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ABSTRACT

We present a system similar to Debevec’s Facade [DTM96] that improves the reconstruction of indoor scenes from

photographs. With confined spaces it is often impractical to use regular photos as the base of the reconstruction.

Combining pinhole cameras with fisheye shoots or photographs of any kind of reflective, parametrisable body

such as light probes eases this problem. We call the later camera setup an omni-camera, because it enables us to

acquire as much information as possible from a given viewpoint. Omni-cameras make it possible to reconstruct

the geometry of an entire room from just one view. Removing the pinhole camera constraint invalidates some key

assumptions made in Facade. This paper shows how to work around the problems arising from this approach by

adding scene specific knowledge as well as a genetic component to the solver. When using omni-cameras we can

no longer take advantage of a simple texture projection to obtain the materials for the scene. Instead we propose a

method for texture generation that is transparent to the camera setup used.
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1. INTRODUCTION

The reconstruction of shape from photographs is one

of the fundamental problems of computer vision and

computer graphics. It is used either to model important

present-day landmark architectural scenes and famous

buildings as well as in cultural heritage projects with

scientific background, e.g. aiming at digitally preserv-

ing a present state of conservation. In recent devel-

opment, textures and models produced by systems as

the one detailed in this paper can be used as the base

to retrieving grammars for procedural modelling ap-

proaches [MZWG07].

Image-based scene reconstruction under general cir-

cumstances with no a priori knowledge of the posi-

tion of cameras or any constraints on the geometry

of the real scene is an ill-posed problem. Several ap-

proaches have been proposed, dealing with a subset of

unknown and known factors. For very densely sam-

pled scenes traditional light field renderers can give

a very good approximation of the model and the re-

flectance. Global proxy geometries are extractable

by shape-from-silhouette methods from the visual hull

[GGSC96]. In most cases however, these methods are
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Figure 1: left Pinhole camera model; right Setting up

correspondences

only applicable to turntable setups of objects rather

small in size.

Another approach to the same problem is illustrated

in [KS00]. The positions of the cameras are known

and the underlying unknown scene is reconstructed

by a volumetric approach that discards all voxels that

are not mapped photo-consistently in all images. The

algorithm works well for lambertian scenes with an

extension to more complex colour models possible.

Global effects such as shadowing, transparency and

inter-reflections must be ignored and cannot be mod-

elled.

Modelling from a sparse set of photographs requires

additional constraints on the reconstruction algorithm.

One feasible way was presented in 1996 [DTM96]

where a user has to define a crude box-based geom-

etry (the base model) and manually find correspon-

dences between features in the images and features

in that base model. The reconstruction features used

are edges in the source camera images. When dealing

with situations where some parts of the model cannot

be seen, symmetries of the model are exploited to re-
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trieve information about the hidden surfaces or blocks.

Symmetries are also useful to reduce the dimension of

the reconstruction problem.

2. FACADE
Facade was restricted to a pinhole-camera model (see
Figure 1, left). Constraints imposed by this choice
were closely interwoven into the algorithms presented.
For example, setting up the feature correspondences
(see Figure 1, right) usually works like this:

1. Mark two points on an edge in a source image (projected

edge)

2. Construct a ray through the cameras focal point and each

of the previously marked points (point rays)

3. The focal point and the two point rays construct a plane

(reconstruction plane E)

4. The user chooses an edge (source edge) in the base

model and links it to the projected edge

The rays spanning the reconstruction plane are called

reconstruction rays r̃ in this paper. We need to find

the translation TK and rotation RK for each camera in

order to determine the position of the reconstruction

plane in world-coordinates. Using the fact that this

plane should contain the source edge we can derive

some simple formulas to find the camera rotation ma-

trix RK (see Figure 2).

Most edges in an architectural scene are axis aligned,

so we know that the reconstruction plane of those

edges should be parallel to a given axis dBK
. In other

words the plane normal vector ~nE has to be perpendic-

ular to that axis. This gives the equation

~nE ∗RK ∗dBK
= 0

Having multiple edges that are parallel to different

axes it is possible to build an objective function we can

use to obtain an initial estimate for the camera rotation

(for details see Section 5.1).

