l-back = max.M
ea

n 
nu

m
be

r o
f p

ro
du

ce
d 

in
di

vi
du

al
s 

λ = 1 λ = 4 λ = 10 λ = 14 



Cartesian Genetic Programming 
 

56 
 

CGP, some mutants do not need evaluation. By this, it follows the number of fitness 

calculations described in Table 9. This table also tells us that the minimal benefit of the 

CCGP is approximately 16 percent in case of multiplier 3x2b with topology 1x20. In other 

cases, the benefit is more significant. 

4.3.5.2 Analysis of CCGP 

The result in previous section shows that the version of the CGP with λ can be very 

effective. Now, this kind of algorithm will be elaborated.  

As mentioned earlier, the CGP with search algorithm (1 + 1) works with one parent and 

produces one mutant during generation cycle. It means that the algorithm doesn’t form 

population of candidate solutions and its behaviour approaches certain kind of random 

searching or Hill-climbing algorithm. The parent in CCGP travels in the search space and 

the fitness calculation is executed only when the phenotype is changed. It is thus 

questionable, whether CCGP is still an evolutionary algorithm in the true sense of the 

word. 

It is necessary to note that tests and experiments introduced in previous sections will focus 

on the number of executions of fitness calculation and it is not ensured that the designed 

kind of CGP will be effective for other types of tasks.  

In the end, the Te for CCGP will be derived by means of formulas mentioned in section 

4.3.4. The first, the mean value of Pmag, will be expressed by the formula: 

 𝑃𝑚𝑎𝑔𝑎𝑣 =
∑ 𝑃𝑚𝑎𝑔𝑖
𝑁𝑔
𝑖=1
𝑁𝑔

 (12); 

where 𝑃𝑚𝑎𝑔𝑎𝑣  ........... the mean value of Probability of mutation of active genes, 

 𝑃𝑚𝑎𝑔𝑖  ............. the value of Pmag valid for given generation, 

 i. .................... index of evolutionary generation, i ∈ [1; Ng]. 

Further, in the section 4.3.4 it was derived  𝐹𝑣 ≈ 𝑀𝑒𝑎𝑛 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑚𝑎𝑔)  applies. If the 

formula (12) is substituted into formula (8) and it is assumed that Ni is equal to 1, it 

follows: 

 𝑇𝑒 ≈  �𝑃𝑚𝑎𝑔𝑖  ∙   𝑇𝑓

𝑁𝑔

𝑖=1

 (13). 
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Finally, the Pmag  can be expressed by means of complementary event Pmig – see formula 

(9). After substitution applies:  

 𝑇𝑒 ≈  ��
𝛬𝜇𝑔 −  𝐺𝑖𝑎𝑐𝑡𝑖

𝜇𝑔  
𝛬𝜇𝑔

�  ∙   𝑇𝑓

𝑁𝑔

𝑖=1

 (14); 

where 𝐺𝑖𝑎𝑐𝑡𝑖 ................ the value of Giact valid for given generation. 

These formulas partly explain the behaviour and relations of the CCGP in terms of its 

reduction of performed fitness calculations (evaluations). Referring to formula (14) is clear 

that the value of Ng remains unpredictable. For that reason, a lot of experiments will still 

be required. However, the techniques introduced in this chapter can accelerate the 

evolutionary design process very significantly.  
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4.4 Implementation 

This subchapter discusses the implementation of CGP by an FPGA device in great detail. 

It is divided into several subsections. Each of them deals with individual component of the 

implementation. 

4.4.1 Fast Detection of Active Genes 

The previous sections show that the detection of active genes in a CGP chromosome could 

yield certain benefits. The process of detection expresses which genes form a phenotype. 

Only the active cells (represented by active genes) must be considered to get the output 

response of a CGP structure and this feature can accelerate the calculation of the fitness 

function. In the evolutionary design domain, if the active genes are known, the number of 

used cells in the designed digital circuit can be derived. Hence, this is a very significant 

and frequently used feature.  

As mentioned above, the general algorithm for detecting active nodes/cells (active genes 

are determined by active cells) in a CGP structure was published in [53]. This general 

approach can be used by implementations of a software performing CGP. It is sequentially 

defined and, for that reason, it can be implemented, for instance, by a C code very easily. If 

the implementation in FPGA/ASIC is proposed, this sequence approach of active genes 

detection is not profitable. Indeed, the detection can be performed by a state machine and 

can run similarly to the C code implementation. In the case of need, the detection can be 

implemented by a soft-core processor in the FPGA design. Unfortunately, these mentioned 

possibilities of the active genes detection are relatively very slow. No implementation of 

fast detection has been published until these days (when the author wrote this text). Thus, 

the method of the fast hardware detection of active genes in the CGP chromosome has 

been developed by the author. 

The following few obvious requirements for the proposed fast hardware detection were 

established: 

• Determination of active genes in a chromosome 

• Derivation of the number of used cells/nodes 

• High-speed processing 

• Low latency of the output 

• Assumed use of the l-back parameter taking the value of 1 or 2 
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• Modular structure 

Because of the requirement on high-speed processing of a CGP chromosome, the author 

hasn’t put main emphasis on the amount of hardware resources needed for the 

implementation of the detector.  

4.4.1.1 Principle of Detector 

In this section, the keynote of the proposed detector will be introduced.  

The following figure shows a simple CGP structure configured by a certain chromosome. 

There are three primary inputs and two primary outputs.  

 

Figure 25. Example of CGP structure 

It is simply possible to determine the used cells from the figure. The Primary Output 0 

depends on cells 0, 1, 5 and 7. The latter primary output – Primary output 1 – exploits the 

cells 1 and 3. By the means of simple reasoning, two basis rules can be inferred:  

1) The cell is active/used if it feeds primary output. 

2) The cell is active/used if it feeds active/used cell.  

The principle of the designed detector is based on these two rules and the 

propagation/generation of the state describing active cells in the direction from primary 

outputs to primary inputs. The state is propagated and generated ‘column-by-column’ 

starting with the rightmost column. The principle of this method is demonstrated by means 

of the Figure 26, describing the detection of used cells related to the Primary Output 0. 

There are three tables belonging to particular columns in the CGP structure. The item 

called AC (Active Cell) indicates the usage (‘1’ => used, ‘0’ => unused) of a cell. The 
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second item – RC (Route Carry) – defines cells in the following (direction is shown by 

arrow) column feeding cell in the current column. First of all, the output node (cell) is 

determined. In our case, the Primary Output 0 is connected to the output of the cell no. 7; 

hence this cell is marked as used. One input of the cell no. 7 is fed by the cell no. 5 and for 

that reason there is RC = ‘1’ in the item on the bottom position. The second input of the 

cell no. 7 is connected to one of the Primary Inputs; this input value does not depend on 

any cell. In other words, the state describing active cells is carried (propagated) only to the 

cell no. 5 in the next column. This cell is only used in the middle column of the structure. 

The inputs of this cell are connected to the cells no. 0 and no. 1 in the first column. It 

corresponds to the vector “1 1 0” in the RC item. This step marks active cells in the last 

(the first within the meaning of the CGP structure) column. 

 

 Figure 26. Principle of used cells detection – Primary Output 0  

The detection of the used/active cells related to the Primary Output 1 is performed 

analogously. This primary output is drawn from the cell no. 3; thus this cell and the  

cell no. 1 define an output response of the Primary Output 1. 

 

 Figure 27. Principle of used cells detection – Primary Output 1 

The Figure 26 and Figure 27 show the detection of used cells related to each primary 

output separately. This feature is useful if it is necessary to know which cells define the 

behaviour of particular outputs. However, the total count of used cells is demanded more 

often. In this case, the detection for all primary outputs can be performed at the same 
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process as shown in the Figure 28. The total list of used cells is given by the merger 

between the used cells related to particular primary outputs. 

 

 Figure 28. Principle of used cells detection – Primary Outputs 

4.4.1.2 Implementation 

The principle introduced in the previous section can be represented by a logic 

combinational circuit. The complexity and the area of this circuit depend on the defined 

parameters of a CGP structure. However, the designed implementation of the detector 

described in this section is highly modular, composed of several structural elements. This 

concept makes it possible to compose the detector of active genes for various parameters 

(the l-back parameter still being limited) of the structure. Of course, the parameters of a 

CGP structure affect the area and hardware resources needed to implement the detector. 

Thereby timing parameters (max. frequency, data delay, etc.) are also affected.  

Note: This section mainly focuses on the situation when CGP l-back parameter is equal to 1. 

The basic structural element is called a Detection Cell. To each cell of a CGP structure 

belongs just one Detection Cell. This element determines whether a corresponding cell of 

CGP is active/used or not. The second functionality of a Detection Cell observes the 

connection genes (configuration information defining nodes connected to cell inputs) of 

cell and defines the propagation of a signal indicating an active cell for the next column. In 

essence, if focus is given to the Figure 28, a Detection Cell produces logic values for one 

row in the table, one AC and RC value.  

The implementation used in an FPGA device uses slightly modified index of nodes within 

the structure. The relativity addressing nodes is used. If the rightmost column of the 

structure depicted in the Figure 25 is assumed, valid addresses are in the range [0; 5]. The 

values vary from 0 up to 2 address nodes of primary inputs. The rest of address range 

expresses the outputs of cells 3, 4 and 5. 
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The rules for the detection of active cell have been declared above and are easy to 

understand. Note that in the general version of CGP, a primary output can be connected to 

any node/cell. If this ‘output connectivity’ is limited so that the cell cannot feed primary 

output, only one rule is valid. The cell is active only when it feeds another active cell.  

The diagram of the Detection Cell is shown in the Figure 29. Note that the diagram 

explains the behaviour of the designed component; the final HDL implementation can be 

different. At first, the logic driving signal (port) act_cell_flag will be described. The 

current value of this port is given by the logic sum of input signals prev_act_cell and 

output_sel. The former signal indicates that the current cell feeds active cell/s. The latter 

signal tells us that this cell feeds the primary output. An output value of this OR-gate 

determines whether the related CGP cell is used. The source of the output_sel signal is 

described hereafter.  

 
Figure 29. Diagram of the Detection Cell 

Note to the Figure 29: The ‘M’ denotes the width (in bits) of route configuration (connection gene). Other 

signals are single-bit. 

The next part of the detection cell determines the value of the act_cell_propagation signal. 

This signal informs the cell in the next column that some active cell is fed by it. At the 

beginning, the route configuration vectors of the cell represented by 

CONFIG_ROUTE_A/B are limited to the maximum meaningful value (= the number of 

rows + the number of primary inputs – 1). Such modified values input to a pair of binary 

decoders. These decoders produce logic high on just one of its outputs. The outputs 
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implying the primary inputs – it means the value of CONFIG_ROUTE_A/B is less than the 

number of primary inputs – are unused/unconnected. The other outputs of decoders control 

the propagation of the act_cell signal which is routed to appropriate cell/s.  

For example, assume the CGP structure 3x3 cells (see the Figure 25) and the l-back 

parameter equal to 1. Place emphasis on the middle cell in the last column; this cell feeds 

the primary output and is fed by the primary input and the bottom cell in the previous 

column. One of the decoders produces logic high on unused output and can be ignored. 

The second decoder produces logic high on the third of the used outputs. By the means of 

the AND gate, the signal act_cell is routed to the bottom detection cell (in the current 

column). This bottom detection cell drives the act_cell_propagation signal to high via the 

output OR gate. 

The act_cell_propagation signal can be set if one or more detection cells route act_cell 

into the current cell. Indeed, if the CONFIG_ROUTE_A/B points on a cell in the same row, 

the signal act_cell_propagation is driven by the signal act_cell generated in the same 

detection cell. Each detection cell provides the signals that are connected to all other 

detection cells (in the column) and can drive the act_cell_propagation signal to high in 

these cells. The number of these signals is given by the number of other cells in the 

column. Also each detection cell accepts the same number of signals from the other cells; 

these signals represent the inputs of the ‘output OR gate’ and can drive the 

act_cell_propagation signal of the current cell to high. 

The group of detection cells forms a Column Detector. It interconnects individual detection 

cells and provides the needed route configuration for cells detection. It also derives the 

number of used cells in a column. The Figure 30 describes the Column Detector that can 

be used for columns of a CGP structure except the first one. According to this diagram, it 

is clear that the column detector represents almost only ‘glue logic’. It implements only 

conversion of flags (vector act_cell_flag) indicating active cells in the column to an 

information numeral. This functionality can be ensured by the encoder or by N one-bit 

adders. Of course, the need of the number of active/used cells determination in single 

column may be debatable. The common applications use only the total number. However, 

this functionality contributes to the analysis of candidate circuits in large.  

It is necessary to note that for higher numbers of cells in a column, the implemented 

interconnection among fundamental detection cells can be demanding of an FPGA’s area 

and resources.  
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Figure 30. Diagram of Column Detector 

Note to the Figure 30: The character ‘M’ denotes the width (in bits) of route configuration; the ‘Nr’, the 

number of cells in a column. The ‘K’ means the width (in bits) of the vector expressing the number of used 

cells. 

As mentioned above, the column detector depicted in the Figure 30 doesn’t have to be used 

for the first (in terms of the CGP structure) column. The signal indicating active cells 

finished its propagation in this column. For that reason in this column, the interconnection 

amongst fundamental cells is not required. Hence, even the route configurations of the 

cells are not useful as well. The detection cells are degraded to the implementation of the 

simple logic sum of two inputs. The following two figures show the diagrams of the 

Column Detector and the Detection Cell needed for the first column. From these diagrams 

it is evident that the whole Column Detector usage for the first column can be implemented 

by several OR gates and an encoder/adder.  

The presented implementations of column detectors were described in VHDL and the 

source codes are available in the Appendix C of this thesis. The entity describing the 

column detector contains several generic parameters so that its re-use is very easy and 

straightaway. The following two tables show elements of the entity called 

“column_detector” which corresponds to the implementation described in the Figure 30. 

The Table 10 and the Table 11 show generic parameters of entity and items of the port 

declaration, respectively. 
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Figure 31. Diagram of Column Detector (for the first column) 

Note to the Figure 31: The character ‘Nr’ denotes the number of cells in a column. The character ‘K’ means 

the width (in bits) of the vector expressing the number of used cells. 

 

Figure 32. Diagram of Detection Cell (for the first column) 

 

Table 10. Generic parameters of “column_detector” entity 

Generic Parameter Type Description 

NUMBER_CELL          POSITIVE Specifies the number of cells in a column. 

COLUMN_OUTPUT_EN     BOOLEAN Defines whether the cells of the column can feed primary output/s. If this 
parameter is set to ‘true’, the cells can feed the outputs. 

COLUMN_PRIM_INPUT_EN BOOLEAN Defines whether the cells of the column can be fed by primary inputs. If 
this parameter is set to ‘true’, the cells can be fed by primary inputs. 

NUMBER_PRIM_INPUT    POSITIVE Expresses the number of primary inputs. 

ROUTE_CONFIG_WIDTH   POSITIVE Specifies the bit width of a route configuration (connection genes). 

FUNCT_CONFIG_WIDTH   POSITIVE Specifies the bit width of a function configuration (function gene). 

LAST_COLUMN BOOLEAN Specifies whether the column detector belongs to the last column of a CGP 
structure. 
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Table 11. Port declaration of "column_detector" entity 

Port Type of Signal D Description 

column_config[J(1)-1..0] std_logic_vector I The configuration of the whole column. 

output_selected[NUMBER_CELL-1..0] std_logic_vector I The input port for flags indicating that the cell feeds 
primary outputs. 

previous_act_cell_propagation 

[NUMBER_CELL-1..0] 
std_logic_vector I The input of active cells state. 

act_cell_propagation[NUMBER_CELL-1..0] std_logic_vector O The output of active cells state. 

act_cell_flag[NUMBER_CELL-1..0] std_logic_vector O The output port indicating flags of active/used cells in the 
column. 

number_act_cell[K(2)-1..0] std_logic_vector O This port expresses the number of active/used cells in the 
column. 

Note to the table: 

(1) J = (ROUTE_CONFIG_WIDTH*2*NUMBER_CELL)+(FUNCT_CONFIG_WIDTH*NUMBER_CELL) 
(2) K = natural(ceil(log2(real(NUMBER_CELL)))) 

The bit width of the input port “column_config” is defined so that it accepts the 

configuration data of the whole column. The meaning of other ports and generic 

parameters is obvious. The entity implements just a combinational logic structure; this is 

why the port declaration does not contain clock input. It may appear that this approach is 

not the most suitable one. A synthesis and time analysis of asynchronous components is 

more difficult.  

However, in this case, the presented structural elements can form various high level 

modules. The developer has to design a suitable placement of registers to a logic structure 

so that the timing requirements are met.    

The structure of the final detector of active/used cells in the CGP chromosome is shown in 

the Figure 33. The figure describes the cascade coupling of Column Detectors. The 

rightmost detector does not use the act_prev_cell port; this port is fed by a null vector. 

In the next stages of the cascade, the act_prev_cell ports are fed by the 

act_cell_propagation port of the previous column detector. Indeed, the first column 

detector feeds no column. Each used column detector provides fundamental data ports 

(vectors) indicating the active/used cells and their number. These vectors are merged into 

two vectors that represent the information about all used cells and the total number of used 

cells. In the diagram, there is also shown the Output Config Decoder. This unit produces 

the vector of flags that indicates which cell/node (cells/nodes) of the structure feeds the 

primary output/s. If the detection of active cells for a single primary output is required, the 
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Output Config Decoder can be equipped with a mask circuit. By the means of this 

functionality, the decoder produces only flags enabled by the mask register. 

 

Figure 33. Final active cell detector 

Note to the Figure 33: The abbreviation ‘Nc’ expresses the number of columns. The character ‘Nr’ denotes 

the number of cells in a column. The character ‘K’ means the width (in bits) of the vector expressing the 

number of used cells. The character ‘M’ denotes the width (in bits) of route configuration. 

The whole detector can be designed just as combinational logic structure (circuit). 

However, it is clear that this approach does not correspond with the design 

recommendations. For that reason, the diagram suggests the placement of the registers 

(depicted by a dashed line) separating combinational data paths. The number and the 

placement of registers always depend on the current CGP structure and the timing and 

latency requirements.  

The Figure 34 describes the Output Config Decoder with the mask register. It is a classical 

form of digital decoder. The fundamental primary outputs are masked by the Output Mask 

bits. The output port’s width of the whole decoder is equal to the number of cells that are 

able to feed primary output/s. To each primary output belongs just one decoder with a 

group of mask AND gates. If the masking of primary outputs is not required, the AND 

gates and the mask register are omitted.  

Note to the Figure 34: The abbreviation ‘Ncell’ expresses the number of cells able to feed a primary output. 

The ‘No’ denotes the number of primary outputs. 
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Figure 34. Diagram of the Output Config Decoder 

4.4.1.3 Structures with Higher Value of l-back Parameter 

In the previous chapters, the structures with l-back parameter equal to 1 were discussed. 

However, the designed detector also makes it possible to detect active genes in the 

structures where the l-back parameter takes the value of 2. Higher value than 2 is not 

considered, because these structures are not commonly implemented by the FPGA devices. 

However, on principle, the introduced keynote of the detection is not limited to this l-back 

value.  

To perform the detection in the structure with l-back taking the value of 2, it is necessary to 

make marginal modifications in the detector circuit. Firstly, the focus will be given on the 

Detection Cell (see the diagram in the Figure 29). The cell has to be modified in order to 

provide the additional output indicating that the current cell is fed by the more distant 

column. This modification needs to extend the binary decoders to double width. The 

Limiters also have to limit to higher value (= (the number of rows x 2) + the number of 

primary inputs – 1). Finally, the whole AND/OR output logic is implemented twice. Such 

modified cell provides two outputs, the first output (act_cell_propagation_L1) indicates 

the interconnection with the closer column, and the latter (called act_cell_propagation_L2) 

implies the relationship with the more distant column. 

The modifications of the Detection Cells affect the changes in the Column Detector. The 

following figure shows the Column Detector – L2 which is a detector designed for 

structures with the l-back equal to 2. 
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Figure 35. Diagram of Column Detector – L2 

It is clear that the column produces the new vector act_cell_propagation_L2 that is 

composed of particular Detection Cells (as it was explained above). The new input port is 

added as well – there are the prev_act_cell_L1 and prev_act_cell_L2 ports. The latter 

accepts the state about active cells from the more distant column. Both signals are logically 

summed and the result is connected to particular cells. The rest of the column stays 

unchanged. 

These Detection Columns – L2 can be interconnected; thereby, they form the appropriate 

circuit to detect active cells in the structure where the l-back is equal to 2. Such detector 

(for the structure with 5 columns) is shown in the Figure 36. Note that only the main 

changed signals are depicted. 

 

Figure 36. The final active cell detector for l-back = 2 
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The Column Detector 0 is the detector described in the Figure 31, but its input is fed by the 

result of the logical sum of the act_cell_propagation_L1 signal from column 1 and the 

act_cell_propagation_L1 signal produced by the column 2. 

The Column Detector – L2 is implemented by the VHDL code (see Appendix D) as the 

“column_detect_l2” entity. The declaration of the entity is very similar to the 

“column_detector” entity which is described by the Table 10 and the Table 11. Only the 

ports prev_act_cell_L2 and act_cell_propagation_L2 are added. 

4.4.1.4 Timing Requirements 

The detector of active cells composed of structural elements, described in the previous 

chapters, was implemented and tested on the FPGA Cyclone IV (speed grade 7) device 

from Altera, Corp.  

The detector was composed according to the CGP structure of the following parameters: 

the values nr and nc were set to 5, the numbers of primary inputs and outputs were set in 

the same way to the value of 5. The l-back parameter was equal to 1. All cells can feed the 

primary output and all cells can be connected to (fed by) primary inputs. The mask register 

of the Output Config Decoder is neglected. It is supposed that the detection of active cells 

related to all primary outputs is required.  

The Figure 33 suggests the placement of registers in the detection structure. At first, these 

suggested registers are assumed. It means that the data paths between the act_prev_cell and 

act_cell_propagation ports are separated by registers. The registers are also placed on 

act_cell_flag and number_used_cells outputs. In other words, all outputs of a Column 

Detector are registered. This option of the detector (hereinafter marked as option 1) 

produces valid outputs after 7 clock cycles (it means the latency is 7 clock cycles). The 

detector can operate at the maximum clock frequency at approximately 171MHz, which is 

a very good value. 

Further, the next option (option 2) was composed. The register was inserted past the 

Output Config Decoder (see Figure 34). This step reduces the combinational data path 

between the storage of output configurations and the outputs of the Column Detectors. 

Unfortunately, it also increases the output latency to 8 clock cycles. On the other hand, it 

can operate at a higher clock frequency – roughly at 209 MHz. 

If focus is given to a Detection Cell (see Figure 29), it is obvious that a couple of decoders 

implements combinational logic and could produce a long data path. It has been tried to 
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place registers between OR gates (connected with decoders) and a group of AND gates. If 

the configuration of the whole column is stored simultaneously, all decoders can operate at 

the same time. Such registers in the option 4 were inserted and the registers among Column 

Detectors were omitted. The Output Config Decoder was used as unregistered. This tested 

option operates at lower maximal frequency 100 MHz. However, because of the omitted 

registers among columns, the output latency drops to 4 clock cycles. 

The option 5 is based on the option 4, but the Output Config Decoder is registered. 

Thereby, the maximum operational frequency was improved to 124 MHz.  

The registers used in options 4 and 5 were added to the solution represented by the option 

2. This variant is marked as the option 3 and achieves the best results in terms of the 

maximum operational frequency – approximately at 240 MHz. This option was analysed in 

detail and the critical data path was found between the columns with indexes 3 and 2. 

Nevertheless, only 3 logic levels implement this data path (see Figure 37). This fact results 

in obtaining a high maximum frequency.  

The results of all options are summarized in the Table 12. 

 
Figure 37. Critical data path of the option 3 

Table 12. Options of register placement 

 Registered Output   

Option Output Config Decoder Column Detectors Route Decoders Max. Freq. 
[MHz] 

Latency 
[clock cycles] 

1 × ✓ × 171 7 

2 ✓ ✓ × 209 8 

3 ✓ ✓ ✓ 240 8 

4 × × ✓ 100 4 

5 ✓ × ✓ 124 4 

 

It is necessary to note that the presented values of the maximum frequency are 

approximate. The real value of the maximum frequency depends on a few factors, for 

example: the setting of a complier, the available area of an FPGA device, the partly 

random character of a route and placement process. 
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The presented implementations require approximately 605 LEs (logic elements) in the 

FPGA device Altera Cyclone IV. The registers keeping the configuration of columns and 

configurations of output nodes are included in this number (the option 3 uses 275 registers 

in total). The compilations of all options were performed and the optimization of speed 

was preferred. If the user prefers the optimization of used resources and area and accepts a 

lower operational clock frequency, he/she can use a different setting of the complier. The 

complier can perform a register packing process, which joins registers and functions using 

only LUT (look-up table) into a shared element. These steps can save a few logic elements 

(573 LEs was achieved with the use of an area optimization technique). The higher amount 

of used FPGA resources is balanced by the speed of the designed logic. If the designed 

structure is completed by auxiliary shift registers, it can continuously process a pipelined 

data stream (CGP chromosomes/individuals) at a very high clock frequency.  