When the camera rotation is known the translation TK

is simultaneously reconstructed with all other param-

eters of the scene (size, location and rotation of the

blocks in the base model) in [DTM96]. When no ro-

tated block is present, the resulting functions are linear

and a result can be computed.
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Figure 2: Camera rotation estimation

Figure 3: Photo of a Light Probe

With rotations the task is not as easy. In Facade the

user needs to give an initial estimate for them. Since

the resulting functions are no longer linear, an objec-

tive function is generated once again and solved with

a Newton-Raphson algorithm (for details see Section

5.2).

At this stage we know the location and rotation of

each camera in world-space as well as every parame-

ter that defines our reconstructed model. The cameras

in world-space are used to project their corresponding

source images onto the blocks in the scene, allowing

the software to impose view dependent texturing onto

the scene in a very simple fashion, all possible because

of the pinhole camera constraint.

3. OUR CONTRIBUTION
When shooting scenes inside we have to deal with

confined spaces, where it is not feasible to take an

overview picture capturing more than a part of a wall

without using wide-angle lenses. To resolve this re-

striction we tried to use omni-camera setups like the

photograph of a light probe (Figure 3).

We introduced new problems when building the recon-

struction planes by removing the pinhole constraint

Facade relies on (see Section 2). Non-skew rays re-

flected on the sphere for example are skew in general.

Approximating a plane with those rays has the effect,

that the resulting reconstruction plane does not contain

the source edge. This renders the Newton-Raphson

optimizers used by Facade less stable. We propose

some additional enhancements to circumvent the loss

in robustness in Section 5.3.

Marking a projected edge in the camera images is also

no longer straight forward, as the source edge projects

onto a curve in some setups.

Since the projective texturing relied on the pinhole

camera model we can no longer use it for our omni-

camera setups. Instead we propose a simple ray cast-

ing approach, as detailed in Section 6. This enables

a texturing process independent of the camera setup

used. We employ the textures to export a complete

scene for use in other modelling or rendering applica-

tions or as a block replacement (Section 7) in a more

complex scene.

When reconstructing an indoor scene we need rotated

Blocks more frequently than with regular architec-
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tural outdoor settings. That circumstance forces us

to use non-linear optimization for almost every scene

we reconstruct, slowing down the process. We pro-

pose some enhancements to the classic Facade ap-

proach (Section 5.1) resulting in lower reconstruction

time and improved robustness that compensates for the

error introduced by approximating the reconstruction

plane.

The advantage of an omni-camera is obvious. With a

light probe setup we can gather almost a 360-degree

view of our room with only one shoot, often allowing

us to reconstruct the geometry of the scene from one

photograph.

In order to give the scenes some more depth and allow

easy incremental modelling, we also introduce the use

of block replacements to our system as discussed in

Section 7.

4. SCENE PREPARATION

Preparing a scene for reconstruction is predominantly

independent of the camera system used. We will high-

light everything that is different for sundries setups or

whenever the classic Facade setting is not applicable

to our omni-cameras.

4.1. Photographs

With a standard camera setup we have to consider

some constraints that arise from the pinhole assump-

tion. We need to set long focal lengths and a big aper-

ture value to gather results that match a photo taken by

an ideal pinhole camera as much as possible.

When shooting a light probe setup we direct the cam-

era towards the mirror ball in such a way that the centre

of the mirror ball lies on the optical axis of that cam-

era. The diameter of the light probe should be as small

as feasible compared to the focal length. We generally

work with focal lengths of 450mm and sphere diame-

ters of 80 to 150mm. With this setup the camera and its

supporting tripod obscure as little space on the image

as possible.

In a pre-process we mask unwanted geometry in the

obtained photographs. Omitting this step would result

in the camera and the tripod to get projected on the

textures in the final step.

4.2. Base Model

Every object in the scene has to be represented by a

crude approximating block (like a cube or a ramp) de-

fined by a type and a set of numeric parameters (like

width, height...).

By using constraints on the blocks (like symmetries)

we can reduce the number of parameters that have to

be determined during the reconstruction.

We would like to point out, that in contrast to Facade

our system does not rely on a crude approximation for

Figure 4: Link a curve in the source image to an edge in

the model. The crude model shows the cube for the room

itself and a door.

the block parameters given by the user. Our optimiza-

tion to the reconstruction process makes it more robust

than the original approach.

4.3. Adding Cameras
We have to create a camera for every taken image. Our

software allows us to mix cameras of different types.

We found that it simplifies the reconstruction process

if we use the omni-setups to reconstruct the geometry

of the room and its objects as well as a first and very

crude texture. Regular photographs are then used to

refine the visual quality of the result by adding addi-

tional images in a later iteration.