4.4.2 Mutation Unit 

The mutation is the only genetic operator performed by CGP. The evolutionary circuit 

design is a very hard task from the point of view of the evolutionary algorithms because 

the fitness landscape is not usually smooth. Experiments presented in the publications 

[61][62] indicate that the standard crossover operators do not yield any benefit in the 

search process.  

The process of the mutation was described in the chapter 4.1. Note that it is necessary to 

produce only valid values of genes. From the point of view of the software implementation 

of CGP, the mutation process is very simple and it does not present a significant issue. 

There are requirements: the allowed value range of the gene and a generated random 

number. By the means of these two input arguments, the new value of gene can be 

generated.  

However, another situation arises if CGP algorithm is implemented by logic, it means 

perhaps by an FPGA device. In this case, the process of mutation becomes harder. In the 

published projects, the bit mutation and bit representation of genes are often used 

[62][63][64]. The bit mutation is represented by the inversion of bit/s of a chromosome. At 

the first glance, this approach can seem preferable to a classical integer representation. 

However, the use of integer representation yields considerable benefits. An integer directly 

determines the used function of function cells or the interconnections among them. On the 

other hand, the algorithm has to keep information on particular parts of chromosome, 
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because every integer of chromosome can take only limited values. Another disadvantage 

is that the generation of a new part of chromosome is certainly more difficult than the 

mutation in a bit representation – it means bit negation. The Figure 38 shows the hardware 

implementation of a bit mutation which was published in [62]. 

A simple consideration dealing with both – bit vs. integer – representations will be made. 

Assume the following instance: structure 1 x 16 (rows x columns); all cells can be 

connected to primary inputs; the l-back parameter = maximum; each cell can perform one 

of these 2-input functions – AND, OR, XOR, interconnection. Further, 5 primary inputs 

are taken into account. In case of integer representation, 3 integers are needed for each cell. 

Only acceptable values determining the interconnection are variable.  

 
Figure 38. Hardware implementation of a bit mutation [62] 

Note that a particular integer represents particular nodes directly. For example, the first cell 

can be connected only to primary inputs; therefore, the interconnection integer takes the 

values between 0 and 4. For the last cell, the interconnection gene value lies between 0 and 

19.The integer determining the output cell is in the range between 5 (the first cell) and 20 

(the last cell). In the bit representation, it is desired for the chromosome to be as short as 

possible. For that reason, each cell is defined by a different number of bits. In our instance, 

the first cell needs 2 x 3 bits for interconnection (5 primary inputs) and 2 bits to determine 

the function; it means 8 bits as a whole. Indeed, the last cell needs 2 x 5 bits for 

interconnection, thus 12 bits as a whole. The output cell is defined by 4 bits (16 cells). If 

we approach the chromosome only as a bit stream, it is obvious that it will contain 

incorrect values. For example, the last cell can be connected only to 20 nodes (5 primary 

inputs and 15 previous cells); however, 5 bits code to up to 32 nodes. If we want to use the 

search algorithm working with a bit chromosome, it is necessary to ensure the correct 

calculation of a fitness function even with an incorrect chromosome. The easiest way how 

to solve it is the assignment of a maximum value for a certain group of bits. If the group of 
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bits represents a higher than allowable value, the fitness function calculation uses this 

maximum value. It is necessary to note that only a change in the implementation of a 

fitness function is discussed; the bit approach to the chromosome stays unchanged.  

It is clear that these steps increase the probability of neutral mutations. Let a 5-bit vector be 

assumed with its value meaningful range of [0; 20); the initial value is “11000” (it means 

24 in decimal). If the bit mutation is performed so that one of the first three bits is inverted, 

the effective value of gene does not change. This effect can be reduced if CGP parameters 

are chosen so that all values given by the bit vector are valid/allowed. However, this 

approach can also reduce the connectivity of a structure. This step may or may not affect 

the evolutionary process.  Now, assume the initial value “00000”. If only one random bit is 

mutated (inverted), the result gene value may take values (in decimal) 1, 2, 4, 8, 16. It can 

represent a significant difference in comparison with the mutation in integer representation 

which generates the gene value without reference to the preceding value. Indeed, if more 

bits in gene are inverted, this feature is significantly suppressed. 

Because of the facts introduced in the previous paragraphs, the author of this thesis has 

decided to implement CGP with a classical integer mutation. Indeed, this approach is not 

necessary to the successful hardware implementation of CGP. However, it brings a very 

significant feature; the behaviour of the implemented evolutionary system should be 

consistent with the CGP algorithm implemented by the software without the mentioned 

limits.   

4.4.2.1 Implementation of Random Gene Generator 

A special unit/component has been designed that generates the genes of a CGP 

chromosome. This unit provides a new value of genes continuously. There is an essential 

fact that all generated gene values are correct in relation to the gene type. It means that the 

designed Random Gene Generator produces only meaningful values.  

The aim of this unit is to produce several vectors. The vector determining the position of a 

gene in the chromosome is called Gene Index. It can take unsigned value in the range  

[0; the number of genes). The second fundamental vector – the Gene Value vector – 

produces the new value of the gene. The two values provided by both vectors are in a 

mutual relationship and they have to be understood in this way. Other features (index of a 

cell, type of a gene etc.) of the produced genes may be derived from these two vectors. 

The Figure 39 shows the basic concept of the unit.  
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The introduced concept required two sources of random numbers for its correct function. 

The input port Individual Active Cell Flags is not necessary, technically speaking; it is 

used to implement an additional functionality as will be discussed later. In the first step, 

the value of the Gene Index vector is generated. For this functionality, it is necessary to 

generate random numbers in a defined limited range. 

 
Figure 39. Concept of the gene generator 

However, the available (pseudo) random number generators (e.g. LFSR generators) often 

produce values in a reduced range; for example, the range is given by powers of two. For 

that reason, it is necessary to normalize the obtained random value in order to be in accord 

with the required value range. This process is very simple and the following formula 

expresses it: 

 𝐺𝑖 = 𝑓𝑙𝑜𝑜𝑟 �𝑅𝑛
𝛬

𝑅𝑛𝑚𝑎𝑥 + 1
� (15); 

where  Gi ......... the resulting value of Gene Index, 

 Rn ......... the generated random number, 

 Rnmax ..... the maximum random number, 

 𝛬 ........... the length (number of genes) of a chromosome. 

For example, let the length of a chromosome be 10 genes. Assume that a 8-bit LFSR 

pseudo-random number generator is used and its maximum produced value is 255. 

According to these values, the Gene Index will be produced in the value range [0; 10). The 

division in the formula can be substituted by a constant because both input arguments are 

fixed. 
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The new generated Gene Index feeds the Gene Decoder. This decoder derives other 

features of a gene – that informs about the index of the column, the type of gene 

(determining cell function or cell input) and the Cell Index (determines a cell/node 

represented by a gene). On the basis of these features, the look-up table defines a suitable 

coefficient for the normalization of a gene value. For example, if the newly generated Gene 

Index represents the configuration of a cell function, the normalization coefficient will be 

equal to the number of cell functions. The normalization of gene value is executed in the 

same way like the normalization of the Gene Index – see the formula (15). However, the 

value of the normalization coefficient is used instead of Λ. By this approach, a new gene 

and its values are generated. 

In addition, the module Active Cell Comparator decides whether the generated gene 

belongs to the active cells of an individual represented by the input vector Individual 

Active Cell Flags. The bit width of both vectors – Individual Active Cell Flags and Cell 

Index – is equal to the number of cells in the CGP structure. They take the value of ‘1’ for 

the given position if the corresponding cell is active/used. The comparator implements 

only a simple AND-OR logic. It drives logic high, if both vectors contain ‘1’ on the same 

position. Indeed, despite all this, if the generated gene represents an output configuration 

gene, this gene is automatically declared as active. 

According to the introduced principle, the mutation unit was implemented and described 

by VHDL. The parameters of this unit were chosen so that it produces genes for the 

topology of 5 rows x 5 columns, l-back = 1, 5 primary inputs and also 5 primary outputs 

and each cell can implement up to 4 functions. The primary inputs can feed whichever cell 

and each cell can represent a primary output. Note that the generated gene values define 

the cell function directly. However, the genes specifying the connectivity of the cells or the 

primary output/s point relatively to nodes. For example, if a gene of a cell in the last 

column takes the value equal to 9, it means that the cell is fed by the bottom cell in the 

previous column. In other words, the values [0;5) determine the primary inputs, and the 

range [5;10) points to cells in the previous column. On account of these facts, the 

coefficients for normalization of the gene values have to be deduced – see Table 13. The 

table doesn’t present the normalization coefficient for genes defining the output nodes. The 

value of this coefficient is 25 for all these genes, because all cells (25) can drive primary 

output/s.  
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It can be seen that the defined parameters of a CGP structure imply only several different 

coefficients. For that reason, they can be produced by a simple decoder or a look-up table.  

Table 13. Gene normalization coefficients 

Column 
Type of Gene 

Function Input A Input B 

0 4 5 5 
1 4 10 10 
2 4 10 10 
3 4 10 10 
4 4 10 10 

 
The implemented Random Gene Generator was simulated and tested on Altera FPGA 

Cyclone IV. It was fed by a pair of LFSR pseudo-random generators (with the data width 

of 19 and 16 bits). The mutation unit consumes approximately 206 LEs (LFSR generators 

are included). The structure of the unit is fully pipelined and it provides a new gene in 

every clock cycle. The normalization of the Gene Index is implemented by the multiplier 

constructed from logic elements because one argument is variable and the second is fixed. 

The embedded multiplier is used for the normalization of a Gene Value, because both input 

arguments of the multiplication are variable. The mutation unit implemented by this way 

can operate at the frequency approaching roughly 200 MHz. The critical data path (6 logic 

levels) was detected in the decoder which derives the Cell Index from the value of Gene 

Index.  

The simulation waves are depicted in the Figure 40. The designed unit uses 7 pipeline 

stages. Assume the mark A (in the figure) is an initial point when the random number is 

generated (by 19-bit LFSR) and feeds the rand_number_0 port. The value of the random 

number is 14,023. It implies that the Gene Index (called gene_address in the waves) will 

take value of 2 (see formula (15)) after passing through pipeline processing. Also on the 

basis of this value, a new value of the Gene Normalization Coefficient (in the Figure 40 

denoted as gen_value_norm_coef) is produced after 5 clock cycles. See the mark B, it is 

depicted that the gen_value_norm_coef is equal to 5 and the rand_number_1 takes the 

value (produced by a 16-bit LFSR) 22,151. After another two clock cycles (see the mark 

C), the unit provides a completed valid output. The newly generated gene points to the 

third gene of a chromosome (gene_address = 2), this gene maps the top cell in the first 

column (gene_column_sel = „000001“; the MSB of this vector denotes the genes 

determining the output nodes) of the CGP structure. The input vector indiv_act_cell_flags 

represents the active cells of the ‘parent’ chromosome. Because of this value, the gene is 
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considered an active gene (signal gene_active is high; LSB of the vector 

indiv_act_cell_flags implies that the first cell of the ‘parent’ is active and the generated 

gene encodes just this cell). The generated gene takes the value of 1. 

 
Figure 40. Simulation waves of Random Gene Generator 

4.4.3 Fitness Function Calculation 

The calculation of the fitness function performed by FPGA devices is the subject of this 

chapter. The topic is divided into two sections – the first one describes the reconfigurable 

structure which provides response to the input stimuli; the second section deals with the 

process of the calculation and its control. 

4.4.3.1 CGP Reconfigurable Structure – Virtual Reconfigurable Circuit 

The response of the candidate solution (chromosome) to the input stimuli is obtained by a 

Virtual Reconfigurable Circuit (VRC). The VRC is a structure that truly represents the grid 

structure defined by CGP. This VRC is inspired by the publications 

[65][66][9][10][67][68][69] and a lot of evolvable systems are based on it. Note that the 

VRC designed and used by this work observes the rules according to CGP. It means that 

VRC does not implement any simplification of the structure, for example limitation of cell 

connectivity as that is used by some authors.  

The following requirements were defined before the design of the VRC: 

• Easy and quick reconfiguration of the VRC 

• Pipelined processing 

• L-back parameter equal to 1 or 2 
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Figure 41. Virtual Reconfigurable Circuit  



Cartesian Genetic Programming 
 

80 
 

• Modular architecture 

• Multi-output support 

• Heterogeneous structure (various cell function sets within one VRC) 

The VHDL source codes of the VRC may be generated automatically by the Evolutionary 

Designer (see chapter 4.2). The Figure 41 describes the whole VRC structure with the  

l-back parameter equal to value 1. Other general features are assumed, which means that 

the primary inputs can be connected to an arbitrary cell and each cell can feed primary 

outputs.  

The primary inputs are directed to the input register. This register is not obligatory, but its 

use improves the timing parameters of the final circuit. Further, the primary input data are 

shifted by means of the shift register so that relevant input data are valid in each pipeline 

stage. The VRC consists of fundamental columns which correspond to the columns of the 

CGP grid structure. These columns ensure the processing of primary input data.  Each 

column output is registered and feeds the inputs of the next column. It accepts data from 

the previous column and the primary input data (from stages of the shift register). Indeed, 

the only primary inputs are connected to the first column. The functionality and response 

of the VRC depends on the configuration data representing the chromosome (individual) of 

an evolutionary algorithm (CGP in our case).  

The parts of this configuration are stored into registers in the fundamental columns and in 

the Output Selector (will be described later). The special ‘write enable’ signal belongs to 

each part of the chromosome and as such it can be stored independently on other parts; it 

means that partial reconfiguration is supported.  

Now, the length of the configuration bit stream will be analysed. At first glance, it is clear 

that the total number of bits will be given as sum of three configuration parts – the first 

column, the remaining columns and the output configuration. However, when the l-back 

parameter is equal to 2, the length of the second column must be calculated separately.  

Assume the VRC in grid structure 5x5, 4 primary inputs, 2 primary outputs, l-back = 1, the 

cell function set implements up to 4 functions. The length of the configuration of the first 

column is given as Lc0 = [2 + (2 · 2)] · 5 = 30 bits; two bits are needed to encode 4 primary 

inputs and the same number of bits for the selection of the cell function. The configuration 

of the second column is expressed by the same relation, but it is necessary to be aware that 

each input of a cell can be fed by primary inputs and output of the first column (it follows 
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9 signals => 4 bits). It means that Lc1 = [2 + (2 · 4)] · 5 = 50 bits. The remaining columns 

need the same length of configuration as the second column. The output configuration is 

given by the number of cells which can feed the primary outputs. In our case, the total 

number of these cells is 25; it follows that (Lout = 5) for the mapping of single primary 

output 5 bits are required. Thus, the whole length of the configuration bit stream is 

240 bits. If the l-back parameter takes the value of 2, the length of the bitstream remains 

unchanged (in this demonstrated example). 

The designed Evolutionary Designer software tool makes it possible to generate the VRC 

with heterogeneous structure. This term is established by the author of this thesis and 

represents the CGP structures using more than one set of cell functions. It means that the 

cells can implement various sets of functions. This fact can affect the length of the 

configuration bitstream if the sets contain a different number of functions. The tool also 

introduces novel parameters limiting the connectivity of primary inputs and outputs. These 

features are discussed in the chapter 4.2.2.2 and are in relation to the length of bit stream as 

well.   

The connectivity of the primary outputs also corresponds to the general definition of CGP. 

In some published projects (e.g. [70][47]), the outputs are fixed on certain cells/nodes in 

the last column. The designed VRC contains the module called Output Selector which 

ensures the connectivity of the primary outputs according to output configuration. 

However, it doesn’t implement only a simple multiplexer. 

The VRC implements the clock enable signal for all registers so that the pipelined 

processing can be suspended. The bit width of the data signals is also optional; it may be a 

single-bit signal or a vector.  

In the followings paragraphs, the fundamental part of the VRC will be discussed in detail. 

The primary element is the (reconfigurable) cell. The implementation of the cell (see the 

Figure 42) is similar to the architecture of an arithmetic logic unit. It implements certain 

number of cell functions and the output of the cell is given by one output of these functions 

selected by the multiplexer depending on the cell configuration (function gene). The cell is 

implemented as a combinational circuit and the cell output is not registered. Each cell 

function is described by the VHDL entity. The complexity of the cell functions and their 

total number affect the timing parameters of the final VRC.  
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Figure 42. Cell of the VRC 

Note to the Figure 42: The symbol ‘Wd’ expresses the bit width of the data signals. The ‘K’ denotes the bit 

width of Cell Configuration; the ‘N’ means the number of cell functions. 

The cells form a column which ensures a suitable connectivity amongst the column data 

inputs, primary inputs and cell inputs. The column also keeps appropriate configuration in 

the register (“Cell [x] Gene Register”). One gene determines the cell function and two 

genes control a pair of multiplexers. These multiplexers select the primary inputs or data 

from the previous column/s and feed the inputs of a cell. The outputs of cells packed in the 

column compose the column data output which is registered by the output register – this 

register separates the whole VRC to particular pipeline stages. Note that multiplexers in the 

columns consume a lot of logic elements. Their complexity is directly proportional to the 

number of rows in the structure and the number of primary inputs. However, the value of 

the l-back parameter is the most significant factor. The diagram of the column is shown in 

the Figure 43. 

The columns process the input stimuli data; the last task of the VRC is to connect 

cells/nodes according to the gene value to the primary/program output. If the VRC 

implements only one primary output, this situation is optimal, because the normal 

multiplexer can be used in order to connect the cell with the primary output. The latency 

between the primary input and output is given by the column that produced the output 

value and the presence of the input or output register. However, it is necessary to note that 

the position of the column producing primary output is changed during the evolutionary 

process. It follows that the latency of the output changes as well. Of course, this behaviour 

is not desirable. However, if the VRC contains two and more primary outputs, the situation 
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becomes more complicated. Each of the primary outputs can be fed by a different column; 

in consequence of that, the latency of the primary outputs may vary. This nuisance has to 

be compensated in the consequential module that processes the primary outputs produced 

by the VRC. For that reason, the Output Selector has been designed to compensate the 

different latencies of the primary outputs. According to the structure parameters and the 

output connectivity, a suitable compensation is implemented within the VRC. This feature 

ensures the constant latency of the primary outputs. The Output Selector is depicted in the 

Figure 44. The diagram shows the selector managing only one primary output; the same 

circuit is needed for each and every output. 

 

Figure 43. Column of the VRC 
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Figure 44. Output Selector 

Note to the Figure 44: The symbol ‘Wd’ expresses the bit width of the data signals. 

The data from all cells (if available) are connected to wide multiplexer. It is controlled by 

the output configuration gene stored in the register by a simple interface (data bus and 

‘write enable’ signal). By this multiplexer, the cell is selected and the rest of circuit 

compensates the output latency. The Column Decoder produces flags determining the 

column which contains the output node/cell. These flags control a group of multiplexers 

which defines the length of a shift register (comprising particular registers).  

For example, assume that the output configuration points to the cell in the first (index 0) 

column. The flag indicating this column is not produced because it is not used by the 

circuit. It means that all multiplexers are in the position 0; hence the signal from an output 

cell passes through all registers. On the contrary, if the output cell/node is situated in the 

last column (flag in the diagram is called “Col (Nc-1)”), the output signal is registered only 

by the rightmost register. This register serves as an output register and ensures that all 

outputs of the VRC are registered.  

Until now, mainly the structure with the l-back parameter equal to 1 was discussed. 

However, the designed software tool Evolutionary Designer also generates the VRC 

corresponding with the l-back which takes the value of 2. The principle of the VRC 

remains identical, as it has been introduced in the Figure 41. The increase in the value of 

the l-back parameter implies to implement auxiliary pipeline registers. These registers shift 

outputs of particular columns to be processed by the next columns. The Figure 45 

represents the placement of the auxiliary registers. For five columns, three registers are 
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needed. The higher number of registers does not present the main problem, because the 

architectures of FPGA devices are ‘register rich’. However, it is important to realize that 

the multiplexers in the columns become more complex, because the number of their inputs 

increases. If the focus is given to “Col 3”, it is clear that the column accepts data from two 

previous columns and primary inputs (they are not shown in the Figure 45).  

 

Figure 45. VRC with l-back = 2 

Further, let’s assume the structure in the Figure 45 with l-back = max. The number of 

auxiliary registers rises to six and the last column accepts data from four columns and 

primary inputs. In the line with the fact that the data length is usually wider than one bit, 

the multiplexer structures can allocate significant area in an FPGA device. For that reason, 

other authors also restrict the l-back parameter to the value of 2. 

At the close of this subchapter, the author would like to mention that the VRC also 

implements a so-called ‘valid shift register’. This register shifts the signal input_data_valid 

through the pipeline chain and it indicates (at the end of the chain) that the output data (on 

primary outputs) are valid – the signal output_data_valid is produced. The length of this 

shift register corresponds with the number of pipeline stages (input and output registers are 

also taken into account) of the VRC. 

4.4.3.2 Control Process of the Calculation 

This section deals with the control process of the fitness function calculation. However, 

only a general process of this task is discussed. The definition of a fitness function depends 

on the task which can require a specific stimuli and calculations. For that reason, it is 

impossible to design the generic form of this function and the input stimuli generators. The 

following text describes the designed modules which control the process of the fitness 

calculation independently on the kind of an application. The following figure shows the 

general (simplified) concept of the designed system for the fitness calculation. 
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Figure 46. Fitness calculation – the general concept 

The VRC Component module is the main engine that controls the whole process of the 

calculation. This part is task-independent and it can be reused in other projects. For 

successful calculation of the fitness function, a pair of data sources is needed – the source 

of input stimuli and the ideal response of a CGP structure (implemented by a VRC). The 

former one feeds the inputs of the VRC; the real output response of the VRC is compared 

with the ideal response. According to the degree of the correspondence between these two 

signals, the unit of the calculation determines the resulting value of fitness. From the 

Figure 46 it may be seen that the VRC Component contains the control I/O and an input 

port for the configuration (chromosome of CGP). Further, the module implements 

handshake interfaces for input stimuli (module called Input Stimuli Generator) and for a 

generator producing an ideal response (Ideal Response Generator). The module Fitness 

Calculation Unit performs the calculation of the fitness function; it must confirm the 

completion of a calculation by the signal fitness_value_valid and provide the final value on 

the fitness_value port. For this module, the VRC Component provides a response of the 

VRC and gives information about the state of fitness process. It can also give the number of 

used cells in the candidate solution (chromosome).  

Further, the VRC Component will be described in detail by means of the Figure 47. In the 

diagram, there are two already discussed elements – the VRC and the Active Gene 

Detector. They are completed by the unit Fitness Calculation Controller. It implements a 

state machine that controls the process of the fitness calculation. The work of the machine 

is controlled by three signals – the calc_start starts the whole process; the calc_finished 

indicates that the process of calculation has been finished; the input vector number_cycles 

represents the unsigned number determining the number of input stimuli vectors. It is 

necessary to note that the signal calc_finished gives information that the state machine 
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finished its function. However, the final fitness value is derived by another component 

which can cause additional latency.  

 

Figure 47. Diagram of the VRC Component 

The state machine controls the VRC and it is controlled by three signals. It enables or 

disables the data processing in the VRC by means of the clock enable signal (called 

vrc_clk_en). The configuration of the VRC is stored into its inside registers by the 

config_wr_en (configuration ‘write enable’) signal. The validity of the input data is 

indicated by input_data_valid. Similarly, the output_data_valid tells us that the output data 

produced by the VRC are valid. The state machine also implements the control flow for the 

generators of stimuli (signals stimuli_valid, stimuli_ready) and the ideal response (signals 

response_valid, response_ready). It is formed by an often used interface – a pair of signals 

valid and ready. The signal ready is driven by the Fitness Calculation Controller and 

indicates that the controller is ready to accept data. By the valid signal, the connected 

component (stimuli or ideal response generator) confirms the validity of the data. If the 

controller drives the signal ready to low, the generator has to wait – the output data of a 

generator remain unchanged. If both signals – ready and valid – are high, the state machine 

receives valid data; the generator can provide new output data vector in the next cycle. 
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This interface is compatible with Avalon Streaming Interface [71] developed by the Altera 

Corp. 

The remaining two signals produced by the Fitness Calculation Controller indicate that the 

data for fitness calculation (it means the response of the VRC and the ideal response 

generated by the generator) is valid – the signal fitness_valid; and that the fitness 

calculation is in progress – the signal fitness_act.   

The input port stimuli_data is fed by the generator of the input stimuli. The control signal 

calc_start also stores a chromosome to the Active Gene Detector. The meaning of other 

signals is obvious. 

The Fitness Calculation Controller is a simple state machine implementing only four 

states. Now, let’s analyse the work of machine. If the generator of the input stimuli and an 

ideal response provides data continuously (this means they are able to generate new vector 

every clock cycle), the functionality of the machine is restricted only to the starting of 

calculation process and the performing the number of cycles (defined by the input vector 

number_cycles). However, if one of the generators at least provides vector with latency 

time, the machine’s functionality expands. Assume the following situation when the 

generator of an ideal response stopped to provide new data, while the input stimuli are 

available without intermission. In this case, the VRC can process data until the whole 

pipeline chain is filled. After that, the VRC provides valid output data (primary outputs), 

but this data cannot be processed to calculate the fitness, because the corresponding ideal 

response is not available. For that moment, the work of the VRC is suspended by means of 

the signal vrc_clk_en and the state machine waits for the ideal response data. As soon as 

this data are provided (response_valid goes high), the work of the VRC is resumed. If the 

Fitness Calculation Unit can accumulate the output data from the VRC and the ideal 

response is not required together with this data at the same time, this functionality is not 

vital. On the other hand, this ‘waiting’ functionality has to be implemented somewhere, 

either by the control state machine, or by the unit performing the fitness calculation. 

The state machine terminates the work if the specified number of cycles (vectors of the 

primary outputs) is achieved. 

The functionalities of the state machine are described by the state diagram shown in the 

Figure 48. It contains the following states: RESET, IDLE, CALC_PROCESS, 

WAIT_FOR_DATA. The machine is initialized into RESET state after asynchronous reset 
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(it occurs also after an FPGA’s boot sequence) of the system. When the reset is released, 

the state IDLE is set spontaneously. In this state, the machine remains as long as the 

starting signal calc_start is not set. After this, the signal calc_finished goes low and the 

state machine passes to the state CALC_PROCESS. In this state, the machine starts to 

count the number of input stimuli and ideal response vectors. If the data processing of the 

VRC runs without delays, the machine state stays unchanged. After achieving the number 

of cycles, the internal condition calc_completed=’1’ is satisfied and the state machine 

returns to the IDLE state. If the stream of ideal response is not continuous and the situation 

described above arises, the VRC processing is suspended; the machine goes to the state 

WAIT_FOR_DATA where it remains until the stream of ideal response vectors is 

resumed. 

 

Figure 48. State diagram of the Fitness Calculation Controller 

The above-mentioned functionality is also described by the simulation waves in the  

Figure 49. The waves show that after the start of the calculation process, stimuli_valid is 

high, but response_valid is low. After several clock cycles, the pipeline chain of the VRC is 

filled, the vrc_output_data_valid indicates the availability of valid data on its outputs, but 

the signal response_valid remains low. For that reason, the controller disables the work of 

the VRC (signal vrc_clk_en goes low) and the state machine passes into the 
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WAIT_FOR_DATA state. When response_valid is changed to high, the calculation 

process continues in the CALC_PROCESS state. 

 

Figure 49. Simulation waves of the Fitness Calculation Controller 

In terms of the FPGA resources, the Fitness Calculation Controller is a very simple 

circuit; it consumes roughly 43 LEs and can operate at clock frequency roughly 190 MHz. 

These presented values are derived from synthesis on the FPGA device Altera Cyclone IV. 

4.4.4 Configuration Memory 

The search algorithm needs a memory for the storage of the individuals (chromosomes). 

This memory can be implemented in different ways. If the algorithm is performed by the 

processor, the individuals can be kept in its operational memory. On the other side, the 

FPGA can also implement this memory by registers. By means of the registers, it is 

possible to design the appropriate structure of the memory [73][62]. However, this 

approach is limited by the memory area requirements.  

It is also necessary to design the memory architecture to enable the cooperation with other 

parts of the system to be trouble-free. In the previous chapters, the modules performing a 

random generation of new genes and the fitness calculation were introduced. The character 

of the search algorithm and these designed modules specify the configuration memory 

requirements. The Random Gene Generator produces a new value of the gene, its address 

(locus) in the chromosome and the index of the column. On account of this fact, it is 

obvious that the memory should be able to write a single gene. The VRC Component can 

accept the configuration data (chromosome) of the VRC every clock cycle. For that reason, 

it is convenient to read the whole chromosome from the memory in one clock cycle as 
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well. The third request is based on the behaviour of the search algorithm which often 

copies the parent chromosome; subsequently, this duplicated chromosome undergoes the 

mutation process. It follows that the ability of the fast memory writing of the whole 

chromosome also sounds like useful.  

The blocks of the embedded memory in an FPGA device can partly meet the mentioned 

requirements. And for that reason, this type of memory is often used in the implementation 

of the evolutionary algorithms. [73][62][65][74][75][9] Unfortunately, not all series of 

FPGA devices offer the same possibilities in terms of the embedded memory. The memory 

architectures, which can be formed, are limited by the used FPGA device. This is a very 

significant fact; it means that the designed memory architectures described by the VHDL 

code are not fully portable on other series/models of FPGA devices.  

 

Figure 50. Architecture of the configuration memory 

The designed architecture of the configuration memory shown in the Figure 50 is inspired 

by [65] and modified to be compatible to other designed modules. The memory consists of 

embedded memory modules. Each module forms just one column over all individuals. For 

example, the module implements memory for the column 0; however, eight individuals are 
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needed, so this module provides memory space for eight configurations of the column 0. 

The number of used memory modules depends on the number of columns in the VRC 

structure. One module is dedicated to the output configuration.  

The modules are implemented as a true dual-port synchronous memory with different 

widths of data ports. The first port is called Individual Memory Port and its data width is 

derived from the data width of the whole column. From the Figure 50 it can be seen that all 

outputs of the memory modules (called Q) form the Individual Configuration vector. If the 

address (Individual Address) defining the position of an individual in the memory is set, 

the full configuration data (chromosome) is available in the next clock cycle. The data 

input of the Individual Memory Port is directly fed by the memory output; this link makes 

it possible to copy the configuration data from the source to the destination position within 

two clock cycles (the first cycle for reading, the second cycle for writing). The operation of 

writing to the memory is controlled by the Individual Write Enable signal. 

The second memory port called Gene Memory Port implements the narrower data width. 

The addressable element is represented by one gene. The address value is composed of a 

pair of vectors; the Gene Indiv. Index (higher part of the address) defines the offset of the 

individual and the port Gene Address (lower part of the address) specifies the memory 

location of the gene in the chosen individual. The width of the data port is equal to the data 

width of the widest gene (of the given column). The address and the data ports are 

connected to all memory modules (columns). By the means of the simple AND logic, the 

signals Column Selector and Gene Write Enable produce WR_EN signals for the modules. 

The Column Selector indicates the active column (module); for example, if the Column 

Selector takes the value of “000010”, the signal WR_EN of the second column can be 

active when Gene Write Enable is set. 

The designed memory architecture is able to write the value of a particular gene and it also 

reads/writes the complete configuration data in one clock cycle. Nevertheless, it is 

necessary to be careful, because the implementation of a dual-port memory brings risk of 

data conflicts. If the user attempts to write data to the same address location from both 

ports at the same time, write conflicts happen. This results in unknown data being stored to 

that address location. If the FPGA device does not implement any conflict resolution 

circuitry, it is needed to handle this conflict explicitly/externally. The FPGA device Altera 

Cyclone IV used for the tests in this thesis contains no conflict arbiter; see [76] for a 

detailed description of the dual-port memory mode.  



Cartesian Genetic Programming 
 

93 
 

The dual-port memory also brings along another disadvantage described below. As has 

already been noted, the width of the Gene Memory Port equals to the data width of the 

widest gene of the column. However, the genes in the column can be of different widths. 

The next restriction is related to the number of genes; the embedded memory limits this 

number to powers of two. All these facts cause that more bits of the embedded memory 

than really needed are allocated. Let’s assume the following example: the number of 

individuals is equal to 4; the genes are 4 bits (connectivity configuration) and 2 bits 

(configuration of a function) wide; the column consists of 5 cells => 15 genes. By a simple 

calculation, it is given that 200 bits of memory are required for this column (in four 

individuals). Unfortunately, the memory allocated by the FPGA will be larger. The widest 

gene is 4 bits wide; the power of two which is closest to the number of genes is 16 (= 24). It 

follows that this column allocates 256 bits (16 x 4 x 4) of embedded memory for 

4 individuals. This overhead represents a trade-off between the appropriate memory 

architecture and the memory requirements. 

4.4.5 Search Algorithm 

In the previous chapters, the particular elements of CGP were discussed. This section 

describes the cooperation of these components in order to form a complete system 

performing CGP. Indeed, the designed components can be used separately and the 

presented approach shows only one of many possible ways. The search algorithm is often 

performed by a processor core and the time-consuming parts of the algorithm (fitness 

calculation) are executed in user logic of the FPGA device. For this approach, the VRC 

Component (including Active Gene Detector) can be used so that major modifications are 

not needed. 

However, a simple search form of an algorithm was designed; the complete CGP algorithm 

can be implemented only in an FPGA device and no processor core (hard or soft) is 

required. According to the previous discussion in the section 4.3, related to the reduction of 

the fitness calculations, the compact version of CGP was established and presented. 

Remind that the author denotes it by the abbreviation CCGP (Compact CGP); CCGP 

produces only one offspring/mutant per generation and the fitness calculation is performed 

only when the phenotype is changed. This type of CGP was implemented. It was to prove 

that the principles discussed in the section 4.3 can be easily performed and implemented by 

the designed logic in an FPGA device. The author of this thesis is not aware of a similar 

project that would have already been published.  
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At first, the whole system performing CGP will be described and discussed further. It is 

shown in Figure 51. Except the already known components as the Random Gene 

Generator, the Configuration Memory and the VRC Component, there are also other two 

components – the Algorithm Controller and the Avalon Interface. The former one controls 

the realization of the evolutionary design. Master control, transfer of the algorithm 

parameters and results are implemented by the module called Avalon Interface. If the focus 

is given to the Configuration Memory it can be seen that the Individual Memory Port 

(described in the Figure 50) feeds the VRC Component and, as mentioned in the section 

4.4.4, the output of the memory provides chromosome data in parallel every clock cycle. 

The VRC Component uses this chromosome data in order to obtain the response of the 

VRC to input stimuli. The fitness function is calculated by the Fitness Calculation Unit 

which accepts ideal response data and real response produced by the VRC.  

 
Figure 51. CGP system 

The output port representing the current fitness value is connected to the Algorithm 

Controller that also controls the VRC Component by the means of the control signals.  

The second memory port of the Configuration Memory – the Gene Memory Port – is 

connected to the module generating random genes. The Random Gene Generator produces 

signals specifying the gene position and its value. Remaining input ports of the 

Configuration Memory are fed by the Algorithm Controller that generates the values of the 

addresses, ‘write enable’ signals and controls the read/write memory operations.  
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Apart from producing random genes, the Random Gene Generator also generates the flag 

indicating the mutation of an active gene. For this reason, it needs a vector (called Parent 

active cells) that represents active cells/nodes of the parent chromosome. 

As noted previously, the Algorithm Controller performs the search algorithm, controls the 

evolution process and produces all control signals. This controller is closely linked with the 

module that implements the Avalon slave port. This modern and frequently used  

memory-mapped interface (developed by Altera Corp.) allows an easy connection to other 

components and a superior system. By this interface, the designed system can be integrated 

to the Qsys system (integration tool made by Altera Corp.). 

The used search algorithm is fully consistent with the algorithm described by the  

flow-process diagram in the Figure 22. The algorithm was implemented by the finite state 

machine corresponding to the state diagram shown in the Figure 52. 

The fundamental states will be discussed; however, it is important to note that the 

presented transition conditions are simplified (only final conditions are introduced) by 

reason of clarity and better readability.  

The machine is initialized into the RESET state after the asynchronous reset (it occurs also 

after an FPGA’s boot sequence) of a system. When the reset is released, the state IDLE is 

set spontaneously. The machine remains in IDLE state until the starting signal evol_start is 

set. Then the machine passes to the INIT state.  

During the INIT state, all signals and registers are set to the initial values. From the point 

of view of an evolutionary algorithm, the initial parent has to be generated. This 

initialization is carried out randomly so the controller sets the signal Gene write enable to 

high – this causes that random genes are written to a parent chromosome in the 

Configuration Memory. The position of a parent in the memory is given by the value of the 

signal Gene individual address. If this memory write operations of random genes are 

repeated many times, the parent chromosome contains random genes and thus the 

initialization can be terminated (flag init_finished goes high).  

After the initialization, the machine passes to the FIT_PROCESS state that controls the 

calculation of a fitness function. The machine starts this calculation (performed by the VRC 

Component) and waits until the end. If the fitness value is valid, the flag fitness_calculated 

is set and the state machine passes to another state. After the fitness calculation, the 

termination condition is tested; if the evaluated individual brings the required fitness value, 
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the algorithm can be terminated (it passes to the FINISHED state). If the terminate 

condition is not satisfied, the state passes to one of the following two states. It passes to the 

state called PARENT_COPY if the candidate chromosome gets a lower fitness value than 

found until now (the fitness value of a parent). On the contrary, if the fitness value is better 

than the parent fitness or remains the same as the parent, the machine passes to the 

MUTANT_STORE state. 

 
Figure 52. State diagram of the search algorithm 

The PARENT_COPY state copies the parent chromosome to the position of the mutant 

chromosome. This process occurs when the fitness value of the current mutant is not 

beneficial. A useless mutant is discarded – replaced by the parent. Such duplication forms 
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the starting position for the next mutation operation. The machine passes to the 

MUTATION state after the parent is duplicated. 

The MUTANT_STORE state causes the progress of an evolutionary process. It replaces 

the parent chromosome by the current mutant. It means that the mutant chromosome is 

duplicated in both memory positions and the machine is ready to go to the MUTATION 

state. 

The MUTATION state creates a mutant by modifying the duplicated parent chromosome 

in the Configuration Memory. The state machine sets the signal Gene write enable for a 

period given by the mutation rate parameter. If the mutation rate takes the value equal to 2, 

two random genes are written into the memory, and so on. By the means of the Active 

Gene signal, the state machine is informed whether an active or an inactive gene was 

mutated. According to this fact, either the machine passes to the FIT_PROCESS state (a 

phenotype was mutated), or the mutation process is started again (a phenotype remains 

unchanged). If the limit of cycles is achieved, the algorithm is terminated (it passes to the 

FINISHED state). 

The machine stays in the FINISHED state until a new run of evolution starts. 

To increase the effectiveness of memory accesses and to avoid the risk of data conflicts 

(see subchapter 4.4.4), the memory positions of the mutant and the parent are not fixed. 

They can swap their positions – the pointers are swapped actually. In the PARENT_COPY 

state, the parent chromosome is loaded from the memory. In the next clock cycle, the 

chromosome is stored into the memory position of the current mutant. However, the first 

mutation is performed in the same cycle. At this moment, the swapping happens. The 

former position of the parent is the new position of the mutant and vice-versa. This change 

of positions makes it possible to write to the memory from both ports at the same time 

without the risk of data conflicts. 

From now on, the focus is given to the moment when the designed algorithm reduces the 

number of fitness calculations. Assume that the mutation rate takes the value of 2. This 

means that the state machine allows writing two random genes. However, if these two 

genes do not change the phenotype (see the phenotype_changed signal), the next mutation 

process follows immediately. This moment is shown in the simulation waves in the  

Figure 53. Two mutation processes are performed between the points A and B. It is shown 

that the four random genes are stored. Note that the current numbers of performed 
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generations and fitness calculations are expressed by the signals evol_cycles_performed 

and evol_fit_calc_performed, respectively. 

The Figure 54 shows the part of the evolutionary process. The state machine starts (the 

signal fitness_calc_start asserted) the fitness calculation in the point A. The fitness 

function is calculated (the point B) after certain number of clock cycles (the number of 

cycles is task-dependent) and the result value is equal to 137. The fitness of the leader was 

135. For that reason, it is clear that the chromosome yields an improvement (the 

fitness_benefical signal is high). The chromosome is stored and represents the parent in the 

next part of the evolution. 

 
Figure 53. Simulation waves – the mutation process 

Note to the Figure 53: The signal ‘gene_wr_en’ substitutes the signal Gene Write Enable presented in the 

Figure 51. The abbreviation M_S means MUTANT_STORE state. 
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Figure 54. Simulation waves of the evolution 

Note to the Figure 54: The abbreviations M_S and MUT mean MUTANT_STORE state and MUTATION 

respectively. 

4.4.5.1 Testing of Search Algorithm 

According to the previous chapters, the implementation of CGP was tested and 

demonstrated. The evolutionary design of a multiplier 3x2 bit was chosen as a benchmark. 

The author implemented the simple stimuli generator, ideal response generator and the 

fitness module that performs a fitness calculation. These additional modules were 

connected to the designed components in accordance with the diagram in the Figure 51. 

The following algorithm parameters were used. The topology of the structure is formed by 

5 columns and 5 rows. Due to the type of the benchmark, the structure implements 

5 primary inputs and the same number of primary outputs. All primary inputs can feed 

cells/nodes in all columns. No restrictions are applied to the connectivity of primary 

outputs; they can be represented by any cell. The value of the mutation rate was variable in 

the range from 1 to 7. The l-back parameter takes both allowed values; it means values 1 

and 2. All cells/nodes could implement one of these functions: AND, OR, XOR, identity. 

The data width of the VRC signals is 8 bits. The maximal number of generations was 

limited to 2,000,000. The aim of the evolutionary design was to find the full functionality 
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of the multiplier and the optimal solution from the point of view of the used cells/gates. 

For that reason, the required fitness takes the value 172. This value corresponds to the full 

functionality of the multiplier and 13 used cells/nodes. The fitness function is based on 

formula (3). Because of the Active Gene Detector component, it is possible to use this 

formula directly. Each run of the algorithm was repeated 100 times. 

The Table 14 summarizes the obtained results when the l-back parameter was set to 1. 

Table 14. Results of an experiment (HW implementation) with the l-back = 1 

 Mut. 
Rate Mean # Gen. Mean # Val. 

Mean 
Time 
[ms] 

VR 
[%] 

Run 
Succ. 
[%] 

Cells/Gates 

Min Max Mean 
Min.    

Achieved 
[%] 

1 287,230 178,518 22.8 37.8 99 13 18 14.354 26 

2 357,541 301,509 40.0 15.7 100 13 16 14.232 34 

3 416,829 389,511 53.7 6.6 97 13 18 14.265 31 

4 675,994 657,953 94.2 2.7 92 13 18 14.287 31 

5 1,052,728 1,040,539 154.7 1.2 80 13 16 13.965 34 

6 1,299,658 1,292,038 199.5 0.6 69 13 18 14.226 20 

7 1,415,388 1,410,645 225.8 0.3 57 13 20 14.577 14 

 

The items in the first three columns of the table were explained in the previous chapters. 

The Mean Time item expresses the run time of the algorithm in milliseconds. This time is 

related to the full functionality of the multiplier. The VR means Valuation Reduction and it 

was established in the chapter 4.3.3 by the author. The column called Run Succ. (Run 

Successful) expresses the percentage share of runs where the required functionality was 

achieved. The last four columns of the table show the results related to the number of used 

cells. There are shown the maximal, the minimal and the mean number of used cells. The 

item Min. Achieved expresses the number of successful algorithm runs where the number 

of used cells was equal to the minimum (it means 13 cells).  

It can be seen from the obtained results that the fastest runs were performed when only one 

gene was mutated in the chromosome. Almost all these runs found a circuit with full 

functionality. The VR takes 37.8%. However, only 26% of runs found the minimal 

solution. The mutation rate equal to the value of 2 causes better results in terms of the 

minimal solution, but the runs take more time. 

The same experiment was performed by the Evolutionary Designer software tool. Slightly 

better results were obtained. The Table 9 (subchapter 4.3.5.1) shows that the algorithm 

needs 159,671 fitness calculations (the VR was equal to 38.4% and is not presented in the 
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table). For all settings of the mutation rate except the value of 1, the mean number of used 

cells was less than 14.0. These different results are caused by the use of other number 

generators. The implementation in the FPGA uses only simple LFSR generators (19-bit 

and 11-bit).  

The Table 15 shows the results when the l-back is equal to 2. 

Table 15. Results of an experiment (HW implementation) with l-back = 2 

Mut. 
Rate Mean # Gen. Mean # Val. 

Mean 
Time 
[ms] 

VR 
[%] 

Run 
Succ. 
[%] 

Cells/Gates 

Min Max Mean 
Min. 

Achieved 
[%] 

1 138,261 82,263 10.6 40.5 100 13 15 13.5 57 

2 150,616 124,607 16.6 17.3 100 13 16 13.5 61 

3 210,802 195,675 27.0 7.2 100 13 15 13.4 62 

4 309,272 299,741 42.9 3.1 100 13 16 13.4 66 

5 507,623 501,241 74.6 1.3 99 13 15 13.5 56 

6 754,612 749,626 115.7 0.7 93 13 17 13.7 44 

7 1,051,454 1,047,560 167.7 0.4 81 13 17 13.9 32 

  

From the table is clear that the obtained results are better at all points. If the mutation rate 

is equal to 1, the evolution is two times faster. Of course, this behaviour is to be expected. 

The same experiment was also performed by the software tool; the results are shown in 

Table 16. The software implementation gives slightly better results in general. However, if 

the focus is given on the first line, it is shown that the FGPA implementation was more 

efficient when the number of fitness calculations (Mean #Val.) was the considered aspect. 

In both implementations, the Min. Achieved takes the best value when the mutation rate is 

4; and the worst value when the mutation rate is set to 7.  

Table 16. Results of an experiment with l-back = 2; implemented by the software tool 

Mut. 
Rate 

Mean # 
Gen. 

Mean # 
Val. 

VR 
[%] 

Run 
Succ. 
[%] 

Cells/Gates 

Min Max Mean 
Min. 

Achieved 
[%] 

1 139,394 84,874 39.1 100 13 16 13.4 67 

2 128,858 108,316 15.9 100 13 16 13.3 77 

3 176,470 165,062 6.5 100 13 15 13.2 80 

4 221,685 215,554 2.8 100 13 15 13.2 82 

5 323,096 318,983 1.3 100 13 14 13.3 74 

6 510,010 507,302 0.5 99 13 15 13.3 72 

7 813,700 811,661 0.3 93 13 16 13.5 62 
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It is also necessary to mention the FPGA resources were used for the implementations. All 

tests were carried out by the means of the FPGA Altera Cyclone IV. The synthesis results 

are described in Table 17. The implementations were tested at the maximal possible 

frequency at 175 MHz. The table shows the higher requirements of the implementation 

with l-back = 2. 

Table 17. Summary of the synthesis results 

l-back Resources LEs Registers Embedded 
Multipliers 

Embedded Memory 
[bits] 

1 

Total 4,285 1,560 1 688 

  Mutation 201 121 1 0 

  Algorithm Controller 349 168 0 0 

  Fitness Unit 154 104 0 0 

  VRC (8-bit) 2,792 679 0 0 

  Active Gene Detector 621 375 0 0 

  Fitness Controller 43 21 0 0 

  Avalon Interface 187 88 0 0 

  Configuration Memory 6 0 0 688 

2 

Total 5,462 1,772 1 688 

  Mutation 167 133 1 0 

  Algorithm Controller 347 168 0 0 

  Fitness Unit 130 104 0 0 

  VRC (8-bit) 3,600 799 0 0 

  Active Gene Detector 705 465 0 0 

  Fitness Controller 43 21 0 0 

  Avalon Interface 136 88 0 0 

  Configuration Memory 6 0 0 688 
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5 EVOLVABLE FIR FILTER 

This chapter deals with demonstration of an evolvable system which is represented by 

“Evolvable FIR filter”. 

The main goal of this experiment/project is the design of an evolvable FIR filter. The 

parameters (the impulse response) of this filter are obtained by the evolution. It means that 

no user intervention is needed for correct function of the filter. The standard FIR filter has 

one data input and one data output. In addition, the evolvable filter has a special data  

input – the input for ideal output samples. The evolution will have to find a suitable 

impulse response that ensures a correspondence between the output signal and ideal output 

signal. That is why the filter has an adaptive character.  

 

Figure 55. Evolvable FIR filter 

The FIR (Finite Impulse Response) filter is one of the basic types of digital filters. Its 

function is based on the convolution. The FIR filters excel in simple structure and stability. 

They consist of a shift register, multipliers and adders. The shift register accumulates input 

data samples that are multiplied by parameters (the impulse response) of the filter. 

Afterwards, these multiples are summarized and the consequent result creates the filter 

output [77]. Filter parameters determine its kind and its amplitude characteristic. If the 

impulse response is changed by the evolution, the features of the filter are changed as well. 

The FIR filter is always stable. For that reason, this type of filter is suitable to determine 

the impulse response by means of evolutionary techniques.  