For each camera our system needs to know the follow-

ing intrinsic parameters: camera type (regular pinhole,

light probe setup...), film size and focal length. In case

of a light probe setup we additionally need the diame-

ter of the mirror ball and the distance of the focal point

to the balls centre.

If the images were taken digitally we can use the EXIF

information stored to automatically determine the film

size (by camera model) and the focal length. If the user

specifies the radius of the sphere we can also automati-

cally compute the distance between sphere and camera

(assuming the sphere completely fills the photograph).

5. SCENE RECONSTRUCTION
We need to set up correspondences before we can re-

construct the camera transformation matrices RK and

TK or any other parameter. Section 2 already explained

how this is done for the pinhole camera. It also de-

tailed that we need to construct a reconstruction plane

for the Facade-algorithms to work properly.

When using a light probe setup, the user has to perform

the same basic steps. In this case however a line in

world space projects to a curve in image space. Mark-

ing two points on that curve is still enough to identify

a straight edge in world-space (see Figure 4).

For every point marked in the image we construct

point rays ~dc = BKF (see Figure 5). When using light

probes the point rays are not equal to the reconstruc-

tion rays r̃, as they do not intersect with the source
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Figure 5: Constructing the reflected ray from a selected

point BK in the image plane.

edge in global space. To obtain the reconstruction rays

we have to reflect them on the surface of the mirror

ball using:

~ns =
M−S

‖M−S‖

r̃ = ~dc − (2∗ (~dc ◦~ns)∗~ns)

As the rays r̃ are not guaranteed to be non-skew we

cannot create the plane E from them as easy as it is

done at this point in the process for the pinhole camera.

With the pinhole model we were able to use the focal

point (where the reconstruction rays intersect) and the

direction of the two reconstruction rays to construct

the reconstruction plane E.

We still use the directions of our two reconstruction

rays, but since they are skew, they do not intersect in

one point. We decided to use the average of the two

starting points of our reconstruction rays as an approx-

imation of an intersection point.

In contrast to the reconstruction planes obtained by the

pinhole model the orientation of this plane varies de-

pending on the points we select on the projection of

the edge in the source image. This obviously will be

a problem for a robust reconstruction. By adapting the

optimization strategies introduced in Facade we can

still obtain very good results, as we will describe in

detail in 5.1 and 5.2.

5.1. Camera Rotation
We proceed similar to the way suggested by Debevec

in [DTM96] by finding an appropriate objective func-

tion O = ∑(Erri)
2 using the pseudo reconstruction

plane E instead of the ones described in the original

work. We use the square of this sum to better fit the

Newton-Raphson method that is used throughout the

paper.

An error or disparity function Erri can be set up to

calculate the rotation of each camera separately. The

camera rotation RK is processed in an upstream task, to

reduce the number of parameters that have to be esti-

mated, and to separate the error prone optimization of

the Euler rotations from the rest of the reconstruction.

For each correspondence we have one pseudo recon-

struction plane E. Together with the Euler camera ro-

tation matrix RK
−1 we can use that plane to formulate

the disparity function Erri. We choose RK
−1 such that

the normal ~nE of the reconstruction plane is perpendic-

ular to the desired direction ~dBK
of the source edge in

the model. This corresponds to a rotation of the cam-

era around its pivot using RK
−1 (see Figure 2).

Erri = (~nE ◦ (RK ∗ ~dBK
))2 (1)

As we explained in the previous chapter, the pseudo

reconstruction plane E is only an approximation of a

plane that really contains the source edge. This renders

the Newton-Rhapson optimization less robust due to

the additional error. In order to compensate, we pro-

pose the use of a genetic algorithm to automatically

find crude initial values for the rotation matrix. The

one we used is a genetic algorithm based on an elite

selection strategy without crossovers [Mit98].

Every generation contains 1000 individuals. Each is

composed of the three Euler angles that determine the

rotation of one camera. The initial population samples

the cameras rotational space around its coordinate axes

equidistantly (10 degrees). Each individual is assigned

a quality, which corresponds to the square of the eval-

uation of the error function Erri using the angles spec-

ified by that individual.

With each iteration a new generation is created con-

taining the best 60% of parent individuals, and 40%

newly created ones. The new ones are built based on

the values of a chosen parent (an individual with high

quality is more likely to be chosen). Those values are

changed using a Gaussian distributed mutation. The

distribution is adapted by decreasing the variance of

the Gaussian in approximately every 20th generation

to achieve a very dense sampling around the individ-

uals of later generations. The iteration is stopped if

the best individual of a generation meets a predefined

criterion, or the 500th generation was spawned.