In this project, the symmetric FIR filter with 29 taps was used. The taps of odd numbers 

are preferable if it is required to generate various kinds of filters. Each parameter is 

represented by 8 bits in the two's complement. In addition, the FIR filter structures can be 

implemented very simply by an FPGA device. The FIR filter also has to be able to perform 

a quick reconfiguration if it cooperates with the evolutionary algorithm.  
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5.1 Evolutionary Algorithm 

In this project, Standard Genetic Algorithm was used. It is clear that standard version of 

this algorithm might not be optimal for this type of application; however, only a detailed 

testing and analyses can show its suitability.  

The algorithm uses 16 individuals. Each individual consists of 15 parameters of the FIR 

filter. It is: 15 x 8 bits = 120 bits, then 4 bits for the control of the filter output and 4 bits 

for the reserve are used. On the whole, the individual consists of 128 bits (16 bytes). If an 

offspring (max. 16), mutants (max. 16), a new population (16 individuals) and a former 

generation (16 individuals) are taken into account, a memory for 64 (16 x 4) individuals 

(1,024 bytes) is needed. Only 15 parameters are in encoded by a individual. However, the 

FIR filter can be created by 30 (only 29 are used in this project) parameters, because the 

filter is symmetric. The initialization of a population is made so that individuals are filled 

by random values.  

This algorithm uses only a primitive one-point crossover. The crossover depends on the 

probability of the crossover – Pc.  Two parents participate in the crossover and two 

children result from it. 

The situation with the mutation is more difficult as the mutation can be implemented in 

many ways. In the project the following method of mutation is used: At first, an individual 

is divided into single bytes (parameters of the FIR filter). Afterwards, the generator of 

random numbers generates 11-bits random number. First 8 bits determine (according to the 

probability of the mutation – Pm) whether a certain byte will undergo the mutation. 

Remaining 3 bits determine position of the bit for the mutation. The mutation of the bit 

means its negation. All individuals of the population undergo the mutation process. Note 

that this implementation of the mutant operator causes that the Pm parameter is relative to 

byte (filter coefficient), not to bit (gene). 

For the selection of a new population, the algorithm utilises a principle of tournament. 

Members are selected from the former population, offspring and mutants. The selection 

process picks out two random individuals, and the individual with a higher value of fitness 

is chosen for the new population. However, this principle does not guarantee that the 

individual added to the new generation will be the best one; hence, this selection is 

extended by elitism. Elitism is a technique which ensures moving the best individual (the 

leader) into the new population.  
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The most difficult part of the algorithm is the fitness function.  

5.1.1 Issues of the Dynamic Fitness Function 

As it has already been noted, the fitness function is a key element of the evolutionary 

algorithm. This function expresses quality of a found solution of the optimization task. The 

fitness function can be classified into two categories: it can be static or dynamic. The kind 

of the function depends on a concrete application. For example, in case of the implemented 

evolutionary design of combinational logic circuit, the static fitness function is used. The 

combinational logic circuit can be described by a truth table. The aim of the optimization is 

therefore evident already at the beginning of the evolution. For that reason, the fitness 

function is invariant throughout the evolution. However, if adaptive behaviour is required, 

the fitness function must be time variable because the application has to react dynamically 

on the environment variable. In case of the FIR filter, the function has to react on the 

current input data of the filter. This fact affects the implementation of the evolvable 

component. Evolution in the environment variable runs de facto continually; in contrast to 

the static environment, where the evolution can be terminated if a sufficient solution is 

found. [10] 

5.1.2 Fitness Function Calculation 

It is necessary to modify the algorithm and its fitness function so that the algorithm can 

work with the environment variable. The dynamic fitness function has to be transformed 

into the static function; then the algorithm works with the static fitness function, and the 

adaptive character is conserved. Suitable transformation into the static function ensures 

that all individuals within one generation have the same evaluative criteria. 

Work with dynamic fitness function was solved by means of a special sample memory – 

the Samples unit. Principle of this unit is based on shift registers. The Samples unit 

accumulates samples of the input and ideal output signal. If the fitness function is started, 

last 200 samples (200 input samples and 200 ideal output samples) from the sampler are 

stored in work registers in a fitness module (part of Evolutionary unit). The evaluation of 

the whole population within one generation processes the same samples of signals; this 

way equal conditions for all individuals are ensured. However, the dynamic fitness 

function and adaptive character of the application require other changes in the algorithm. 

The evaluation of individuals of the former population (generation) is needed. It is a 

significant difference against the static fitness function. The individuals which were not 
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changed will have to be evaluated too, because parameters of the fitness function can be 

different in comparison with last evaluation.  

The fitness function of the project is based on the Method of Least Squares. The filter in 

the fitness module processes the input signal (from the Samples unit). Afterwards, the 

differences between the filter output and ideal output signal are calculated. The sum of 

these differences creates resultant values of fitness. The best individual has the smallest 

value of fitness.  

 

Figure 56. Diagram of the evolvable system 

The required adaptive character of the application also demands changes in the structure 

(see the Figure 56) of evolvable system [10]. There have to be minimally two FIR filters in 

the system: the first used for calculation of the fitness function, the second one serving to 

the processing of the input signal. The latter is configured by the best individual (the 

leader). Two filters in the system allow the correct function of the evolutionary algorithm 

and processing of the input signal at the same time. 

5.2 Implementation 

The whole system was implemented by the FPGA Cyclone II device [78]. Audio codec 

Wolfson WM8731 [79] was used for an input and an output of the analogue signals. The 
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system is designed by means of the VHDL language and Altera Avalon Memory Mapped 

interface. This conception is very profitable for the debugging and the testing. It makes it 

possible to very easily observe and control the process of the algorithm by the Altera 

NIOSII soft-core processor and its J-TAG console [80]. However, the core of the algorithm 

is implemented as user logic. 

For storage of the individuals, offspring and mutants an embedded memory is utilised. This 

memory allows very fast data operations. As noted previously, 1,024 bytes of this memory 

were needed for all individuals. Further, the memory for the values of the fitness is also 

needed. Every value of fitness allocates 4 bytes (32 bits). Total, the system needs 256 bytes 

of embedded memory to store fitness values. 

Several modules (see the Figure 57) perform the main operations of the Standard Genetic 

Algorithm. They are called: crossover, mutation, selection, fitness and elitism. These 

modules are controlled by means of the control register. The modules are connected with 

the memory by the multiplexer. This multiplexer is also controlled by the control register. 

Therefore, this register controls the whole process of the evolution. It is also possible to 

read the current fitness value of the leader. The modules and the register form component 

called SGA Periphery. 

All modules are optimized so that access into the memory is exploited effectively. The 

pipeline structures are used in the modules. For example: the process of the crossover (the 

creation maximum number of the offspring – 16 individuals) needs only 21 cycles of 

system clock, the process of the mutation (the mutation of  256 parameters) needs only 

275 cycles of system clock. However, the calculation of the fitness function is very  

time-consuming. This function needs 11,182 cycles (the valuation of  

48 individuals – former population, mutants and offspring). Naturally, it is possible to 

reduce this time-consumption: fewer samples for fitness function can be used or some 

parallel structure can be implemented. One generational cycle needs roughly 12,000 

system cycles. If system clock is 100 MHz, the performance of the evolution is 

approximately 8,300 generations per second. 

The system also includes the generator of pseudo-random numbers. The generator is 

created by the 32-bit LSFR with the polynomial x32 + x7 + x6 + x2 + x0. This generator is 

designed so that a random number is generated in one cycle. [81] 
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Figure 57. Standard Genetic Algorithm Periphery 

5.3 Testing 

For testing and verification of the system function the simulation of the perturbing 

influence on useful signal was used. The interference signal was superimposed to the 

useful signal. The useful signal is used as ideal output signal. The task of the evolvable FIR 

filter is to eliminate the interference signal. It is surprising that the filter provides good 

results after only few generational cycles. It is important to note that this implementation is 

the first prototype of the system, and after a future development better results might be 

expected.  

The next figures show an example of the performance of the filter. One signal with 

frequency 1 kHz and another with frequency 10 kHz were regarded as the useful signal 

(see the Figure 58-a). Other signals with frequency 5 kHz and 15 kHz were superimposed 

(see the Figure 58-b) on this signal. The useful signal was termed as an ideal filter output.  

The sample frequency 48 kHz was used for the testing. The example of the output signal 

after the first generation is shown in the Figure 59-a. The good working of the filter is 

detectable already in the 6th generation (Figure 59-b), and in the next generations the 

results continue improving. The Figure 59-c shows the output signal after 

1,000 generations; the attenuation of the ‘interference signals’ is approximately 42 dB 

(5 kHz) and 43 dB (15 kHz). When interpreting the results, let’s take into account the 

limited possibilities of the FIR filter with 29 taps.  
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 a) b) 

Figure 58. Input signals – a) useful (ideal) signal;  b) input signal (useful + interference signal) 

    
a) 

  
 b) c) 

Figure 59. Filter outputs and their spectrums  
a) 1st gen.; fitness = 11,208;       b) 6th gen.; 20dB/div; 2000mV/div   

c) 1,000th gen.; fitness = 1,005; 20dB/div; 100mV/div  



Evolvable FIR Filter 
 

110 
 

5.4 Influence of Evolutionary Parameters 

The test application introduced in the previous section was used to analyse the influence of 

the evolutionary parameters on the behaviour of evolvable system. By means of quality 

analyses, the optimal values of parameters of the evolution can be determined. They could 

get better time needed for successful evolution. The testing can also point to the pertinence 

of chosen recombination operators. 

As mentioned, a crossover operator is not suitable for the evolution in Cartesian Genetic 

Programming domain. However, the evolution of the FIR filter represents absolutely the 

different task. The chart in the Figure 60 shows the dependence of speed of the evolution 

on the Pc parameter. The mutation was fixed set to the value Pm = 0.4 (40%). The 

evolution process was terminated when fitness function achieved the value of 2,000 or 

when the number of generations achieved 30,000. Each run was repeated 1,000 times.  

In the chart it can be observed that the crossover does not yield a significant improvement 

of evolution speed. The process of search for solution is quicker (less generations) when 

the Pc value is about 0.6, but it must be taken into account that higher value of the Pc 

increases the number of individuals. It means that fitness function for more individuals 

must be calculated. For that reason, this type of crossover is not benefit. 

In the next chart (see the Figure 61), the dependence on Pm is analysed. It shows that a 

change of the Pm parameter causes big differences in the number of generations needed. 

The optimum is between 0.3 and 0.4. Although Pm parameter is relative to bytes of a 

chromosome; these values are higher than generally recommended values. It might be 

caused by the fact that the mutation of filter parameter does not always have the same 

meaning. The filter parameter is represented by 8 bits in two’s complement. And it is clear 

that the mutation of the least significant bit causes different change than mutations of other 

bits. By this, a higher value of mutation can be explained.  
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Figure 60. Dependence of the number of the generations on Pc (Pm = 0.4) 

 
Figure 61. Dependence of the number of the generations on Pm value (Pc = 0.5) 

As one-point crossover does not exhibit good results, another method was sought. The 

principle of averaging of filter parameters was tested. It is also based on biology, strictly 

speaking on corporate culture. Animals in swarm seek for food and if some member 

locates good source of food, it informs others. Then, other members go towards this 

source. The averaging of individuals with the leader simulates this behaviour exactly. [32] 

This principle was implemented and it provides markedly better results than the previous 

version of the crossover. It is shown in the Figure 62.  
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Figure 62. Dependence of the number of generations on Pc value (Pm = 0.4) 

The results of this crossover operator look like very efficient. If the value of Pc rises, the 

number of needed generations falls. However, it is necessary to note that averaging of 

individuals with the leader can suppress the population diversity. This fact could 

negatively affect especially dynamic characteristics of the evolutionary FIR filter – the 

adaptability competence could be restricted.  
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6 IMAGE RECOGNITION BASED ON N-TUPLE NEURAL 

NETWORKS  

This chapter deals with the special type of neural networks – n-tuple neural networks – and 

its utilization in image recognition system based on FPGA devices. It explores an n-tuple 

methodology using node ‘grouping’ and the possible advantages offered by this  

little-known technique. In cooperation with Holota, the research introduced in this chapter 

was published in [A1] by the author of this thesis. 

6.1 Background 

6.1.1 N-tuple Methodology 

In principle, the n-tuple technique is equivalent to that of using Single Layer Networks 

(SLNs) consisting of ‘deterministic logic nodes’. The term ‘deterministic logic nodes’ was 

originally used by Aleksander and Stonham over 30 years ago. It simply means that an  

n-tuple node can perform all 2 to the power of n logic functions and that, after training, it 

can only respond to those training patterns and, therefore, it is ‘deterministic’. The logic 

nodes of these SLNs are realised by Random Access Memory (RAM). Sometimes it is 

described as RAM-based networks [82] in the literature. Each logic node consists of a 

RAM with an n-bit address space (see the Figure 63). The following paragraphs describe 

the n-tuple methodology in a simple way. An exact mathematical description of the n-tuple 

recognition method can be found in many articles, e.g. [26][83]. 

 

Figure 63. Single Layer Network architecture 

The pattern which is applied to the address inputs consists of n sample points. These points 

are taken pseudo-randomly from the input data. The pattern applied to the input is termed 
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an ‘n-tuple’. All the logic nodes have to be initialised (to zero state) before the training 

phase. During training, each RAM stores a logic ‘1’ to the position given by relevant 

sampled n-tuple data words.  The recognition phase is based on reading the stored data 

from the address given by n-tuple data words which are sampled from the input image by 

the same pseudo-random sequence. During recognition, the RAM operates as a look-up 

table without requiring any arithmetic or logical operations. Each SLN (or ‘discriminator’) 

is composed of n-tuple nodes (the number of nodes is defined by ‘k’) and the response is 

given by the summation of all logic nodes in the layer. The bit width of response depends 

on the number of nodes (see Figure 63). In principle, ‘n-tuple classifier systems’ operate in 

a multi-discriminator configuration (see Figure 64). In the training mode, each 

discriminator is trained on each class of patterns. The class is dedicated to one object and is 

formed by the set of similar images of this object (e.g. with different rotation, scale, noise). 

The number of discriminators is equal to the number of classes which are defined for 

future classification. The classification mode can be started when all discriminators have 

been trained. Each discriminator gives a response to an unknown input image.  The input 

image is assigned to the class which corresponds to the discriminator with the 

highest response. 

 

Figure 64. Multi-discriminator configuration 

The discriminators’ responses are usually represented either numerically (by the number of 

pass logic nodes or the percentage value) or as a bar graph display. In general, each bar in 

the bar graph display represents the degree of compliance within a given class. Usually, the 

responses are also displayed in the training mode. The monitoring of these responses gives 

an indication of the amount of training required and assists in determining possible  

over-training or under-training of the neural networks.  
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6.1.2 Network with Grouped N-tuple Nodes 

It is possible to utilise grouping methods in these types of SLNs as in [21][23]. The effect 

of grouping is to increase the differences among responses to the discriminator (for the 

given class) and other discriminators. The principle of this method is based on creating 

groups of n-tuple nodes in each SLN. Each group consists of the given number of nodes, a 

summation unit, and a threshold unit (see Figure 65). The final response of each 

discriminator then constitutes the sum of the groups’ responses. 

 

Figure 65. Principle of grouping 

6.1.3 Utilisation and Memory Requirements 

Generally, an SLN composed of n-tuple nodes or grouped n-tuple nodes can be used for the 

recognition of binary images. In the case of greyscale images, it is necessary to use a 

suitable method for converting them into binary images. In order to perform colour 

recognition, the networks are composed of ‘trixel’ n-tuple nodes (TNT nodes) as shown in 

[21][23].  

The memory requirements are given by the formula: 

 𝑀𝑟 =
𝑁𝑑  . 2𝑛 .𝑁𝑝 

𝑛
 [𝑏𝑖𝑡𝑠] (16); 

where  Nd ......... the number of discriminators, 

 Np ......... the number of selected pixels, 

 n ........... type of tuple (n=8 => 8-tuple), 

 Mr ......... memory requirements in bits. 

The variable Np has to be chosen in accordance with the size of the tuple node and the 

group size. 
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6.2 Hardware Implementation 

6.2.1 General Description 

The designed recognition system is designed as a System on the Programmable Chip 

(SoPC) architecture based on an FPGA device. Several Qsys [84] components form the 

system (see the Figure 66). The Qsys interconnect ensures connectivity and mutual 

communication. 

 

Figure 66. Block diagram of the system 

The Camera Unit together with the Frame Buffer obtain image data from the camera 

module TRDB-D5M (5 Mega Pixel Digital Camera Package from Terasic Corp.). It also 

provides the conversion of the raw image data to RGB (red – green – blue) colour model 

and BW (black/white) format. The Frame Buffer selects and stores data needed for image 

recognition. In addition, the component may send full image data to other components in 

the system. The Training Unit and Recognition Unit are the next main (in the line with the 

Camera Unit) components of the system; they are discussed later. Further, the system 

contains two memory controllers – the SRAM and the SDRAM controller. The external 

SRAM memory (2MB – 1M x 16) is connected to the SRAM Controller and is used for 

storage of the neural networks’ data. The latter controller – the SDRAM Controller – 

manages data transfers to the 64MB (32M x 16) SDRAM. This memory is used for video 
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storage in this project. Data from this memory can be displayed on the PC monitor by 

means of the VGA Controller. The VGA Controller works with a resolution of 800x600 at 

75 frames per second (fps). The remaining three components control the training and 

recognition process and communicate with the supervisory system. The core of the 

supervisory software is implemented in the softcore CPU NIOSII; this 32-bit processor 

controls the operations of all the other components. This processor also communicates with 

the high-level system (PC) via a UART (implemented by the UART Controller). The  

On-chip Memory serves as the program and operational memory for the NIOSII. The 

special user application on the PC controls the whole image recognition process via the 

UART and NIOSII processor [80].   

6.2.2 Camera Unit with Frame Buffer  

This is the key component of the system. It obtains data from the external camera module 

and provides two outputs which are the data stream for the video memory and image data 

for n-tuple processing in the appropriate format. The block diagram of this component is 

shown in the Figure 67. This component is connected with the camera module  

TRDB-D5M via the Avalon Conduit Interface. It captures image data in RAW format 

(resolution 800x600) and can convert this data to the following formats: RGB 16bit, 

Greyscale and BW. The selected format depends on the setting of the component by means 

of the Avalon Slave Port.  

 
Figure 67. Camera Unit with Frame Buffer 

The conversion to a BW image uses a fixed threshold that is set via the Avalon Slave Port 

or automatic threshold detection. The final RGB vectors enter the FIFO memory and can 

be sent to the video memory by means of the Avalon Master Port. This function makes it 

possible to observe the captured image.  
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The remaining parts of the component create an appropriate data format for subsequent 

processing by the Training and Recognition Units. The author of this thesis designed and 

implemented the new approach of image data buffering. Compared to the conventional 

architecture [85], this approach doesn’t need a buffer for full image frame. They usually 

store a full frame to memory and then pixels for processing are selected, afterwards these 

pixels are randomly combined to form the n-tuples. The main disadvantage of these 

techniques is higher memory requirements.  

The Pixel Selector selects pixels for the next processing stage. The full image contains 

480,000 (800x600) pixels of which 5 percent are selected (i.e. 24,000 pixels). The pixel 

data are fed into the Pixel FIFO, and the Pixel Selector generates the ‘write enable’ signal 

which allows writing of pixels into the FIFO memory. The image frame is divided into 

15 segments in which pixels are selected with variable intensity. The pixels more closely 

placed to the centre of the frame have preference over those near the borders.  

 
Figure 68. Selected pixel positions (white dots) 

 
Figure 69. Pseudo-random Address Generator 
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The Pixel Selector detects the start of the frame and then selects 24,000 pixels from each 

frame. The optional module for performing image data processing can be inserted between 

the RAW to RGB Convertor and Pixel FIFO. 

After selection of the pixels, it is necessary to assemble them in a pseudo-random manner 

before applying them to the n-tuple memory nodes. In this case, an 8-tuple is used. The 

random composition is made by means of an embedded memory which is configured as a 

dual-port RAM memory with a capacity of 24,000 bits. The write port consists of a 1-bit 

data input and a 15-bit address. The read port consists of a 32-bit data output with a 10-bit 

address input. The component generates a random write address; it means that pixels are 

stored in random locations within the memory. The correct write address and control 

signals are created by the Pseudo-random Address Generator (Figure 69). A simple 15-bit 

Linear Feedback Shift Register (LFSR) with a minimal polynomial of x15 + x14 + 1 is used. 

This pseudo-random generator generates random numbers in the (modified) range of 0 to 

32,766; however, correct write addresses are in the range of 0 to 23,999. For this reason, it 

is necessary to check the value of the address vector. The LFSR also implements a digital 

comparator which flags (by the signal address valid) whether the generated address vector 

is valid. Further, the generator contains a gen. enable signal which enables/disables its 

function and thereby issues the next random number (address). The writing into memory is 

allowed if several conditions are satisfied.  If the Pixel Fifo is not empty, the address 

generator is activated and the generated address vector is correct, the  memory write enable 

signal will be set to high in the next clock cycle (via the D flip-flop). Also, the generated 

address vector is registered by means of a 15-bit register. If the memory write enable 

signal is high, the pixel of the image will be stored at a random position in the memory. 

The gen. enable signal is high and it causes that the next random address will be released 

in the next clock cycle, if the generated address vector is not correct or if the Memory 

Write Enable signal will be set in the next clock cycle. In other words, the gen. enable 

signal is high if the next address vector is needed; either the current value of the address 

vector is not accepted or the new address vector for another memory write is demanded. 

This approach makes it possible to use a simple pseudo-random generator implemented as 

a LFSR. If the generator gives incorrect values, the pixel data are held in the Pixel Fifo 

memory. It is necessary to note that the implemented logic works with a 110-MHz clock in 

this project. It is a higher frequency than 50MHz which is the maximum pixel rate. It must 

also be taken into account that only 5% of pixels are processed in this way; thus the delays 
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caused by waiting for the correct address vector are irrelevant. The pixels are stored in 

memory and form three thousand 8-tuple nodes. As mentioned earlier, the read data 

memory port is 32 bits wide which means 750 double-words of data. This configuration of 

memory was chosen for more effective data transfers inside the system; four 8-tuples can 

be read within one read transfer operation. The read port of the memory is connected to the 

Qsys Interconnect via the Avalon Slave Port. It implements an auto-increment read pointer 

in which the whole memory is mapped as one 32-bit word in the memory space and a new 

read address is released automatically. This function simplifies the address calculation to 

other components in the system.  

The main benefit of the Camera Unit with Frame Buffer component is that a buffer for a 

full image is not needed. It represents a significant reduction of memory requirements. The 

amount of reduction is dependent on the coverage of an input image. In our case, the 

reduction of memory requirements is approx. 95% within 5% coverage. Another advantage 

is lower time consumption because the random selection and forming of image pixels are 

performed already during data storing.  

6.2.3 Training Unit 

The purpose of this component is to train neural networks consisting of 8-tuple nodes (each 

node composed of 8 image pixels). The component reads 8-tuples from the embedded 

memory in the Camera Unit that define the memory position (for neural network data) 

where logic high will be stored. Other memory positions remain unchanged. Before 

training the first image frame, it is necessary to clear the neural networks memory to 

ensure logic low value on all positions. In this project, neural network data is stored in an 

external SRAM memory with a 16-bit memory data bus. The memory requirements for one 

discriminator are 768,000 (256 x 3,000) bits, where 3,000 is the number of 8-tuple nodes 

each of which requiring 256 bits. On account of a more effective access to the memory, the 

following structure of the neural network data in the memory was designed – see Table 18. 

The data for a particular discriminator (class) is not stored in the continuous memory area 

but the ‘column structure’. Data of particular discriminators are organized as columns 

within the memory area.  For example: data for the discriminator (class) 1 is stored in the 

LSBs of the memory words, class 2 in bits with index 1, and so on. In Table 18, it is shown 

that 512 (0x200) bytes are needed for keeping one n-tuple of sixteen discriminators. For 

that reason, the memory offset for the next n-tuple is always 0x200. Because of this 
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designed memory structure, the formula for the memory requirements (16) has to be 

modified in the following way: 

 𝑀𝑟 =
𝑓𝑚𝑜 .𝑊𝑏 . 2𝑛 .𝑁𝑝 

𝑛
 [𝑏𝑖𝑡𝑠] (17); 

where  Wb ........ width of memory data bus in bits, 

 Np ......... the number of selected pixels, 

 n ........... size of tuple (n=8 => 8-tuple), 

 Mr ......... memory requirements in bits, 

 fmo ......... memory organization factor. 

Memory organization factor is defined as: 

 𝑚𝑖𝑛 �𝑓𝑚𝑜 ∈ ℕ � 𝑓𝑚𝑜 ≥
 𝑁𝑑 

 𝑊𝑏
� (18); 

where  Wb ........ width of memory data bus in bits,    

 Nd ......... the number of discriminators. 

From these two formulas, it is obvious that the memory is fully and effectively utilised if 

the number of discriminators is an integral multiple of the memory data bus width.  

The author of this thesis assumed the use of 16 classes; this means that 12.288 Mbits of 

memory are needed. The process of training is the following. At first, 8-tuples are read  

(4 x 8-tuples in one 32-bit vector) from the embedded memory. The word on the position 

defined by the value of the 8-tuple and its order is read from the SRAM memory. In this 

word, the appropriate bit (determined by the chosen class) is set to high. Afterwards, the 

modified word is written back on its position. Training is complete once all 8-tuples (in 

this case 3,000 => 750 vectors) are read.  

Table 18. Memory structure 

Word Index 
Memory Address 

Class 
0x000000 0x000200 0x000400 … 0x176E00 

0 (LSB) 1st tuple 2nd tuple 3rd tuple … 3,000th tuple 1 

1 1st tuple 2nd tuple 3rd tuple … 3,000th tuple 2 

2 1st tuple 2nd tuple 3rd tuple … 3,000th tuple 3 

3 1st tuple 2nd tuple 3rd tuple … 3,000th tuple 4 

… 1st tuple 2nd tuple 3rd tuple … 3,000th tuple … 

15 (MSB) 1st tuple 2nd tuple 3rd tuple … 3,000th tuple 16 
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In addition, the component can determine the networks’ responses on the training data. 

This response may be useful for training process control. 

The component is controlled by means of control registers via the Avalon MM interface. 

By these registers, the user can start training and setup values (grouping and group 

threshold) for response calculations.   

6.2.4 Recognition Unit 

This component determines the responses of the neural networks based on the currently 

unknown images. As well as the Training Unit, it reads n-tuple data from the embedded 

memory. The data are loaded into a small FIFO memory; this means that the delay caused 

by their reading occurs only at the beginning of the recognition process. The rest of the 

process is determined only with the latency of the SRAM (memory for neural networks 

data). The component’s Avalon ports are able to work with any type of memory (an 

appropriate controller is needed). Responses of (up to) 16 networks may be calculated in 

parallel because of the designed data structure of the memory (introduced in previous 

chapter). The word from the SRAM memory represents neural network data for 

16 discriminators (depends on the width of the memory bus). Hence, only one read 

operation is required for each n-tuple. From this, the time needed for obtaining the 

responses of Wb (width of memory data bus in bits) classes can be derived.  The 

requirements Tr recalculated to this number of discriminators is given by the formula: 

 𝑇𝑟 =
(𝑀𝑙  .𝑁𝑛)  +  8

𝑓𝑠
 [𝜇𝑠] (19); 

where Ml ......... latency of reading from memory (in clock cycles), 

 Nn ......... the number of n-tuples, 

 fs ........... frequency of system clock (in MHz). 

Note to the formula (19): Constant 8 represents latency of component’s pipeline. 

It follows that the time needed for evaluation of one discriminator is the same as the time 

for the evaluation of Wb discriminators. For that reason, the real time consumption related 

to one discriminator depends also on a relationship between the number of discriminators 

and the width of the memory data bus. 

The final computed responses are obtainable via the component’s response registers which 

are mapped by means of the Avalon Memory Mapped Interface. The grouping is supported 
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by the component as well. The component contains a few control registers for the 

component’s setting. The desired group size and group threshold can be set; the permitted 

range is from 1 (without grouping) up to 15. However, it is necessary to take into account 

that the group size must be a divisor of the total number of used n-tuples (in given class). 

In this project, three thousand 8-tuples are used and this means that grouping factors of 7, 

9, 11, 13 and 14 are not utilizable. The value of the grouping factor has no impact on the 

recognition speed.  

6.2.5 System Control 

As mentioned in section 6.2.1, the whole system is controlled by the softcore CPU NIOSII. 

The firmware only controls the operation of the components and ensures communication 

with the supervisory system (the PC in this case) via the Avalon MM Interface. However, 

all sophisticated operations related to image processing and n-tuple operations are 

performed by the above introduced components. This means that no CPU’s computing 

time is needed for these operations. The utilization of a softcore processor is very 

profitable and a modern way to control the components in the FPGA devices. It enables 

simpler debugging and testing of the system. The processor also can perform more 

complex control algorithms which can be difficult for a user.  This was exploited to control 

the training process when training on real images from the camera (not during the test 

images training). An algorithm was tested so that the processor could terminate the training 

process if defined conditions were satisfied. The use of two termination conditions was 

tested.  The first condition limited the maximum number of frames. Secondly, the training 

can be terminated if a defined number of successive frames yield responses which are 

equal or higher to the defined response value. The parameters of this algorithm may be set 

by the supervisory system. Of course, this algorithm might be implemented by the 

supervisory system as well. The recognition process is very simple; it can be described in a 

few steps:  

1) The supervisory system sends command requiring recognition. It also transfers 

grouping and group threshold parameters. 

2) The CPU sends a command to the Camera Unit in order to capture a frame from the 

camera and process it to a suitable form for the recognition process. 

3) The CPU sets the grouping parameters and starts the recognition process by setting 

the start bit in the control register of the Recognition Unit. 
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4) The CPU detects activity of the Recognition Unit by means of its status register. If 

the recognition process is finished, the CPU reads the responses and sends them to the 

superior system. Afterwards, the process can continue by step 1) or be finished. 

The process of training is very similar; instead of the Recognition Unit, the Training Unit 

is used. 

6.3 Experimental Results 

In this section, a real-world recognition task was used to test the designed HW system. The 

performed tests had two main goals. The first objective was to verify the designed HW 

system. The second objective was to present the possibilities of system utilization in a real 

recognition task and to show the influence of different system settings. 

6.3.1 Description of Recognition Task 

As mentioned above, a real-world recognition task was chosen. This task was road signs 

recognition which is a really difficult problem. The presented system should be a powerful 

part of a more complex system for the solution of this problem. The main task of the 

recognition system was to classify the images of signs with a slightly different position, 

rotation and size. So the supervisory system should include processing for the sign 

detection and processing for the normalization of position, rotation and size. 

6.3.2 Database of Input Images 

For the presented tests, artificially generated images were used for testing due to the fact 

that one of the tasks was to verify the implementation of neural networks in HW. For that 

reason, a program named SourceImageGen for generating the datasets of images with 

different positions and rotation was created. The test database included 11 classes – road 

signs (see Figure 70). The resolution of source images was 800x600 pixels. 

There were six datasets for each class which differed in the position of the sign and its 

angle of rotation. These datasets were generated by SourceImageGen and the parameters 

for each dataset are shown in Table 19. The program output are the binary files with 

pseudo-randomly mapped and thresholded pixels, which are used for recognition from the 

image of a road sign. This feature significantly reduces the amount of data which have to 

be transferred to the HW system. The program performs the same pseudo-random selection 

and forms the data in the same way as in HW. That ensures the possibility to upload binary 
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data directly to the HW system memory (2-port RAM Embedded Memory in Camera Unit 

– see Figure 67) through the J-TAG interface. 

 
Figure 70. Road sign classes 

Table 19. Datasets parameters 

Dataset 

 
Parameters 

Position Rotation No. of 
variation 

1 constant ±5º, step 1º 11 

2 constant ±4.5º, step 1º 10 

3 ±2px, step 1px constant 25 

4 ±3px, step 2px constant 16 

5 ±1px, step 1px ±5º, step 1º 99 

6 ±1px, step 1px ±4.5º, step 1º 90 

6.3.3 Tests and Results 

The tests can be divided into three groups. The first group includes the datasets 1 and 2 

where the angle of rotation was varied. The second group works with the datasets 3 and 4 

where the position was varied. The last group used the datasets 5 and 6 where both 

variations were recombined. Table 19 shows that the differences between the two datasets 

in the same group were small. The reason for this was the possibility to use different 

datasets in the training and classification modes. A detailed overview of the tests is shown 

in Table 20. Each test included several measurements with different neural network 

settings – G1T1 (Group size=1, group Threshold=1), G4T1, G4T2, G4T3, G4T4, G8T8, 

G15T13.  
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Tests 1, 3 and 5 were performed in order to verify the neural network implementation by 

the FPGA device. According to the theoretical assumptions, all discriminators must have a 

100% response for given classes in the cases where the same datasets are utilised in both 

modes. This verification was successful for all classes and tests. 

Table 20. Summary of tests 

Test 
Used Datasets 

Training Mode Classification Mode 

1 Dataset 1 Dataset 1 

2 Dataset 1 Dataset 2 

3 Dataset 3 Dataset 3 

4 Dataset 3 Dataset 4 

5 Dataset 5 Dataset 5 

6 Dataset 5 Dataset 6 

 
Test 6 was chosen for the illustration of results which are reached by this recognition 

system. For the illustration of the obtained results, a bar graph is presented in the  

Figure 71. It shows the maximum and minimum levels of responses in the case that input 

images belong to the class 4 (Speed limit – 50) and G8T8 neural network settings. The 

figure indicates the similarity between Class 4 and Class 5 (Speed limit – 90) but the 

difference between the minimum response of the Class 4 discriminator and the maximum 

response of the Class 5 discriminator is still sufficient for reliable recognition. 

 

 

Figure 71. Responses for ‘Class 4’ images and G8T8 configuration 
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Figure 72. Levels of responses for different neural network settings 

 
Figure 73. Comparison of minimum differences 
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The bar graph in the Figure 72 shows the levels of responses for different neural network 

settings. Each column displays the range of discriminator’s responses to correct class 

(green), to other classes (red) and the differences (gray). By comparing of each column, it 

is possible to observe a benefit of grouping method with a higher group threshold against 

grouping with a too low group threshold or without grouping (G1T1). On the other hand, 

too high group threshold in combination with a higher group size can cause significant 

reduction of responses to correct class. It means that the differences between correct and 

other classes can be decreased.  

The second bar graph (Figure 73) shows the differences between responses to correct and 

other classes for different neural network settings (see the legend of the graph) and for all 

tests. The bar graph clearly shows that the differences are really high for appropriate neural 

network settings and, therefore, the designed system could be successfully used for road 

sign recognition system in the future. 

It is impossible to say generally which network setting is the best or acceptable. The 

suitable network parameters are dependent on many factors like target application, quality 

of image acquisition (noise, clutter, etc.), similarity of classes, and others. 

6.3.4 System Performance 

This part specifies the time-consumption and the memory requirements of the recognition 

process. Initially, the parameters of HW system are summarized. Eleven test classes were 

used. Each image consisted of 480,000 pixels, matching the resolution of 800x600 pixels. 

For the recognition process, 5% of pixels were selected; this represents 24,000 pixels. If 

the formula (16) is applied to these values, the memory requirement is 8.448Mb. This 

value is the minimum needed for representation of the discriminators. However, because of 

the exploited memory organization introduced in the chapter 6.2, the formula (17) must be 

used. By this formula, 12.288Mb of memory is required. This value is equal to that using 

16 discriminators. The difference between these two values represents an overhead of the 

memory organization. It can seem to be markedly disadvantageous. However, it is only a 

trade-off between the memory requirements and the time required to obtain the responses. 

If a large number of discriminators are assumed, then this overhead is marginal. 

The SRAM memory with a 16-bit data bus and a reading latency of 3 matched clock cycles 

was used. By using formula (19), the response times for the discriminators can be 

calculated; this is 81.89µs from 1 up to 16 discriminators. If 11 discriminators are used, 
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then the time requirement for 1 discriminator is longer and this means that a time of 

81.89µs is required to obtain all 11 responses. This time doesn’t include the time needed to 

control the components. In theory (image processing is not taken into account), the 

designed system may evaluate over 12 thousand unknown images per second. The same 

number of images can be evaluated even if 16 discriminators are used. From another point 

of view, the system with a frame rate of 1 fps may obtain responses of up to roughly 

195 thousand discriminators per second. Indeed, enough memory space is assumed.  

The following chart (the Figure 74) generally summarizes the previous two paragraphs. It 

shows the trend of two coefficients (defined by the author) depending on the number of 

classes. The first of them is the Coefficient of Acceleration (CA); it means the speed benefit 

of the designed memory organization. In other words, it expresses the ratio between the 

number of memory read operations needed for recognition not using (sequential 

organization is assumed) and using our designed memory organization. The latter 

coefficient is the Coefficient of Memory Requirements (CMR). It expresses the ratio 

between memory requirement needed for author’s organization and for classical sequential 

memory organization. It is clear from the chart that developed memory organization is 

beneficial for the cases where the number of classes is in multiples of bus width or for 

larger numbers of classes.  

 
Figure 74. Coefficients of Memory Requirements (CMR - red) and Acceleration (CA - blue) 
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If a large number of classes is considered, we obtain the coefficient of acceleration 

approaching 16, and the coefficient of memory requirement approximately 1. It may be 

said that for an infinite number of classes, the speed benefit of our memory organization is 

equal to the width (16 in our case) of used memory; memory requirements remain 

unchanged (identical with sequential organization). However, this is only theoretical 

consideration. 

The training process takes a significantly longer time. The Training Unit has to perform 

3,000 read-modify-write cycles. In the experiments, the used SRAM memory has a writing 

latency of 4 clock cycles. In total, 21,007 clock cycles are needed. This matches 

approximately to 190µs. 

6.3.5 FPGA Resources 

The FPGA resources are acceptable. The Recognition Unit needs 905 logic elements (LEs), 

the Training Unit only 241 LEs; each unit consumes 128 bits of embedded memory. In 

comparison with these, the Camera Unit is the most demanding; it requires 1,784 LEs and 

60,302 bits of memory. However, these values include a component part for streaming the 

full image to the SDRAM memory to display it. As long as this functionality is not needed, 

some resources could be saved. The whole system (shown in the Figure 66) consumes 

7,125 LEs. The maximal frequency of this design is approximately 130 MHz. All tests and 

measurements were performed on a Cyclone IV device from Altera Corp. The 

development kit DE2-115 from Terasic Corp. was exploited. 

6.4 Comparison with Other Methods and Implementations 

This section presents and compares the obtained results in two domains: in recognition 

performance domain and from the point of view of the processing speed.  For comparison, 

the following conventional classification algorithms were chosen: 

• Nearest neighbour algorithm 

• Minimum mean distance algorithm 

• K-nearest neighbour algorithm 

These methods were implemented in software by the National Instruments Vision Builder 

for Automated Inspections (NI VBAI). All mentioned methods used the sum distance 
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metrics (city block metrics). In the case of the k-nearest neighbour algorithm, the tests with 

three different k-parameters were performed.  

Furthermore the special software application in MATLAB was programmed. It implements 

the image recognition based on the n-tuple method by the same way as the hardware 

described above. The results obtained by this application can be used to verify the 

presented hardware implementation and to compare software and hardware solutions. The 

hardware system introduced in [29], which is based on the same n-tuple method, was 

chosen to compare system the performance of the two different architectures. 

The benchmarks use the Test 2 which is described in Table 20. In this kind of test the 

different datasets are exploited for the training phase (Dataset 1) and the classification 

phase (Dataset 2). Each run of the test was repeated 1,000 times and the results were 

averaged in order to obtain relevant data.  

Table 21 summarizes the results of the benchmarks. It is evident that the time requirements 

of the classification algorithms realized by NI VBAI are almost identical. The achieved 

speeds are around 170 fps. In terms of recognition performance, the minimum mean 

distance algorithm reached the smallest false rate (FR) from the tested conventional 

methods but it still didn’t reach 0% like the n-tuple method. The misclassification was 

observed mainly in the cases of these road signs: speed limit 50 / speed limit 90 or  

children / pedestrian crossing.  

The software implementation of the n-tuple method in MATLAB produced the same 

responses like the HW realisation but the time requirements were significantly higher. All 

software tests were performed on a PC Intel(R) Core2 Quad CPU Q9550 @ 2.83GHz, 

3GB RAM. 

Table 21 also presents the results of two hardware implementations. However, it is 

necessary to note that the speed of the HW realisation by Bonato [29] is estimated for the 

same configuration (number of n-tuple nodes).  This HW architecture is based on the use 

of the embedded memory inside the FPGA; it makes it possible to implement memory 

configuration optimized for given n-tuple network.  

From the values in Table 21 it is clear that the time requirements of Bonato’s architecture 

are slightly better. However, the amount of embedded memory is significantly limited and 

it doesn’t allow the implementation of larger number of classes and higher input image 

resolution. The novel memory organization presented in this thesis solves this disadvantage 
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and makes it possible to use a conventional external memory with similar time 

requirements.   

Table 21. Comparison of speeds and false rates 

Tools Classification Algorithm Parameters Speed [fps] FR[%] 

NI VBAI 

nearest neighbour Sum distance metrics 169 7.3 

Minimum Mean Distance Sum distance metrics 169 1.8 

k-nearest neighbour 

Sum distance metrics, k=3 173 6.3 

Sum distance metrics, k=6 170 9.1 

Sum distance metrics, k=10 168 8.2 

Matlab n-tuple method n=8, coverage=5% 37 0 

HW-Burian n-tuple method n=8, coverage=5%, mem. read latency = 3 12,211 0 

HW-Bonato [29] n-tuple method n=8, coverage=5% 12,247 0 
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7 CONCLUSION 

• Cartesian Genetic Programming 

Cartesian Genetic Programming (CGP) presents the main topic of this thesis. A 

significant emphasis was placed on the reduction of fitness function calculations. The 

author performed an analysis related to the silent mutation phenomenon. According to 

this feature of CGP, the modifications of the algorithm were made so that the fitness 

function is calculated only when a change in mutant’s phenotype occurs. The 

influence of these modifications was tested and analysed by means of  

benchmarks – evolutionary designs of multipliers. The modified version of CGP may 

reduce the number of fitness calculations very markedly. As it was proved by the 

performed experiments, the reduction can achieve up to 40% in some cases. The 

results of the experiments are summarized in the tables in the section 4.3.3. The degree 

of this reduction depends on the chromosome length, the value of mutation rate and, 

naturally, on the designed circuit. These dependences are discussed and expressed by 

several formulas. For the sake of the obtained results, the author also implemented and 

tested the CGP that produces only one mutant; it applies the search algorithm (1+1). 

Indeed, the algorithm also evaluates only mutants with changed phenotype and was 

called CCGP (Compact CGP). If the number of performed fitness calculations is 

considered to be the main viewpoint, the CCGP provides better results than the often 

used search algorithm (1+4) in relation to all performed benchmarks.  

All experiments were executed by the software tool called Evolutionary Designer 

which had been created by the author. This tool makes it possible to design digital 

combinational circuits by means of CGP. It can convert the result of the evolutionary 

design to VHDL source codes. The tool also implements VHDL source codes of the 

Virtual Reconfigurable Circuit (VRC); it can be used for the implementation of CGP 

by an FPGA device.  

The implementation of the algorithm by an FPGA device is designed so that the 

number of fitness calculations is reduced by the same way as it was presented in the 

previous analyses. Note that the implemented algorithm and structures imply the 

definition of CGP very exactly; the author uses no simplification – the full integer 

representation is used. The mutation produces valid integer genes. A special 

component – the Active Genes Detector – detects active genes of a parent 
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chromosome/genotype and can infer active or inactive mutations very fast.  By means 

of this component, the algorithm calculates the fitness only when it is indispensable. 

The component also provides the number of used cells/nodes in the genotype; it makes 

it possible to optimise the size of the final circuit by the same way as in the software 

implementation. The designed VRC implements a structure for the l-back parameter 

taking values 1 or 2. It also supports more than one program/primary output and 

implements interfaces for data needed for the fitness calculations. 

The functionalities of all designed components were demonstrated on the evolutionary 

design of a multiplier. The reduction of fitness calculation was very similar to the 

reduction obtained by the software tool. The evolutionary design of the test task – 

3x2 bit multiplier – was finished in 10ms in average. The results are summarized in 

the Table 15.  

It is necessary to note that the main goal of the implementation were not the achieved 

times of the evolution of a benchmark; however, the design system has shown that the 

detection of active genes can be implemented in the logic. By means of this detection, 

the number of performed fitness calculations is reduced. It is obvious that this feature 

is beneficial especially in real-world application when the fitness calculation is very 

time-consuming.  

The components and the constructions presented in this thesis can be modified and  

re-used so that they form the required embedded evolutionary circuit design or 

evolvable system. 

• Evolvable FIR 

The design of the evolvable FIR filter serves as a demonstration of the evolvable 

system implemented by an FPGA device. The system is based on the Standard 

Generic Algorithm and contains two FIR filters. The first one is used for the 

calculation of the fitness function, the second one for the processing of the input 

signal. The evolvable FIR filter is able to change its impulse response and the filter 

type. The filter uses the fitness function based on the shape of the signal in the time 

domain. Tests showed that the one-point crossover is not suitable for the evolvable 

filter. For that reason, the crossover based on ‘averaging with a leader’ was 

implemented and tested. This kind of operator provides better results. The presented 
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evolvable system can be used in the projects where it is needed to change impulse 

response of a FIR filter and an ideal response is available. Of course, it is not limited 

only on the use of a FIR filter. 

• N-tuple Neural Networks 

A new hardware implementation of n-tuple neural networks based on an FPGA device 

has been introduced. The presented novel structure for memory organisation offers 

effective access to the data memory for the processing of more classes at one time. It 

enables a very fast image recognition in a relatively simple HW architecture. The 

important benefit of this structure is also the fact that the system does not need a buffer 

for full image frame (in comparison to [85]). The system performance and the required 

FPGA resources are included for the estimation of the possible system performance. A 

real-world recognition task was chosen as the benchmark. This task consisted of road 

signs recognition which is a really difficult problem - 11 road signs were used. The 

comparison of the presented hardware solution with other methods and architectures is 

summarized in Table 21. The values in this table show that the designed approach is 

comparable to the solution published in [29] and it is not limited by the size of the 

embedded memory. This advantage makes it possible to recognize the images in high 

resolution and/or higher number of classes. If the chosen benchmark is assumed, the 

designed system may evaluate over 12 thousand unknown images per second. From 

another point of view, the system with a frame rate of 1 fps may obtain responses of 

up to roughly 195 thousand discriminators per second. Indeed, enough memory space 

is required.  

Unfortunately, the comparison of the ‘learning’ capability of n-tuple networks with the 

conventional feature extraction systems is not particularly fair to both techniques. The 

classical n-tuple classifiers have the generalisation properties (i.e. their probabilistic 

nearest matches). They can tolerate variations in the input image. It is also of a great 

importance that the parameters of the object in the image do not have to be analysed. 

On the other hand, the conventional methods – namely Feature Extraction – usually 

provide concise and reasonably accurate measurements of an object within an image. 

However, it is difficult to determine how many and which features should be extracted 

after the initial edge detection (i.e. perimeter, area, shape factor, min/max enclosing 

rectangles, centre of area, min/max radius, etc.). From the theoretical point of view, it 
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is evident that the conventional methods mentioned above require a lot of different 

operations which are needed for feature extraction. In opposite to this approach,  

the n-tuple classifiers only need reading from memory and simple ‘add’ instructions in 

the recognition phase. For these reasons, the time requirements should be lower. 
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APPENDICES 

A.  