We find that the final result (the camera rotation) of

this genetic procedure is only marginally improved by

the following Newton-Raphson optimization.

5.2. Translation and Model Parameters
To obtain the global model parameters and the camera

translations, we have to build another objective func-

tion, that represents the distance of each edge from the

model to their corresponding reconstruction plane E

(see Figure 6) in world-space.

n
E

E

P1

P2

SE
e

Figure 6: Camera Translation and block parameters
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For two points P on a source edge e we can calculate

that error by

d(e) = ~nE ◦ (((R∗ (P−M))−SE) (2)

where SE is an arbitrary point on the reconstruction

plane. This is a slight difference compared to the im-

plementation in [DTM96]. We also have to take into

account, that our reconstruction plane E is not as stable

as the one used in a pure pinhole setup as we explained

in Section 5.1.

Using Equation 2, we can calculate the objective func-

tion for all images I and all line correspondences eI in

that image by:

O = ∑
I

∑
eI

d(eI)
2 (3)

Minimizing this function yields the reconstruction of

the scene.

5.3. Improving Reconstruction Results
If all rotation matrices RB for all blocks in the scene are

constant, we can compute the solution by solving a lin-

ear equation system, which is simple and often appli-

cable when working with outdoor architecture. How-

ever, we found that indoor scenes tend to have a higher

quantity of rotated blocks.

Since the evaluation of a Newton-Raphson algorithm

can become slow, and might get caught in local min-

ima, we decided to split this process into two separate

tasks.

First we automatically select all base geometry blocks

that are rotated around a known angle (this, of course,

includes blocks not rotated) along with all camera

translations. We can solve the resulting linear equation

system comprised of the square of the distances d(e)2

define in equation 2 for all correspondences relating to

blocks not rotated.

As a result the camera translation and the fixedly ro-

tated blocks are now consistently set up. Only the pa-

rameters of blocks with an unknown rotation remain

unset. We build the same objective function as de-

scribed in equation 3 for all unset edges. Since we

do not include edges already computed in the linear

step, the dimension and complexity of the objective

function O is reduced.

At first we used a standard Newton-Raphson imple-

mentation that had to re-evaluate the hessian symboli-

cally in each step. This proved to be a very slow solu-

tion, as the terms that had to be optimized were rather

complex, and we had to tackle with big hessian matri-

ces comprised of the second derivate of those terms.

We changed that implementation to a quasi Newton-

Raphson algorithm, as described in [BNS94]. This

method has the advantage that we never have to com-

pute the hessian matrix, but can calculate an estimate

for it through the gradients of the objective function.

Figure 7: left Projecting source pixels into the recon-

structed scene; right Only the first surface hit by a ray

gets textured.

As a side note we would like to point to the fact that

the optimization over the SO(3) group [Kue03] that

is done for all camera and block rotation matrices is

often not enough. Special care has to be taken since

ambiguities can occur (for example positive or neg-

ative view directions) that can either be resolved by

user-interaction, reparameterization of the rotational

domain or specially adapted tests [ML03].

Our software automatically fixes the camera view di-

rection by checking if the intersection of any given re-

construction ray with the model object is located in the

expected octant of the cameras coordinate system.

In case of a light probe, the expected octant is deter-

mined by the location of the point that corresponds to

the reconstruction ray on the light probe. For a regu-

lar pinhole setup we simply check if the intersection is

located in front of or behind the camera.

In addition we added an extra phase into the Newton-

Raphson optimization that is evaluating the objective

function for different angles after each iteration.

After the result for one iteration is calculated, we

change the variables that represent angles in 45-degree

steps and calculate the error value achieved with the

altered angles. If the result is smaller than the one ob-

tained through the optimization step, we will use the

new angles in the following Newton-iteration.

This alleviates the user from the need to set an approx-

imate rotation for any block before starting the recon-

struction, as it was necessary with Facade. All in all

our changes made the reconstruction of rotated blocks

and the use of pseudo reconstruction planes more reli-

able.

6. TEXTURE GENERATION

With our omni-cameras we can no longer use the sim-

ple projective texturing approach, as it is used in Fa-

cade. We propose to use a ray-casting algorithm to

render the textures for a scene. This creates a layer

of abstraction between the camera model used and the

texturing process.