Automatically generated source code of the evolved 5-bit parity circuit 
library ieee; 
 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
entity parity is 
 port 
 ( 
         -- clock and reset port  
   clk           : in std_logic; 
   reset_n       : in std_logic; 
    
   -- input ports 
          input_data_0  : in std_logic; 
   input_data_1  : in std_logic; 
   input_data_2  : in std_logic; 
   input_data_3  : in std_logic; 
   input_data_4  : in std_logic; 
    
   -- output port 
   output_data_0 : out std_logic 
 ); 
end; 
 
architecture rtl of parity is 
 
component func_or is 
 generic 
  ( 
  datawidth : positive := 1 
  ); 
 port 
  ( 
  input_data_A : in std_logic_vector(datawidth-1 downto 0); 
  input_data_B : in std_logic_vector(datawidth-1 downto 0); 
  output_data  : out std_logic_vector(datawidth-1 downto 0) 
  ); 
end component; 
 
component func_and is 
 generic 
  ( 
  datawidth : positive := 1 
  ); 
 port 
  ( 
  input_data_A : in std_logic_vector(datawidth-1 downto 0); 
  input_data_B : in std_logic_vector(datawidth-1 downto 0); 
  output_data  : out std_logic_vector(datawidth-1 downto 0) 
  ); 
end component; 
 
component func_xor is 
 generic 
  ( 
  datawidth : positive := 1 
  ); 
 port 
  ( 
  input_data_A : in std_logic_vector(datawidth-1 downto 0); 
  input_data_B : in std_logic_vector(datawidth-1 downto 0); 
  output_data  : out std_logic_vector(datawidth-1 downto 0) 
  ); 
end component; 
 
-- outputs of cells 
signal interconnect_22 : std_logic_vector(0 downto 0); 
signal interconnect_16 : std_logic_vector(0 downto 0); 
signal interconnect_18 : std_logic_vector(0 downto 0); 
signal interconnect_7  : std_logic_vector(0 downto 0); 
signal interconnect_9  : std_logic_vector(0 downto 0); 
signal interconnect_13 : std_logic_vector(0 downto 0); 
signal interconnect_4  : std_logic_vector(0 downto 0); 
signal interconnect_3  : std_logic_vector(0 downto 0); 
signal interconnect_2  : std_logic_vector(0 downto 0); 
signal interconnect_0  : std_logic_vector(0 downto 0); 
 
-- input interconnect signals 
signal input_data_interconnect_0 : std_logic_vector(0 downto 0); 
signal input_data_interconnect_1 : std_logic_vector(0 downto 0); 
signal input_data_interconnect_2 : std_logic_vector(0 downto 0); 
signal input_data_interconnect_3 : std_logic_vector(0 downto 0); 
signal input_data_interconnect_4 : std_logic_vector(0 downto 0); 
 
-- output interconnect signals 
signal output_data_interconnect_0 : std_logic_vector(0 downto 0); 
 
begin 
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-- input interconnection 
process(clk, reset_n) 
begin 
 if(reset_n = '0') then 
  input_data_interconnect_0 <= (others => '0'); 
  input_data_interconnect_1 <= (others => '0'); 
  input_data_interconnect_2 <= (others => '0'); 
  input_data_interconnect_3 <= (others => '0'); 
  input_data_interconnect_4 <= (others => '0'); 
 elsif(clk='1' and clk'event) then 
  input_data_interconnect_0(0) <= input_data_0; 
  input_data_interconnect_1(0) <= input_data_1; 
  input_data_interconnect_2(0) <= input_data_2; 
  input_data_interconnect_3(0) <= input_data_3; 
  input_data_interconnect_4(0) <= input_data_4; 
 end if; 
end process; 
 
-- instances of cells 
inst_cell_22 : func_or port map (interconnect_16, interconnect_18, interconnect_22); 
inst_cell_16 : func_and port map (interconnect_7, interconnect_9, interconnect_16); 
inst_cell_18 : func_and port map (input_data_interconnect_0, interconnect_13, interconnect_18); 
inst_cell_7 : func_or port map (interconnect_4, interconnect_3, interconnect_7); 
inst_cell_9 : func_and port map (interconnect_2, interconnect_0, interconnect_9); 
inst_cell_13 : func_xor port map (interconnect_9, interconnect_7, interconnect_13); 
inst_cell_4 : func_and port map (input_data_interconnect_3, input_data_interconnect_4, interconnect_4); 
inst_cell_3 : func_and port map (input_data_interconnect_1, input_data_interconnect_2, interconnect_3); 
inst_cell_2 : func_or port map (input_data_interconnect_3, input_data_interconnect_4, interconnect_2); 
inst_cell_0 : func_or port map (input_data_interconnect_2, input_data_interconnect_1, interconnect_0); 
 
-- output interconnection 
output_data_interconnect_0 <= interconnect_22; 
 
process(clk, reset_n) 
begin 
 if(reset_n = '0') then 
  output_data_0 <= '0'; 
 elsif(clk= '1' and clk'event) then 
  output_data_0 <= output_data_interconnect_0(0); 
 end if; 
end process; 
 
end;  
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B.  

Example of automatically generated source code – Virtual Reconfigurable Circuit 

Entity: vrc_top 

-- Virtual Reconfigurable Device 
-- Entity name: vrc_top 
-- 
-- VRC parameters: 
-- Number of columns: 5 
-- Number of rows: 5 
-- L-back: 1 
-- Input availability degree: 5 
-- Output availability degree: 5 
-- Config interface: Parallel 
-- 
-- Generated by VHDL Designer - 4.5.2013 23:30:21 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
use work.vhdl_designer.all; 
 
entity vrc_top is 
 
 port 
  ( 
  -- primary inputs 
  primary_input_0 : in std_logic_vector(7 downto 0); 
  primary_input_1 : in std_logic_vector(7 downto 0); 
  primary_input_2 : in std_logic_vector(7 downto 0); 
  primary_input_3 : in std_logic_vector(7 downto 0); 
  primary_input_4 : in std_logic_vector(7 downto 0); 
 
  primary_input_valid : in std_logic; 
 
  -- primary outputs 
  primary_output_0 : out std_logic_vector(7 downto 0); 
  primary_output_1 : out std_logic_vector(7 downto 0); 
  primary_output_2 : out std_logic_vector(7 downto 0); 
  primary_output_3 : out std_logic_vector(7 downto 0); 
  primary_output_4 : out std_logic_vector(7 downto 0); 
 
  primary_output_valid : out std_logic; 
 
  -- config data port 
  column_0_config_data : in std_logic_vector(39 downto 0); 
  column_1_config_data : in std_logic_vector(49 downto 0); 
  column_2_config_data : in std_logic_vector(49 downto 0); 
  column_3_config_data : in std_logic_vector(49 downto 0); 
  column_4_config_data : in std_logic_vector(49 downto 0); 
 
  output_0_config_data : in std_logic_vector(4 downto 0); 
  output_1_config_data : in std_logic_vector(4 downto 0); 
  output_2_config_data : in std_logic_vector(4 downto 0); 
  output_3_config_data : in std_logic_vector(4 downto 0); 
  output_4_config_data : in std_logic_vector(4 downto 0); 
 
  clock_config : in std_logic; 
 
  config_column_0_wr : in std_logic; 
  config_column_1_wr : in std_logic; 
  config_column_2_wr : in std_logic; 
  config_column_3_wr : in std_logic; 
  config_column_4_wr : in std_logic; 
 
  config_output_0_wr : in std_logic; 
  config_output_1_wr : in std_logic; 
  config_output_2_wr : in std_logic; 
  config_output_3_wr : in std_logic; 
  config_output_4_wr : in std_logic; 
 
  -- other signals 
  clk_vrc : in std_logic; 
  clk_vrc_en : in std_logic; 
  reset_n : in std_logic 
 
  ); 
 
end; 
 
architecture vrc_rtl of vrc_top is 
 
-- components of columns 
component cell_column_input is 
 generic 
  ( 
  datawidth : positive := 8 
  ); 
 port 
  ( 
 
  input_primary_data_port  : in  array_std_logic_vector(4 downto 0, datawidth-1 downto 0); 
  cell_output_port  : out array_std_logic_vector(4 downto 0, datawidth-1 downto 0); 
 
  clk  : in std_logic; 
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  clk_en  : in std_logic; 
 
  column_config  : in std_logic_vector(39 downto 0); 
  clk_config   : in std_logic; 
  wr_config_en  : in std_logic 
 
  ); 
end component; 
 
component cell_column_type_0 is 
 generic 
  ( 
  datawidth : positive := 8 
  ); 
 port 
  ( 
 
  input_primary_data_port  : in  array_std_logic_vector(4 downto 0, datawidth-1 downto 0); 
  input_cell_data_port : in  array_std_logic_vector(4 downto 0, datawidth-1 downto 0); 
  cell_output_port  : out array_std_logic_vector(4 downto 0, datawidth-1 downto 0); 
 
  clk  : in std_logic; 
  clk_en  : in std_logic; 
 
  column_config  : in std_logic_vector(49 downto 0); 
  clk_config   : in std_logic; 
  wr_config_en  : in std_logic 
 
  ); 
end component; 
 
-- interconnect between columns 
signal columns_data_bus_0 : array_std_logic_vector(4 downto 0, 7 downto 0); 
signal columns_data_bus_1 : array_std_logic_vector(4 downto 0, 7 downto 0); 
signal columns_data_bus_2 : array_std_logic_vector(4 downto 0, 7 downto 0); 
signal columns_data_bus_3 : array_std_logic_vector(4 downto 0, 7 downto 0); 
signal columns_data_bus_4 : array_std_logic_vector(4 downto 0, 7 downto 0); 
 
type   shift_register is array( 0 to 3) of array_std_logic_vector(4 downto 0,7 downto 0); 
signal input_shift_register  : shift_register; 
signal input_data_vector  : array_std_logic_vector(4 downto 0, 7 downto 0); 
 
signal valid_shift_register : std_logic_vector(0 to 5); 
 
type   compensatory_register_chain is array (3 downto 0) of std_logic_vector(7 downto 0); 
signal compensatory_registers_0 : compensatory_register_chain; 
signal compensatory_registers_1 : compensatory_register_chain; 
signal compensatory_registers_2 : compensatory_register_chain; 
signal compensatory_registers_3 : compensatory_register_chain; 
signal compensatory_registers_4 : compensatory_register_chain; 
 
type   output_config_array is array (0 to 4) of std_logic_vector(4 downto 0); 
signal output_config_storage : output_config_array; 
 
signal selected_output_data_0 : std_logic_vector(7 downto 0); 
signal selected_output_data_1 : std_logic_vector(7 downto 0); 
signal selected_output_data_2 : std_logic_vector(7 downto 0); 
signal selected_output_data_3 : std_logic_vector(7 downto 0); 
signal selected_output_data_4 : std_logic_vector(7 downto 0); 
 
signal register_latency_pointer_0 : std_logic_vector(3 downto 0); 
signal register_latency_pointer_1 : std_logic_vector(3 downto 0); 
signal register_latency_pointer_2 : std_logic_vector(3 downto 0); 
signal register_latency_pointer_3 : std_logic_vector(3 downto 0); 
signal register_latency_pointer_4 : std_logic_vector(3 downto 0); 
 
signal primary_output_0_i : std_logic_vector(7 downto 0); 
signal primary_output_1_i : std_logic_vector(7 downto 0); 
signal primary_output_2_i : std_logic_vector(7 downto 0); 
signal primary_output_3_i : std_logic_vector(7 downto 0); 
signal primary_output_4_i : std_logic_vector(7 downto 0); 
 
begin 
 
column_0 : cell_column_input 
 generic map 
  ( 
  datawidth => 8 
  ) 
 port map 
  ( 
  input_primary_data_port  => input_data_vector, 
  cell_output_port  => columns_data_bus_0, 
 
  clk     => clk_vrc, 
  clk_en     => clk_vrc_en, 
 
  column_config   => column_0_config_data, 
  wr_config_en   => config_column_0_wr, 
  clk_config    => clock_config 
  ); 
 
column_1 : cell_column_type_0 
 generic map 
  ( 
  datawidth => 8 
  ) 
 port map 
  ( 
  input_primary_data_port  => input_shift_register(0), 
  input_cell_data_port  => columns_data_bus_0, 
  cell_output_port  => columns_data_bus_1, 
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  clk     => clk_vrc, 
  clk_en     => clk_vrc_en, 
 
  column_config   => column_1_config_data, 
  wr_config_en   => config_column_1_wr, 
  clk_config    => clock_config 
  ); 
 
column_2 : cell_column_type_0 
 generic map 
  ( 
  datawidth => 8 
  ) 
 port map 
  ( 
  input_primary_data_port  => input_shift_register(1), 
  input_cell_data_port  => columns_data_bus_1, 
  cell_output_port  => columns_data_bus_2, 
 
  clk     => clk_vrc, 
  clk_en     => clk_vrc_en, 
 
  column_config   => column_2_config_data, 
  wr_config_en   => config_column_2_wr, 
  clk_config    => clock_config 
  ); 
 
column_3 : cell_column_type_0 
 generic map 
  ( 
  datawidth => 8 
  ) 
 port map 
  ( 
  input_primary_data_port  => input_shift_register(2), 
  input_cell_data_port  => columns_data_bus_2, 
  cell_output_port  => columns_data_bus_3, 
 
  clk     => clk_vrc, 
  clk_en     => clk_vrc_en, 
 
  column_config   => column_3_config_data, 
  wr_config_en   => config_column_3_wr, 
  clk_config    => clock_config 
  ); 
 
column_4 : cell_column_type_0 
 generic map 
  ( 
  datawidth => 8 
  ) 
 port map 
  ( 
  input_primary_data_port  => input_shift_register(3), 
  input_cell_data_port  => columns_data_bus_3, 
  cell_output_port  => columns_data_bus_4, 
 
  clk     => clk_vrc, 
  clk_en     => clk_vrc_en, 
 
  column_config   => column_4_config_data, 
  wr_config_en   => config_column_4_wr, 
  clk_config    => clock_config 
  ); 
 
 
-- Valid shift register 
valid_shift_register_process : process(clk_vrc, reset_n) 
begin 
 
 if(reset_n='0') then 
 
  valid_shift_register<=(others=>'0'); 
 
 elsif(clk_vrc='1' and clk_vrc'event) then 
 
  if(clk_vrc_en='1') then 
   valid_shift_register<= primary_input_valid & valid_shift_register(0 to 4); 
  end if; 
 
 end if; 
 
end process; 
 
primary_output_valid <= valid_shift_register(5); 
 
 
-- Convert input data port 
process(primary_input_0,primary_input_1,primary_input_2,primary_input_3,primary_input_4) 
begin 
 
 to_array_std_logic_vector(input_data_vector,primary_input_0,0); 
 to_array_std_logic_vector(input_data_vector,primary_input_1,1); 
 to_array_std_logic_vector(input_data_vector,primary_input_2,2); 
 to_array_std_logic_vector(input_data_vector,primary_input_3,3); 
 to_array_std_logic_vector(input_data_vector,primary_input_4,4); 
 
end process; 
 
input_data_shift_register_process : process(clk_vrc) 
begin 
 
 if(clk_vrc='1' and clk_vrc'event) then 
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  if(clk_vrc_en='1') then 
   input_shift_register<= input_data_vector & input_shift_register(0 to 2); 
  end if; 
 end if; 
 
end process; 
 
 
output_config_write : process(clock_config) 
begin 
 
 if(clock_config='1' and clock_config'event) then 
 
  if(config_output_0_wr='1') then 
   output_config_storage(0) <= output_0_config_data; 
  end if; 
  if(config_output_1_wr='1') then 
   output_config_storage(1) <= output_1_config_data; 
  end if; 
  if(config_output_2_wr='1') then 
   output_config_storage(2) <= output_2_config_data; 
  end if; 
  if(config_output_3_wr='1') then 
   output_config_storage(3) <= output_3_config_data; 
  end if; 
  if(config_output_4_wr='1') then 
   output_config_storage(4) <= output_4_config_data; 
  end if; 
 end if; 
 
end process; 
 
with output_config_storage(0) select 
 selected_output_data_0 <=  to_std_logic_vector(columns_data_bus_0,0) when "00000", 
 to_std_logic_vector(columns_data_bus_0,1) when "00001", 
 to_std_logic_vector(columns_data_bus_0,2) when "00010", 
 to_std_logic_vector(columns_data_bus_0,3) when "00011", 
 to_std_logic_vector(columns_data_bus_0,4) when "00100", 
 to_std_logic_vector(columns_data_bus_1,0) when "00101", 
 to_std_logic_vector(columns_data_bus_1,1) when "00110", 
 to_std_logic_vector(columns_data_bus_1,2) when "00111", 
 to_std_logic_vector(columns_data_bus_1,3) when "01000", 
 to_std_logic_vector(columns_data_bus_1,4) when "01001", 
 to_std_logic_vector(columns_data_bus_2,0) when "01010", 
 to_std_logic_vector(columns_data_bus_2,1) when "01011", 
 to_std_logic_vector(columns_data_bus_2,2) when "01100", 
 to_std_logic_vector(columns_data_bus_2,3) when "01101", 
 to_std_logic_vector(columns_data_bus_2,4) when "01110", 
 to_std_logic_vector(columns_data_bus_3,0) when "01111", 
 to_std_logic_vector(columns_data_bus_3,1) when "10000", 
 to_std_logic_vector(columns_data_bus_3,2) when "10001", 
 to_std_logic_vector(columns_data_bus_3,3) when "10010", 
 to_std_logic_vector(columns_data_bus_3,4) when "10011", 
 to_std_logic_vector(columns_data_bus_4,0) when "10100", 
 to_std_logic_vector(columns_data_bus_4,1) when "10101", 
 to_std_logic_vector(columns_data_bus_4,2) when "10110", 
 to_std_logic_vector(columns_data_bus_4,3) when "10111", 
 to_std_logic_vector(columns_data_bus_4,4) when others; 
 
with output_config_storage(1) select 
 selected_output_data_1 <=  to_std_logic_vector(columns_data_bus_0,0) when "00000", 
 to_std_logic_vector(columns_data_bus_0,1) when "00001", 
 to_std_logic_vector(columns_data_bus_0,2) when "00010", 
 to_std_logic_vector(columns_data_bus_0,3) when "00011", 
 to_std_logic_vector(columns_data_bus_0,4) when "00100", 
 to_std_logic_vector(columns_data_bus_1,0) when "00101", 
 to_std_logic_vector(columns_data_bus_1,1) when "00110", 
 to_std_logic_vector(columns_data_bus_1,2) when "00111", 
 to_std_logic_vector(columns_data_bus_1,3) when "01000", 
 to_std_logic_vector(columns_data_bus_1,4) when "01001", 
 to_std_logic_vector(columns_data_bus_2,0) when "01010", 
 to_std_logic_vector(columns_data_bus_2,1) when "01011", 
 to_std_logic_vector(columns_data_bus_2,2) when "01100", 
 to_std_logic_vector(columns_data_bus_2,3) when "01101", 
 to_std_logic_vector(columns_data_bus_2,4) when "01110", 
 to_std_logic_vector(columns_data_bus_3,0) when "01111", 
 to_std_logic_vector(columns_data_bus_3,1) when "10000", 
 to_std_logic_vector(columns_data_bus_3,2) when "10001", 
 to_std_logic_vector(columns_data_bus_3,3) when "10010", 
 to_std_logic_vector(columns_data_bus_3,4) when "10011", 
 to_std_logic_vector(columns_data_bus_4,0) when "10100", 
 to_std_logic_vector(columns_data_bus_4,1) when "10101", 
 to_std_logic_vector(columns_data_bus_4,2) when "10110", 
 to_std_logic_vector(columns_data_bus_4,3) when "10111", 
 to_std_logic_vector(columns_data_bus_4,4) when others; 
 
with output_config_storage(2) select 
 selected_output_data_2 <=  to_std_logic_vector(columns_data_bus_0,0) when "00000", 
 to_std_logic_vector(columns_data_bus_0,1) when "00001", 
 to_std_logic_vector(columns_data_bus_0,2) when "00010", 
 to_std_logic_vector(columns_data_bus_0,3) when "00011", 
 to_std_logic_vector(columns_data_bus_0,4) when "00100", 
 to_std_logic_vector(columns_data_bus_1,0) when "00101", 
 to_std_logic_vector(columns_data_bus_1,1) when "00110", 
 to_std_logic_vector(columns_data_bus_1,2) when "00111", 
 to_std_logic_vector(columns_data_bus_1,3) when "01000", 
 to_std_logic_vector(columns_data_bus_1,4) when "01001", 
 to_std_logic_vector(columns_data_bus_2,0) when "01010", 
 to_std_logic_vector(columns_data_bus_2,1) when "01011", 
 to_std_logic_vector(columns_data_bus_2,2) when "01100", 
 to_std_logic_vector(columns_data_bus_2,3) when "01101", 
 to_std_logic_vector(columns_data_bus_2,4) when "01110", 
 to_std_logic_vector(columns_data_bus_3,0) when "01111", 
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 to_std_logic_vector(columns_data_bus_3,1) when "10000", 
 to_std_logic_vector(columns_data_bus_3,2) when "10001", 
 to_std_logic_vector(columns_data_bus_3,3) when "10010", 
 to_std_logic_vector(columns_data_bus_3,4) when "10011", 
 to_std_logic_vector(columns_data_bus_4,0) when "10100", 
 to_std_logic_vector(columns_data_bus_4,1) when "10101", 
 to_std_logic_vector(columns_data_bus_4,2) when "10110", 
 to_std_logic_vector(columns_data_bus_4,3) when "10111", 
 to_std_logic_vector(columns_data_bus_4,4) when others; 
 
with output_config_storage(3) select 
 selected_output_data_3 <=  to_std_logic_vector(columns_data_bus_0,0) when "00000", 
 to_std_logic_vector(columns_data_bus_0,1) when "00001", 
 to_std_logic_vector(columns_data_bus_0,2) when "00010", 
 to_std_logic_vector(columns_data_bus_0,3) when "00011", 
 to_std_logic_vector(columns_data_bus_0,4) when "00100", 
 to_std_logic_vector(columns_data_bus_1,0) when "00101", 
 to_std_logic_vector(columns_data_bus_1,1) when "00110", 
 to_std_logic_vector(columns_data_bus_1,2) when "00111", 
 to_std_logic_vector(columns_data_bus_1,3) when "01000", 
 to_std_logic_vector(columns_data_bus_1,4) when "01001", 
 to_std_logic_vector(columns_data_bus_2,0) when "01010", 
 to_std_logic_vector(columns_data_bus_2,1) when "01011", 
 to_std_logic_vector(columns_data_bus_2,2) when "01100", 
 to_std_logic_vector(columns_data_bus_2,3) when "01101", 
 to_std_logic_vector(columns_data_bus_2,4) when "01110", 
 to_std_logic_vector(columns_data_bus_3,0) when "01111", 
 to_std_logic_vector(columns_data_bus_3,1) when "10000", 
 to_std_logic_vector(columns_data_bus_3,2) when "10001", 
 to_std_logic_vector(columns_data_bus_3,3) when "10010", 
 to_std_logic_vector(columns_data_bus_3,4) when "10011", 
 to_std_logic_vector(columns_data_bus_4,0) when "10100", 
 to_std_logic_vector(columns_data_bus_4,1) when "10101", 
 to_std_logic_vector(columns_data_bus_4,2) when "10110", 
 to_std_logic_vector(columns_data_bus_4,3) when "10111", 
 to_std_logic_vector(columns_data_bus_4,4) when others; 
 
with output_config_storage(4) select 
 selected_output_data_4 <=  to_std_logic_vector(columns_data_bus_0,0) when "00000", 
 to_std_logic_vector(columns_data_bus_0,1) when "00001", 
 to_std_logic_vector(columns_data_bus_0,2) when "00010", 
 to_std_logic_vector(columns_data_bus_0,3) when "00011", 
 to_std_logic_vector(columns_data_bus_0,4) when "00100", 
 to_std_logic_vector(columns_data_bus_1,0) when "00101", 
 to_std_logic_vector(columns_data_bus_1,1) when "00110", 
 to_std_logic_vector(columns_data_bus_1,2) when "00111", 
 to_std_logic_vector(columns_data_bus_1,3) when "01000", 
 to_std_logic_vector(columns_data_bus_1,4) when "01001", 
 to_std_logic_vector(columns_data_bus_2,0) when "01010", 
 to_std_logic_vector(columns_data_bus_2,1) when "01011", 
 to_std_logic_vector(columns_data_bus_2,2) when "01100", 
 to_std_logic_vector(columns_data_bus_2,3) when "01101", 
 to_std_logic_vector(columns_data_bus_2,4) when "01110", 
 to_std_logic_vector(columns_data_bus_3,0) when "01111", 
 to_std_logic_vector(columns_data_bus_3,1) when "10000", 
 to_std_logic_vector(columns_data_bus_3,2) when "10001", 
 to_std_logic_vector(columns_data_bus_3,3) when "10010", 
 to_std_logic_vector(columns_data_bus_3,4) when "10011", 
 to_std_logic_vector(columns_data_bus_4,0) when "10100", 
 to_std_logic_vector(columns_data_bus_4,1) when "10101", 
 to_std_logic_vector(columns_data_bus_4,2) when "10110", 
 to_std_logic_vector(columns_data_bus_4,3) when "10111", 
 to_std_logic_vector(columns_data_bus_4,4) when others; 
 
latency_pointer_decoder_0 : process(output_config_storage(0)) 
begin 
 
 if(unsigned(output_config_storage(0))<5) then 
  register_latency_pointer_0 <= "0000"; 
 elsif(unsigned(output_config_storage(0))<10) then 
  register_latency_pointer_0 <= "1000"; 
 elsif(unsigned(output_config_storage(0))<15) then 
  register_latency_pointer_0 <= "-100"; 
 elsif(unsigned(output_config_storage(0))<20) then 
  register_latency_pointer_0 <= "--10"; 
 else 
  register_latency_pointer_0 <= "---1"; 
 end if; 
 
end process; 
 
latency_pointer_decoder_1 : process(output_config_storage(1)) 
begin 
 
 if(unsigned(output_config_storage(1))<5) then 
  register_latency_pointer_1 <= "0000"; 
 elsif(unsigned(output_config_storage(1))<10) then 
  register_latency_pointer_1 <= "1000"; 
 elsif(unsigned(output_config_storage(1))<15) then 
  register_latency_pointer_1 <= "-100"; 
 elsif(unsigned(output_config_storage(1))<20) then 
  register_latency_pointer_1 <= "--10"; 
 else 
  register_latency_pointer_1 <= "---1"; 
 end if; 
end process; 
 
latency_pointer_decoder_2 : process(output_config_storage(2)) 
begin 
 
 if(unsigned(output_config_storage(2))<5) then 
  register_latency_pointer_2 <= "0000"; 
 elsif(unsigned(output_config_storage(2))<10) then 



Appendices 
 

155 
 

  register_latency_pointer_2 <= "1000"; 
 elsif(unsigned(output_config_storage(2))<15) then 
  register_latency_pointer_2 <= "-100"; 
 elsif(unsigned(output_config_storage(2))<20) then 
  register_latency_pointer_2 <= "--10"; 
 else 
  register_latency_pointer_2 <= "---1"; 
 end if; 
 
end process; 
 
latency_pointer_decoder_3 : process(output_config_storage(3)) 
begin 
 
 if(unsigned(output_config_storage(3))<5) then 
  register_latency_pointer_3 <= "0000"; 
 elsif(unsigned(output_config_storage(3))<10) then 
  register_latency_pointer_3 <= "1000"; 
 elsif(unsigned(output_config_storage(3))<15) then 
  register_latency_pointer_3 <= "-100"; 
 elsif(unsigned(output_config_storage(3))<20) then 
  register_latency_pointer_3 <= "--10"; 
 else 
  register_latency_pointer_3 <= "---1"; 
 end if; 
 
end process; 
 
latency_pointer_decoder_4 : process(output_config_storage(4)) 
begin 
 
 if(unsigned(output_config_storage(4))<5) then 
  register_latency_pointer_4 <= "0000"; 
 elsif(unsigned(output_config_storage(4))<10) then 
  register_latency_pointer_4 <= "1000"; 
 elsif(unsigned(output_config_storage(4))<15) then 
  register_latency_pointer_4 <= "-100"; 
 elsif(unsigned(output_config_storage(4))<20) then 
  register_latency_pointer_4 <= "--10"; 
 else 
  register_latency_pointer_4 <= "---1"; 
 end if; 
 
end process; 
 
latency_compensation_process : process(clk_vrc) 
begin 
 
 if(clk_vrc='1' and clk_vrc'event) then 
  if(clk_vrc_en='1') then 
     
    compensatory_registers_0(3) <= selected_output_data_0; 
    compensatory_registers_1(3) <= selected_output_data_1; 
    compensatory_registers_2(3) <= selected_output_data_2; 
    compensatory_registers_3(3) <= selected_output_data_3; 
    compensatory_registers_4(3) <= selected_output_data_4; 
     
    for i in 2 downto 0 loop 
 
     if (register_latency_pointer_0(i+1)='1') then 
      compensatory_registers_0(i) <= selected_output_data_0; 
     else 
      compensatory_registers_0(i) <= compensatory_registers_0(i+1); 
     end if; 
     if (register_latency_pointer_1(i+1)='1') then 
      compensatory_registers_1(i) <= selected_output_data_1; 
     else 
      compensatory_registers_1(i) <= compensatory_registers_1(i+1); 
     end if; 
     if (register_latency_pointer_2(i+1)='1') then 
      compensatory_registers_2(i) <= selected_output_data_2; 
     else 
      compensatory_registers_2(i) <= compensatory_registers_2(i+1); 
     end if; 
     if (register_latency_pointer_3(i+1)='1') then 
      compensatory_registers_3(i) <= selected_output_data_3; 
     else 
      compensatory_registers_3(i) <= compensatory_registers_3(i+1); 
     end if; 
     if (register_latency_pointer_4(i+1)='1') then 
      compensatory_registers_4(i) <= selected_output_data_4; 
     else 
      compensatory_registers_4(i) <= compensatory_registers_4(i+1); 
     end if; 
 
    end loop; 
  end if; 
 end if; 
 
end process; 
 
primary_output_0_i <= compensatory_registers_0(0) when register_latency_pointer_0(0)='0' else selected_output_data_0; 
primary_output_1_i <= compensatory_registers_1(0) when register_latency_pointer_1(0)='0' else selected_output_data_1; 
primary_output_2_i <= compensatory_registers_2(0) when register_latency_pointer_2(0)='0' else selected_output_data_2; 
primary_output_3_i <= compensatory_registers_3(0) when register_latency_pointer_3(0)='0' else selected_output_data_3; 
primary_output_4_i <= compensatory_registers_4(0) when register_latency_pointer_4(0)='0' else selected_output_data_4; 
 
output_register_impl : process(clk_vrc, reset_n) 
begin 
 
 if(reset_n='0') then 
  primary_output_0 <= (others => '0'); 
  primary_output_1 <= (others => '0'); 
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  primary_output_2 <= (others => '0'); 
  primary_output_3 <= (others => '0'); 
  primary_output_4 <= (others => '0'); 
 
 elsif(clk_vrc='1' and clk_vrc'event) then 
 
  primary_output_0 <= primary_output_0_i; 
  primary_output_1 <= primary_output_1_i; 
  primary_output_2 <= primary_output_2_i; 
  primary_output_3 <= primary_output_3_i; 
  primary_output_4 <= primary_output_4_i; 
 
 end if; 
 
end process; 
 
end; 

 

Entity: cell_column_input 

library ieee; 
 
use ieee.std_logic_1164.all; 
use work.vhdl_designer.all; 
 
entity cell_column_input is 
 generic 
  ( 
  datawidth : positive := 8 
  ); 
 port 
  ( 
  -- primary data input 
  input_primary_data_port : in  array_std_logic_vector(4 downto 0, datawidth-1 downto 0); 
 
    -- column data output 
  cell_output_port        : out array_std_logic_vector(4 downto 0, datawidth-1 downto 0); 
 
  -- clock ports 
  clk         : in std_logic; 
  clk_config    : in std_logic; 
  clk_en     : in std_logic; 
 
  -- config ports 
  column_config : in std_logic_vector(39 downto 0); 
  wr_config_en  : in std_logic 
  ); 
end; 
 
architecture column_block of cell_column_input is 
 
component cell_alu_gates is 
 
 generic 
  ( 
  datawidth : positive := 8 
  ); 
 
 port 
  ( 
  cell_input_data_A : in std_logic_vector(datawidth-1 downto 0); 
  cell_input_data_B : in std_logic_vector(datawidth-1 downto 0); 
 
  cell_output_data : out std_logic_vector(datawidth-1 downto 0); 
 
  config : in std_logic_vector(1 downto 0) 
  ); 
end component; 
 
signal cell_alu_0_input_A : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_0_input_B : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_0_output : std_logic_vector(datawidth-1 downto 0); 
 
signal cell_alu_1_input_A : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_1_input_B : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_1_output : std_logic_vector(datawidth-1 downto 0); 
 
signal cell_alu_2_input_A : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_2_input_B : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_2_output : std_logic_vector(datawidth-1 downto 0); 
 
signal cell_alu_3_input_A : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_3_input_B : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_3_output : std_logic_vector(datawidth-1 downto 0); 
 
signal cell_alu_4_input_A : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_4_input_B : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_4_output : std_logic_vector(datawidth-1 downto 0); 
 
signal column_config_reg : std_logic_vector(39 downto 0); 
 
alias cell_alu_4_config : std_logic_vector(1 downto 0) is column_config_reg (39 downto 38); 
alias mux_selector_cell_4_B : std_logic_vector(2 downto 0) is column_config_reg (37 downto 35); 
alias mux_selector_cell_4_A : std_logic_vector(2 downto 0) is column_config_reg (34 downto 32); 
 
alias cell_alu_3_config : std_logic_vector(1 downto 0) is column_config_reg (31 downto 30); 
alias mux_selector_cell_3_B : std_logic_vector(2 downto 0) is column_config_reg (29 downto 27); 
alias mux_selector_cell_3_A : std_logic_vector(2 downto 0) is column_config_reg (26 downto 24); 
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alias cell_alu_2_config : std_logic_vector(1 downto 0) is column_config_reg (23 downto 22); 
alias mux_selector_cell_2_B : std_logic_vector(2 downto 0) is column_config_reg (21 downto 19); 
alias mux_selector_cell_2_A : std_logic_vector(2 downto 0) is column_config_reg (18 downto 16); 
 
alias cell_alu_1_config : std_logic_vector(1 downto 0) is column_config_reg (15 downto 14); 
alias mux_selector_cell_1_B : std_logic_vector(2 downto 0) is column_config_reg (13 downto 11); 
alias mux_selector_cell_1_A : std_logic_vector(2 downto 0) is column_config_reg (10 downto 8); 
 
alias cell_alu_0_config : std_logic_vector(1 downto 0) is column_config_reg (7 downto 6); 
alias mux_selector_cell_0_B : std_logic_vector(2 downto 0) is column_config_reg (5 downto 3); 
alias mux_selector_cell_0_A : std_logic_vector(2 downto 0) is column_config_reg (2 downto 0); 
 
begin 
 
-- instances of cells 
cell_alu_0: cell_alu_gates 
 generic map 
   ( 
   datawidth 
   ) 
 port map 
   ( 
   cell_input_data_A => cell_alu_0_input_A, 
   cell_input_data_B => cell_alu_0_input_B, 
   cell_output_data => cell_alu_0_output, 
   config => cell_alu_0_config 
   ); 
 
cell_alu_1: cell_alu_gates 
 generic map 
   ( 
   datawidth 
   ) 
 port map 

  ( 
  cell_input_data_A => cell_alu_1_input_A, 
  cell_input_data_B => cell_alu_1_input_B, 
  cell_output_data => cell_alu_1_output, 
  config => cell_alu_1_config 
  ); 

 
cell_alu_2: cell_alu_gates 
 generic map 

  ( 
  datawidth 
  ) 

 port map 
  ( 
  cell_input_data_A => cell_alu_2_input_A, 
  cell_input_data_B => cell_alu_2_input_B, 
  cell_output_data => cell_alu_2_output, 
  config => cell_alu_2_config 
  ); 

 
cell_alu_3: cell_alu_gates 
 generic map 

  ( 
  datawidth 
  ) 

 port map 
  ( 
  cell_input_data_A => cell_alu_3_input_A, 
  cell_input_data_B => cell_alu_3_input_B, 
  cell_output_data => cell_alu_3_output, 
  config => cell_alu_3_config 
  ); 

 
cell_alu_4: cell_alu_gates 
 generic map 

  ( 
  datawidth 
  ) 

 port map 
  ( 

  cell_input_data_A => cell_alu_4_input_A, 
  cell_input_data_B => cell_alu_4_input_B, 
  cell_output_data => cell_alu_4_output, 
  config => cell_alu_4_config 
  ); 

 
with mux_selector_cell_0_A select 
 cell_alu_0_input_A <= to_std_logic_vector(input_primary_data_port,0) when "000", 
   to_std_logic_vector(input_primary_data_port,1) when "001", 
   to_std_logic_vector(input_primary_data_port,2) when "010", 
   to_std_logic_vector(input_primary_data_port,3) when "011", 
   to_std_logic_vector(input_primary_data_port,4) when others; 
 
 
with mux_selector_cell_0_B select 
 cell_alu_0_input_B <= to_std_logic_vector(input_primary_data_port,0) when "000", 
   to_std_logic_vector(input_primary_data_port,1) when "001", 
   to_std_logic_vector(input_primary_data_port,2) when "010", 
   to_std_logic_vector(input_primary_data_port,3) when "011", 
   to_std_logic_vector(input_primary_data_port,4) when others; 
 
 
with mux_selector_cell_1_A select 
 cell_alu_1_input_A <= to_std_logic_vector(input_primary_data_port,0) when "000", 
   to_std_logic_vector(input_primary_data_port,1) when "001", 
   to_std_logic_vector(input_primary_data_port,2) when "010", 
   to_std_logic_vector(input_primary_data_port,3) when "011", 
   to_std_logic_vector(input_primary_data_port,4) when others; 
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with mux_selector_cell_1_B select 
 cell_alu_1_input_B <= to_std_logic_vector(input_primary_data_port,0) when "000", 
   to_std_logic_vector(input_primary_data_port,1) when "001", 
   to_std_logic_vector(input_primary_data_port,2) when "010", 
   to_std_logic_vector(input_primary_data_port,3) when "011", 
   to_std_logic_vector(input_primary_data_port,4) when others; 
 
with mux_selector_cell_2_A select 
 cell_alu_2_input_A <= to_std_logic_vector(input_primary_data_port,0) when "000", 
   to_std_logic_vector(input_primary_data_port,1) when "001", 
   to_std_logic_vector(input_primary_data_port,2) when "010", 
   to_std_logic_vector(input_primary_data_port,3) when "011", 
   to_std_logic_vector(input_primary_data_port,4) when others; 
 
with mux_selector_cell_2_B select 
 cell_alu_2_input_B <= to_std_logic_vector(input_primary_data_port,0) when "000", 
   to_std_logic_vector(input_primary_data_port,1) when "001", 
   to_std_logic_vector(input_primary_data_port,2) when "010", 
   to_std_logic_vector(input_primary_data_port,3) when "011", 
   to_std_logic_vector(input_primary_data_port,4) when others; 
 
with mux_selector_cell_3_A select 
 cell_alu_3_input_A <= to_std_logic_vector(input_primary_data_port,0) when "000", 
   to_std_logic_vector(input_primary_data_port,1) when "001", 
   to_std_logic_vector(input_primary_data_port,2) when "010", 
   to_std_logic_vector(input_primary_data_port,3) when "011", 
   to_std_logic_vector(input_primary_data_port,4) when others; 
 
with mux_selector_cell_3_B select 
 cell_alu_3_input_B <= to_std_logic_vector(input_primary_data_port,0) when "000", 
   to_std_logic_vector(input_primary_data_port,1) when "001", 
   to_std_logic_vector(input_primary_data_port,2) when "010", 
   to_std_logic_vector(input_primary_data_port,3) when "011", 
   to_std_logic_vector(input_primary_data_port,4) when others; 
 
with mux_selector_cell_4_A select 
 cell_alu_4_input_A <= to_std_logic_vector(input_primary_data_port,0) when "000", 
   to_std_logic_vector(input_primary_data_port,1) when "001", 
   to_std_logic_vector(input_primary_data_port,2) when "010", 
   to_std_logic_vector(input_primary_data_port,3) when "011", 
   to_std_logic_vector(input_primary_data_port,4) when others; 
 
with mux_selector_cell_4_B select 
 cell_alu_4_input_B <= to_std_logic_vector(input_primary_data_port,0) when "000", 
   to_std_logic_vector(input_primary_data_port,1) when "001", 
   to_std_logic_vector(input_primary_data_port,2) when "010", 
   to_std_logic_vector(input_primary_data_port,3) when "011", 
   to_std_logic_vector(input_primary_data_port,4) when others; 
 
-- implementation of column output registers 
output_register : process(clk) 
begin 
 
 if(clk='1' and clk'event) then 
  if(clk_en='1') then 
   to_array_std_logic_vector(cell_output_port, cell_alu_0_output, 0); 
   to_array_std_logic_vector(cell_output_port, cell_alu_1_output, 1); 
   to_array_std_logic_vector(cell_output_port, cell_alu_2_output, 2); 
   to_array_std_logic_vector(cell_output_port, cell_alu_3_output, 3); 
   to_array_std_logic_vector(cell_output_port, cell_alu_4_output, 4); 
  end if; 
 end if; 
end process; 
 
-- implementation of config. registers 
config_register : process(clk_config) 
begin 
 
 if(clk_config='1' and clk_config'event) then 
  if(wr_config_en='1') then 
   column_config_reg <= column_config; 
  end if; 
 end if; 
end process; 
 
end; 
 

Entity: cell_column_type_0 

library ieee; 
 
use ieee.std_logic_1164.all; 
use work.vhdl_designer.all; 
 
entity cell_column_type_0 is 
 generic 
  ( 
  datawidth : positive := 8 
  ); 
 port 
  ( 
  -- primary data input 
  input_primary_data_port : in  array_std_logic_vector(4 downto 0, datawidth-1 downto 0); 
  
      -- column data input 
  input_cell_data_port    : in  array_std_logic_vector(4 downto 0, datawidth-1 downto 0); 
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  -- column data output 
  cell_output_port        : out array_std_logic_vector(4 downto 0, datawidth-1 downto 0); 
 
  -- clock ports 
  clk        : in std_logic; 
  clk_config : in std_logic; 
  clk_en     : in std_logic; 
 
  -- config ports 
  column_config : in std_logic_vector(49 downto 0); 
  wr_config_en  : in std_logic 
  ); 
end; 
 
architecture column_block of cell_column_type_0 is 
 
component cell_alu_gates is 
 
 generic 
  ( 
  datawidth : positive := 8 
  ); 
 
 port 
  ( 
  cell_input_data_A : in std_logic_vector(datawidth-1 downto 0); 
  cell_input_data_B : in std_logic_vector(datawidth-1 downto 0); 
 
  cell_output_data : out std_logic_vector(datawidth-1 downto 0); 
 
  config : in std_logic_vector(1 downto 0) 
  ); 
end component; 
 
signal cell_alu_0_input_A : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_0_input_B : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_0_output : std_logic_vector(datawidth-1 downto 0); 
 
signal cell_alu_1_input_A : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_1_input_B : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_1_output : std_logic_vector(datawidth-1 downto 0); 
 
signal cell_alu_2_input_A : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_2_input_B : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_2_output : std_logic_vector(datawidth-1 downto 0); 
 
signal cell_alu_3_input_A : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_3_input_B : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_3_output : std_logic_vector(datawidth-1 downto 0); 
 
signal cell_alu_4_input_A : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_4_input_B : std_logic_vector(datawidth-1 downto 0); 
signal cell_alu_4_output : std_logic_vector(datawidth-1 downto 0); 
 
signal column_config_reg : std_logic_vector(49 downto 0); 
 
alias cell_alu_4_config : std_logic_vector(1 downto 0) is column_config_reg (49 downto 48); 
alias mux_selector_cell_4_B : std_logic_vector(3 downto 0) is column_config_reg (47 downto 44); 
alias mux_selector_cell_4_A : std_logic_vector(3 downto 0) is column_config_reg (43 downto 40); 
 
alias cell_alu_3_config : std_logic_vector(1 downto 0) is column_config_reg (39 downto 38); 
alias mux_selector_cell_3_B : std_logic_vector(3 downto 0) is column_config_reg (37 downto 34); 
alias mux_selector_cell_3_A : std_logic_vector(3 downto 0) is column_config_reg (33 downto 30); 
 
alias cell_alu_2_config : std_logic_vector(1 downto 0) is column_config_reg (29 downto 28); 
alias mux_selector_cell_2_B : std_logic_vector(3 downto 0) is column_config_reg (27 downto 24); 
alias mux_selector_cell_2_A : std_logic_vector(3 downto 0) is column_config_reg (23 downto 20); 
 
alias cell_alu_1_config : std_logic_vector(1 downto 0) is column_config_reg (19 downto 18); 
alias mux_selector_cell_1_B : std_logic_vector(3 downto 0) is column_config_reg (17 downto 14); 
alias mux_selector_cell_1_A : std_logic_vector(3 downto 0) is column_config_reg (13 downto 10); 
 
alias cell_alu_0_config : std_logic_vector(1 downto 0) is column_config_reg (9 downto 8); 
alias mux_selector_cell_0_B : std_logic_vector(3 downto 0) is column_config_reg (7 downto 4); 
alias mux_selector_cell_0_A : std_logic_vector(3 downto 0) is column_config_reg (3 downto 0); 
 
 
begin 
 
-- instances of cells 
cell_alu_0: cell_alu_gates 
 generic map 

  ( 
  datawidth 
  ) 

 port map 
  ( 
  cell_input_data_A => cell_alu_0_input_A, 
  cell_input_data_B => cell_alu_0_input_B, 
  cell_output_data => cell_alu_0_output, 
  config => cell_alu_0_config 
  ); 

cell_alu_1: cell_alu_gates 
 generic map 

  ( 
  datawidth 
  ) 

 port map 
  ( 
  cell_input_data_A => cell_alu_1_input_A, 
  cell_input_data_B => cell_alu_1_input_B, 
  cell_output_data => cell_alu_1_output, 
  config => cell_alu_1_config 
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  ); 
cell_alu_2: cell_alu_gates 
 generic map 

  ( 
  datawidth 
  ) 

 port map 
  ( 
  cell_input_data_A => cell_alu_2_input_A, 
  cell_input_data_B => cell_alu_2_input_B, 
  cell_output_data => cell_alu_2_output, 
  config => cell_alu_2_config 
  ); 

cell_alu_3: cell_alu_gates 
 generic map 

  ( 
  datawidth 
  ) 

 port map 
  ( 
  cell_input_data_A => cell_alu_3_input_A, 
  cell_input_data_B => cell_alu_3_input_B, 
  cell_output_data => cell_alu_3_output, 
  config => cell_alu_3_config 
  ); 

cell_alu_4: cell_alu_gates 
 generic map 

  ( 
  datawidth 
  ) 

 port map 
  ( 
  cell_input_data_A => cell_alu_4_input_A, 
  cell_input_data_B => cell_alu_4_input_B, 
  cell_output_data => cell_alu_4_output, 
  config => cell_alu_4_config 
  ); 

 
with mux_selector_cell_0_A select 
 cell_alu_0_input_A <= to_std_logic_vector(input_primary_data_port,0) when "0000", 
   to_std_logic_vector(input_primary_data_port,1) when "0001", 
   to_std_logic_vector(input_primary_data_port,2) when "0010", 
   to_std_logic_vector(input_primary_data_port,3) when "0011", 
   to_std_logic_vector(input_primary_data_port,4) when "0100", 
   to_std_logic_vector(input_cell_data_port,0) when "0101", 
   to_std_logic_vector(input_cell_data_port,1) when "0110", 
   to_std_logic_vector(input_cell_data_port,2) when "0111", 
   to_std_logic_vector(input_cell_data_port,3) when "1000", 
   to_std_logic_vector(input_cell_data_port,4) when others; 
 
with mux_selector_cell_0_B select 
 cell_alu_0_input_B <= to_std_logic_vector(input_primary_data_port,0) when "0000", 
   to_std_logic_vector(input_primary_data_port,1) when "0001", 
   to_std_logic_vector(input_primary_data_port,2) when "0010", 
   to_std_logic_vector(input_primary_data_port,3) when "0011", 
   to_std_logic_vector(input_primary_data_port,4) when "0100", 
   to_std_logic_vector(input_cell_data_port,0) when "0101", 
   to_std_logic_vector(input_cell_data_port,1) when "0110", 
   to_std_logic_vector(input_cell_data_port,2) when "0111", 
   to_std_logic_vector(input_cell_data_port,3) when "1000", 
   to_std_logic_vector(input_cell_data_port,4) when others; 
 
with mux_selector_cell_1_A select 
 cell_alu_1_input_A <= to_std_logic_vector(input_primary_data_port,0) when "0000", 
   to_std_logic_vector(input_primary_data_port,1) when "0001", 
   to_std_logic_vector(input_primary_data_port,2) when "0010", 
   to_std_logic_vector(input_primary_data_port,3) when "0011", 
   to_std_logic_vector(input_primary_data_port,4) when "0100", 
   to_std_logic_vector(input_cell_data_port,0) when "0101", 
   to_std_logic_vector(input_cell_data_port,1) when "0110", 
   to_std_logic_vector(input_cell_data_port,2) when "0111", 
   to_std_logic_vector(input_cell_data_port,3) when "1000", 
   to_std_logic_vector(input_cell_data_port,4) when others; 
 
with mux_selector_cell_1_B select 
 cell_alu_1_input_B <= to_std_logic_vector(input_primary_data_port,0) when "0000", 
   to_std_logic_vector(input_primary_data_port,1) when "0001", 
   to_std_logic_vector(input_primary_data_port,2) when "0010", 
   to_std_logic_vector(input_primary_data_port,3) when "0011", 
   to_std_logic_vector(input_primary_data_port,4) when "0100", 
   to_std_logic_vector(input_cell_data_port,0) when "0101", 
   to_std_logic_vector(input_cell_data_port,1) when "0110", 
   to_std_logic_vector(input_cell_data_port,2) when "0111", 
   to_std_logic_vector(input_cell_data_port,3) when "1000", 
   to_std_logic_vector(input_cell_data_port,4) when others; 
 
with mux_selector_cell_2_A select 
 cell_alu_2_input_A <= to_std_logic_vector(input_primary_data_port,0) when "0000", 
   to_std_logic_vector(input_primary_data_port,1) when "0001", 
   to_std_logic_vector(input_primary_data_port,2) when "0010", 
   to_std_logic_vector(input_primary_data_port,3) when "0011", 
   to_std_logic_vector(input_primary_data_port,4) when "0100", 
   to_std_logic_vector(input_cell_data_port,0) when "0101", 
   to_std_logic_vector(input_cell_data_port,1) when "0110", 
   to_std_logic_vector(input_cell_data_port,2) when "0111", 
   to_std_logic_vector(input_cell_data_port,3) when "1000", 
   to_std_logic_vector(input_cell_data_port,4) when others; 
 
with mux_selector_cell_2_B select 
 cell_alu_2_input_B <= to_std_logic_vector(input_primary_data_port,0) when "0000", 
   to_std_logic_vector(input_primary_data_port,1) when "0001", 
   to_std_logic_vector(input_primary_data_port,2) when "0010", 
   to_std_logic_vector(input_primary_data_port,3) when "0011", 
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   to_std_logic_vector(input_primary_data_port,4) when "0100", 
   to_std_logic_vector(input_cell_data_port,0) when "0101", 
   to_std_logic_vector(input_cell_data_port,1) when "0110", 
   to_std_logic_vector(input_cell_data_port,2) when "0111", 
   to_std_logic_vector(input_cell_data_port,3) when "1000", 
   to_std_logic_vector(input_cell_data_port,4) when others; 
 
with mux_selector_cell_3_A select 
 cell_alu_3_input_A <= to_std_logic_vector(input_primary_data_port,0) when "0000", 
   to_std_logic_vector(input_primary_data_port,1) when "0001", 
   to_std_logic_vector(input_primary_data_port,2) when "0010", 
   to_std_logic_vector(input_primary_data_port,3) when "0011", 
   to_std_logic_vector(input_primary_data_port,4) when "0100", 
   to_std_logic_vector(input_cell_data_port,0) when "0101", 
   to_std_logic_vector(input_cell_data_port,1) when "0110", 
   to_std_logic_vector(input_cell_data_port,2) when "0111", 
   to_std_logic_vector(input_cell_data_port,3) when "1000", 
   to_std_logic_vector(input_cell_data_port,4) when others; 
 
with mux_selector_cell_3_B select 
 cell_alu_3_input_B <= to_std_logic_vector(input_primary_data_port,0) when "0000", 
   to_std_logic_vector(input_primary_data_port,1) when "0001", 
   to_std_logic_vector(input_primary_data_port,2) when "0010", 
   to_std_logic_vector(input_primary_data_port,3) when "0011", 
   to_std_logic_vector(input_primary_data_port,4) when "0100", 
   to_std_logic_vector(input_cell_data_port,0) when "0101", 
   to_std_logic_vector(input_cell_data_port,1) when "0110", 
   to_std_logic_vector(input_cell_data_port,2) when "0111", 
   to_std_logic_vector(input_cell_data_port,3) when "1000", 
   to_std_logic_vector(input_cell_data_port,4) when others; 
 
with mux_selector_cell_4_A select 
 cell_alu_4_input_A <= to_std_logic_vector(input_primary_data_port,0) when "0000", 
   to_std_logic_vector(input_primary_data_port,1) when "0001", 
   to_std_logic_vector(input_primary_data_port,2) when "0010", 
   to_std_logic_vector(input_primary_data_port,3) when "0011", 
   to_std_logic_vector(input_primary_data_port,4) when "0100", 
   to_std_logic_vector(input_cell_data_port,0) when "0101", 
   to_std_logic_vector(input_cell_data_port,1) when "0110", 
   to_std_logic_vector(input_cell_data_port,2) when "0111", 
   to_std_logic_vector(input_cell_data_port,3) when "1000", 
   to_std_logic_vector(input_cell_data_port,4) when others; 
 
with mux_selector_cell_4_B select 
 cell_alu_4_input_B <= to_std_logic_vector(input_primary_data_port,0) when "0000", 
   to_std_logic_vector(input_primary_data_port,1) when "0001", 
   to_std_logic_vector(input_primary_data_port,2) when "0010", 
   to_std_logic_vector(input_primary_data_port,3) when "0011", 
   to_std_logic_vector(input_primary_data_port,4) when "0100", 
   to_std_logic_vector(input_cell_data_port,0) when "0101", 
   to_std_logic_vector(input_cell_data_port,1) when "0110", 
   to_std_logic_vector(input_cell_data_port,2) when "0111", 
   to_std_logic_vector(input_cell_data_port,3) when "1000", 
   to_std_logic_vector(input_cell_data_port,4) when others; 
 
-- implementation of output registers 
output_register : process(clk) 
begin 
 if(clk='1' and clk'event) then 
  if(clk_en='1') then 
   to_array_std_logic_vector(cell_output_port, cell_alu_0_output, 0); 
   to_array_std_logic_vector(cell_output_port, cell_alu_1_output, 1); 
   to_array_std_logic_vector(cell_output_port, cell_alu_2_output, 2); 
   to_array_std_logic_vector(cell_output_port, cell_alu_3_output, 3); 
   to_array_std_logic_vector(cell_output_port, cell_alu_4_output, 4); 
  end if; 
 end if; 
end process; 
 
-- implementation of config. registers 
config_register : process(clk_config) 
begin 
 if(clk_config='1' and clk_config'event) then 
  if(wr_config_en='1') then 
   column_config_reg <= column_config; 
  end if; 
 end if; 
end process; 
 
end; 
 
 

Entity: cell_alu_gates 

library ieee; 
 
use ieee.std_logic_1164.all; 
 
entity cell_alu_gates is 
 generic 
  ( 
  datawidth : positive := 8 
  ); 
 port 
  ( 
  -- cell/node inputs 
  cell_input_data_A : in std_logic_vector(datawidth-1 downto 0); 
  cell_input_data_B : in std_logic_vector(datawidth-1 downto 0); 
 
  -- cell/node output 
  cell_output_data : out std_logic_vector(datawidth-1 downto 0); 
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  -- cell/node configuration – function gene 
  config : in std_logic_vector(1 downto 0) 
  ); 
end; 
 
architecture functions_multiplexer of cell_alu_gates is 
 
-- components of fundamental functions 
component func_xor is 
 
 generic 
  ( 
  datawidth : positive := 8 
  ); 
 port 
  ( 
  input_data_A : in std_logic_vector(datawidth-1 downto 0); 
  input_data_B : in std_logic_vector(datawidth-1 downto 0); 
 
  output_data : out std_logic_vector(datawidth-1 downto 0) 
  ); 
end component; 
 
component func_or is 
 
 generic 
  ( 
  datawidth : positive := 8 
  ); 
 port 
  ( 
  input_data_A : in std_logic_vector(datawidth-1 downto 0); 
  input_data_B : in std_logic_vector(datawidth-1 downto 0); 
 
  output_data : out std_logic_vector(datawidth-1 downto 0) 
  ); 
end component; 
 
component func_and is 
 
 generic 
  ( 
  datawidth : positive := 8 
  ); 
 port 
  ( 
  input_data_A : in std_logic_vector(datawidth-1 downto 0); 
  input_data_B : in std_logic_vector(datawidth-1 downto 0); 
 
  output_data : out std_logic_vector(datawidth-1 downto 0) 
  ); 
end component; 
 
component func_ident is 
 
 generic 
  ( 
  datawidth : positive := 8 
  ); 
 port 
  ( 
  input_data_A : in std_logic_vector(datawidth-1 downto 0); 
  input_data_B : in std_logic_vector(datawidth-1 downto 0); 
 
  output_data : out std_logic_vector(datawidth-1 downto 0) 
  ); 
end component; 
 
signal output_func_xor  : std_logic_vector(datawidth-1 downto 0); 
signal output_func_or  : std_logic_vector(datawidth-1 downto 0); 
signal output_func_and  : std_logic_vector(datawidth-1 downto 0); 
signal output_func_ident  : std_logic_vector(datawidth-1 downto 0); 
 
begin 
 
-- instances of fundamentral functions 
function_0 : func_xor 
 
 generic map 
  ( datawidth ) 
 
 port map 
  ( 
  input_data_A => cell_input_data_A, 
  input_data_B => cell_input_data_B, 
  output_data  => output_func_xor 
  ); 
 
function_1 : func_or 
 
 generic map 
  ( datawidth ) 
 
 port map 
  ( 
  input_data_A => cell_input_data_A, 
  input_data_B => cell_input_data_B, 
  output_data  => output_func_or 
  ); 
 
function_2 : func_and 
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 generic map 
  ( datawidth ) 
 
 port map 
  ( 
  input_data_A => cell_input_data_A, 
  input_data_B => cell_input_data_B, 
  output_data  => output_func_and 
  ); 
 
function_3 : func_ident 
 
 generic map 
  ( datawidth ) 
 
 port map 
  ( 
  input_data_A => cell_input_data_A, 
  input_data_B => cell_input_data_B, 
  output_data => output_func_ident 
  ); 
 
with config select 
 cell_output_data <=  output_func_xor  when "00", 
      output_func_or     when "01", 
      output_func_and  when "10", 
      output_func_ident  when others; 
 
end;   
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C.  

Source code – Column Detector 
library ieee; 
 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
use ieee.math_real.log2; 
use ieee.math_real.ceil; 
 
entity column_detect is      
      
     generic 
            ( 
             NUMBER_CELL            : positive; 
             COLUMN_OUTPUT_EN       : boolean; 
             COLUMN_PRIM_INPUT_EN   : boolean; 
             NUMBER_PRIM_INPUT      : positive; 
             ROUTE_CONFIG_WIDTH     : positive;              
             FUNCT_CONFIG_WIDTH     : positive; 
             LAST_COLUMN            : boolean                                       
            );             
     port 
    ( 
 column_config : in std_logic_vector(((ROUTE_CONFIG_WIDTH*2*NUMBER_CELL)+(FUNCT_CONFIG_WIDTH*NUMBER_CELL))-1 downto 0); 
 output_selected               : in  std_logic_vector(NUMBER_CELL-1 downto 0); 
 previous_act_cell_propagation : in  std_logic_vector(NUMBER_CELL-1 downto 0); 
 act_cell_propagation          : out std_logic_vector(NUMBER_CELL-1 downto 0); 
 
 act_cell_flag                 : out std_logic_vector(NUMBER_CELL-1 downto 0); 
 number_act_cell               : out std_logic_vector(natural(ceil(log2(real(NUMBER_CELL))))-1 downto 0)                   
      ); 
end; 
 
architecture rtl of column_detect is 
 
-- type  
type route_act_t  is array (0 to NUMBER_CELL-1) of std_logic_vector(NUMBER_CELL-1 downto 0); 
type route_conf_t is array (0 to NUMBER_CELL-1) of unsigned(ROUTE_CONFIG_WIDTH-1 downto 0); 
 
-- signals 
signal routed_act_cell : route_act_t; 
signal act_cell        : std_logic_vector(NUMBER_CELL-1 downto 0); 
signal temp_0          : route_conf_t; 
signal temp_1          : route_conf_t; 
signal temp_limited_0  : route_conf_t; 
signal temp_limited_1  : route_conf_t; 
    
begin 
 
input_act_cell_info_0 : if (COLUMN_OUTPUT_EN and (not LAST_COLUMN)) generate 
 
   act_cell <= output_selected or previous_act_cell_propagation; 
    
end generate; 
    
input_act_cell_info_1 : if(COLUMN_OUTPUT_EN and LAST_COLUMN) generate 
 
   act_cell <= output_selected; 
    
end generate;    
 
input_act_cell_info_2 : if((not COLUMN_OUTPUT_EN) and (not LAST_COLUMN)) generate 
 
   act_cell <= previous_act_cell_propagation; 
 
end generate;  
 
route_act_primary_input_en : if(COLUMN_PRIM_INPUT_EN) generate 
 
   route_cell_i:   for i in 0 to (NUMBER_CELL-1) generate 
 
      temp_0(i) <=  unsigned((column_config(((i+1)*(FUNCT_CONFIG_WIDTH+(2*ROUTE_CONFIG_WIDTH)))-1 downto 
   FUNCT_CONFIG_WIDTH+ROUTE_CONFIG_WIDTH+(i*(FUNCT_CONFIG_WIDTH+(2*ROUTE_CONFIG_WIDTH)))))); 
       
   temp_1(i) <= unsigned((column_config((FUNCT_CONFIG_WIDTH+ROUTE_CONFIG_WIDTH+(i*(FUNCT_CONFIG_WIDTH+ 
   (2*ROUTE_CONFIG_WIDTH))))-1 downto FUNCT_CONFIG_WIDTH+(i*(FUNCT_CONFIG_WIDTH+(2*ROUTE_CONFIG_WIDTH))))));  
    
      process(temp_0) 
      begin 
       
         if(temp_0(i)>(NUMBER_CELL+NUMBER_PRIM_INPUT-1)) then          
            temp_limited_0(i) <= to_unsigned(NUMBER_CELL+NUMBER_PRIM_INPUT-1,ROUTE_CONFIG_WIDTH);          
         else          
            temp_limited_0(i) <= temp_0(i);                                         
         end if;          
       
      end process; 
          
      process(temp_1) 
      begin       
         if(temp_1(i)>(NUMBER_CELL+NUMBER_PRIM_INPUT-1)) then          
            temp_limited_1(i) <= to_unsigned(NUMBER_CELL+NUMBER_PRIM_INPUT-1,ROUTE_CONFIG_WIDTH);         
         else          
            temp_limited_1(i) <= temp_1(i);                        
         end if;         
      end process; 
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      route_cell_j:   for j in 0 to (NUMBER_CELL-1) generate 
                   
         routed_act_cell(i)(j) <= act_cell(j) when (temp_limited_0(j)=(i+NUMBER_PRIM_INPUT)) or  
                            (temp_limited_1(j)=(i+NUMBER_PRIM_INPUT)) else '0';      
 
      end generate;  
 
   end generate;  
 
end generate; 
 
route_act_primary_input_not_en : if(not COLUMN_PRIM_INPUT_EN) generate 
 
   route_cell_i:   for i in 0 to (NUMBER_CELL-1) generate 
 
   temp_0(i) <= unsigned((column_config(((i+1)*(FUNCT_CONFIG_WIDTH+(2*ROUTE_CONFIG_WIDTH)))-1 downto  
   FUNCT_CONFIG_WIDTH+ROUTE_CONFIG_WIDTH+(i*(FUNCT_CONFIG_WIDTH+(2*ROUTE_CONFIG_WIDTH)))))); 
    
   temp_1(i) <= unsigned((column_config((FUNCT_CONFIG_WIDTH+ROUTE_CONFIG_WIDTH+(i*(FUNCT_CONFIG_WIDTH+      
   (2*ROUTE_CONFIG_WIDTH))))-1 downto FUNCT_CONFIG_WIDTH+(i*(FUNCT_CONFIG_WIDTH+(2*ROUTE_CONFIG_WIDTH))))));  
    
   process(temp_0) 
   begin 
    
      if(temp_0(i)>(NUMBER_CELL-1)) then       
         temp_limited_0(i) <= to_unsigned(NUMBER_CELL-1,ROUTE_CONFIG_WIDTH);       
      else       
         temp_limited_0(i) <= temp_0(i);                                      
      end if;          
    
   end process; 
          
   process(temp_1) 
   begin 
    
      if(temp_1(i)>(NUMBER_CELL-1)) then       
         temp_limited_1(i) <= to_unsigned(NUMBER_CELL-1,ROUTE_CONFIG_WIDTH);       
      else       
         temp_limited_1(i) <= temp_1(i);                      
      end if;          
    
   end process; 
          
      route_cell_j:   for j in 0 to (NUMBER_CELL-1) generate          
         routed_act_cell(i)(j) <= act_cell(j) when (temp_limited_0(j)=i) or (temp_limited_1(j)=i) else '0'; 
      end generate;  
 
   end generate;  
 
end generate; 
 
propagation_out_generate : for i in 0 to (NUMBER_CELL-1) generate 
 
   act_cell_propagation(i) <= '1' when unsigned(routed_act_cell(i))/=0 else '0'; 
 
end generate; 
 
act_cell_flag <= act_cell;      
 
process (act_cell) 
   variable cnt_tmp : unsigned(natural(ceil(log2(real(NUMBER_CELL))))-1 downto 0);   
begin 
 
   cnt_tmp := (others => '0'); 
 
   for i in act_cell'range loop 
      if(act_cell(i)='1') then    
         cnt_tmp := cnt_tmp + 1;       
      end if; 
   end loop; 
 
   number_act_cell <= std_logic_vector(cnt_tmp);  
  
end process; 
 
end;   
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D.  

Source code – Column Detector L2 
library ieee; 
 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
use ieee.math_real.log2; 
use ieee.math_real.ceil; 
 
entity column_detect_l2 is           
     generic 
            ( 
             NUMBER_CELL            : positive; 
             COLUMN_OUTPUT_EN       : boolean; 
             COLUMN_PRIM_INPUT_EN   : boolean; 
             NUMBER_PRIM_INPUT      : positive; 
             ROUTE_CONFIG_WIDTH     : positive;              
             FUNCT_CONFIG_WIDTH     : positive; 
             LAST_COLUMN            : boolean                                       
            );             
     port 
    ( 

 clk : in std_logic;       
     
 column_config : in std_logic_vector(((ROUTE_CONFIG_WIDTH*2*NUMBER_CELL)+(FUNCT_CONFIG_WIDTH*NUMBER_CELL))-1 downto 0); 
 output_selected                  : in  std_logic_vector(NUMBER_CELL-1 downto 0); 
 previous_act_cell_propagation_l1 : in  std_logic_vector(NUMBER_CELL-1 downto 0); 
 previous_act_cell_propagation_l2 : in  std_logic_vector(NUMBER_CELL-1 downto 0); 
 act_cell_propagation_l1          : out std_logic_vector(NUMBER_CELL-1 downto 0); 
 act_cell_propagation_l2          : out std_logic_vector(NUMBER_CELL-1 downto 0); 
 
 act_cell_flag                    : out std_logic_vector(NUMBER_CELL-1 downto 0); 
 number_act_cell                  : out std_logic_vector(natural(ceil(log2(real(NUMBER_CELL))))-1 downto 0) 

      ); 
end; 
 
architecture rtl of column_detect_l2 is 
 
-- type  
type route_act_t is array (0 to NUMBER_CELL-1) of std_logic_vector(NUMBER_CELL-1 downto 0); 
type route_conf_t is array (0 to NUMBER_CELL-1) of unsigned(ROUTE_CONFIG_WIDTH-1 downto 0); 
 
-- signals 
signal routed_act_cell_l1     : route_act_t; 
signal routed_act_cell_reg_l1 : route_act_t; 
signal routed_act_cell_l2     : route_act_t; 
signal routed_act_cell_reg_l2 : route_act_t; 
 
signal act_cell : std_logic_vector(NUMBER_CELL-1 downto 0); 
 
signal temp_0 : route_conf_t; 
signal temp_1 : route_conf_t; 
 
signal temp_limited_0 : route_conf_t; 
signal temp_limited_1 : route_conf_t; 
    
begin 
 
input_act_cell_info_0 : if (COLUMN_OUTPUT_EN and (not LAST_COLUMN)) generate 
 
   act_cell <= output_selected or previous_act_cell_propagation_l1 or previous_act_cell_propagation_l2; 
    
end generate; 
    
input_act_cell_info_1 : if(COLUMN_OUTPUT_EN and LAST_COLUMN) generate 
 
   act_cell <= output_selected; 
    
end generate;    
 
input_act_cell_info_2 : if((not COLUMN_OUTPUT_EN) and (not LAST_COLUMN)) generate 
 
   act_cell <= previous_act_cell_propagation_l1 or previous_act_cell_propagation_l2; 
 
end generate;  
 
route_act_primary_input_en : if(COLUMN_PRIM_INPUT_EN) generate 
 
   route_cell_i:   for i in 0 to (NUMBER_CELL-1) generate 
 
      temp_0(i) <= unsigned((column_config(((i+1)*(FUNCT_CONFIG_WIDTH+(2*ROUTE_CONFIG_WIDTH)))-1 downto    
                   FUNCT_CONFIG_WIDTH+ROUTE_CONFIG_WIDTH+(i*(FUNCT_CONFIG_WIDTH+(2*ROUTE_CONFIG_WIDTH)))))); 
 
      temp_1(i) <= unsigned((column_config((FUNCT_CONFIG_WIDTH+ROUTE_CONFIG_WIDTH+(i*            
                   (FUNCT_CONFIG_WIDTH+(2*ROUTE_CONFIG_WIDTH))))-1 downto  
                    FUNCT_CONFIG_WIDTH+(i*(FUNCT_CONFIG_WIDTH+(2*ROUTE_CONFIG_WIDTH))))));  
    
      process(temp_0) 
      begin 
       
         if(temp_0(i)>((NUMBER_CELL*2)+NUMBER_PRIM_INPUT-1)) then          
            temp_limited_0(i) <= to_unsigned((NUMBER_CELL*2)+NUMBER_PRIM_INPUT-1,ROUTE_CONFIG_WIDTH);          
         else          
            temp_limited_0(i) <= temp_0(i);                                         
         end if;          
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      end process; 
          
      process(temp_1) 
      begin 
       
         if(temp_1(i)>((NUMBER_CELL*2)+NUMBER_PRIM_INPUT-1)) then          
            temp_limited_1(i) <= to_unsigned((NUMBER_CELL*2)+NUMBER_PRIM_INPUT-1,ROUTE_CONFIG_WIDTH);          
         else          
            temp_limited_1(i) <= temp_1(i);                      
         end if;          
       
      end process;          
       
      route_cell_j:   for j in 0 to (NUMBER_CELL-1) generate                   
 
         routed_act_cell_l1(i)(j) <= '1' when (temp_limited_0(j)=(i+NUMBER_PRIM_INPUT+NUMBER_CELL)) or   
                                     (temp_limited_1(j)=(i+NUMBER_PRIM_INPUT+NUMBER_CELL)) else '0';      
 
         routed_act_cell_l2(i)(j) <= '1' when (temp_limited_0(j)=(i+NUMBER_PRIM_INPUT)) or  
                                     (temp_limited_1(j)=(i+NUMBER_PRIM_INPUT)) else '0'; 
          
      end generate;   
 
   end generate;  
 
end generate; 
 
route_act_primary_input_not_en : if(not COLUMN_PRIM_INPUT_EN) generate 
 
   route_cell_i:   for i in 0 to (NUMBER_CELL-1) generate 
 
      temp_0(i) <= unsigned((column_config(((i+1)*(FUNCT_CONFIG_WIDTH+(2*ROUTE_CONFIG_WIDTH)))-1 downto  
                   FUNCT_CONFIG_WIDTH+ROUTE_CONFIG_WIDTH+(i*(FUNCT_CONFIG_WIDTH+(2*ROUTE_CONFIG_WIDTH)))))); 
 
      temp_1(i) <= unsigned((column_config((FUNCT_CONFIG_WIDTH+ROUTE_CONFIG_WIDTH+(i*(FUNCT_CONFIG_WIDTH+(2*               
                   ROUTE_CONFIG_WIDTH))))-1 downto FUNCT_CONFIG_WIDTH+(i*(FUNCT_CONFIG_WIDTH+(2*ROUTE_CONFIG_WIDTH))))));  
    
      process(temp_0) 
      begin 
    
         if(temp_0(i)>((NUMBER_CELL*2)-1)) then       
            temp_limited_0(i) <= to_unsigned((NUMBER_CELL*2)-1,ROUTE_CONFIG_WIDTH);       
         else       
            temp_limited_0(i) <= temp_0(i);                                      
         end if;          
    
      end process; 
          
      process(temp_1) 
      begin 
      
         if(temp_1(i)>((NUMBER_CELL*2)-1)) then       
            temp_limited_1(i) <= to_unsigned((NUMBER_CELL*2)-1,ROUTE_CONFIG_WIDTH); 
         else       
            temp_limited_1(i) <= temp_1(i);                      
         end if;          
      
      end process;    
    
      route_cell_j_1:   for j in 0 to (NUMBER_CELL-1) generate 
                   
         routed_act_cell_l1(i)(j) <= '1' when (temp_limited_0(j)=(i+NUMBER_CELL)) or (temp_limited_1(j)=(i+NUMBER_CELL))  
                                     else '0';      
 
         routed_act_cell_l2(i)(j) <= '1' when (temp_limited_0(j)=i) or (temp_limited_1(j)=i) else '0'; 
 
      end generate;   
 
   end generate;  
 
end generate; 
 
process(clk) 
begin 
  
 if(clk='1' and clk'event) then 
      routed_act_cell_reg_l1 <= routed_act_cell_l1;    
      routed_act_cell_reg_l2 <= routed_act_cell_l2;  
 end if; 
  
end process; 
 
propagation_out_generate_l2    : for i in 0 to (NUMBER_CELL-1) generate 
      
   act_cell_propagation_l2(i) <= '1' when (unsigned(act_cell and routed_act_cell_reg_l2(i))/=0) else '0'; 
 
end generate; 
 
propagation_out_generate_l1    : for i in 0 to (NUMBER_CELL-1) generate 
      
   act_cell_propagation_l1(i) <= '1' when (unsigned(act_cell and routed_act_cell_reg_l1(i))/=0) else '0'; 
 
end generate; 
 
act_cell_flag <= act_cell;      
 
process (act_cell) 
   variable cnt_tmp : unsigned(natural(ceil(log2(real(NUMBER_CELL))))-1 downto 0); 
begin 
 
   cnt_tmp := (others => '0'); 
 
   for i in act_cell'range loop 
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      if(act_cell(i)='1') then    
         cnt_tmp := cnt_tmp + 1;       
      end if; 
   end loop; 
 
number_act_cell <= std_logic_vector(cnt_tmp);  
  
end process; 
 
end; 
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