We build a reconstruction ray for each pixel in each

source image, constructing it the exact same way as it

is done for the points marked by the user during the

scene reconstruction. Reutilizing the code generating
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the reconstruction rays makes this process transparent

to the underlying camera type.

By intersecting those rays with our scene geometry we

obtain a list of points in world space that are visible

through a given pixel. Only the closest intersection in

front of the camera is coloured with the colour of the

source pixel (see Figure 7, right). We choose to use

forward ray tracing, because it is not always possible

(depending on the camera type used) to find a unique

ray from world space into the source images. Think

about the contour of a sphere. At this singularity, one

point in world-space is mapped to all points on that

contour.

To write colour values to the textures we apply a linear

interpolation of three projected neighbouring camera

rays to fill larger texture regions by rasterizing the re-

sulting triangle in object texture space (Figure 7 left).

The alpha mask provided for each image in the pre

process can be used to blend out regions that are defec-

tive. Furthermore, we calculate the scalar product of

the ray with the surface normal and weight the incom-

ing texels accordingly (similar to the blend field meth-

ods in [BBM+01]). This ensures that rays with grazing

angles contribute little to the resulting textures.

Another way for the user to interact with texture gen-

eration is to select a global weight for each texture. Es-

pecially in the presence of regular pinhole source im-

ages it may be advisable to discard any texture infor-

mation from the reflective sources where more detailed

source pictures are available. The pinhole source im-

ages have a far better local resolution and produce an

increased local texture quality. In Figure 11 such de-

tail images can be seen for the white radio on top of

the shelf and the cupboard on the floor.

Of course there are problems with regions that are not

seen from any of the source images. As they are never

hit by any ray, we can fill the missing texture regions

with a blank colour (see the greyish colour in Figure

8 on the floor projecting away from the chairs), fill it

by interpolation techniques from neighbouring texels

or by utilizing a texture synthesis approach [WL00].

Using this approach to generate textures allows our

system to export the result to a file (for example to

VRML), making the reconstructed scene independent

from a specialized viewer.

7. MODEL EXCHANGE
To alleviate the hassle for the user to work out

seemingly unnecessary details, we provide for an easy

model block exchange.

Instead of reproducing an indoor scene with every de-

tail, we use a bounding box as base geometry for an

object we want to replace with a more detailed version.

After scene reconstruction is finished any table model

from a 3D model library can be fitted into the scene

by applying the affine transformation that is available

from the reconstruction process for each block. In Fig-

ure 8 the bounding boxes are shown over the replaced

geometry.

Since we also allow the export of our scenes into ar-

bitrary formats (like VRML or XSI), the model ex-

change can be used to build a complex scene itera-

tively. With this system it is convenient to first model

some details of the scene using standard photographs

for higher resolution. When finished the results are ex-

ported to a file and (if necessary) refined in an external

editor.

In the next iteration we could start to model the room

itself, representing the previous reconstructed detailed

model with a simple block. When the reconstruction

of the entire room is finished, we simply fit the model

stored in the file into the bounding box of the block we

created as a placeholder.

8. RESULTS

Figure 8: Reconstruction of a synthetic example from

one light probe image.

We tested our implementation with four different

scenes. The first one was a synthetic scene (Figure

8), to show the general usability of the algorithm.

The scene was generated with Blender, using a near

optimal light probe. Only half of the reconstructed

room is textured, as the image resolution of the light

probe is not high enough for the room behind the

probe.

The second scene contained two offices (Figures 9 and

10). The third one was a home office (Figure 11) and

the fourth a living room (Figure 12).

While a calibrated camera was used in [DTM96] to ac-

quire the photos for the reconstruction, all our results

were obtained with an uncalibrated one.

We compare the dimensions of the found parameters

to the ones in the real scene, which gives us a measure

for the quality of the reconstructed geometry. Since

the reconstructed width of the scene is always set to

1.0, we have to multiply all our values with the actual

width. However, the camera position and rotation in
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Figure 9: Reconstruction of a small office from two light

probes with 800x800 pixels each. This example shows the

projection of an unmodelled chair onto the desktop.

the real scene was not recorded, so we had to compare

those results visually.

The most challenging scene was the home office scene

(Figure 11), because the space in that room is quite

confined. The floor has a footprint of 12.5 m2. Just

considering the area of the room, that is more than

1m high, we get a size of about 9 m2. It was recon-

structed using a simple cube and an additional ramp

for the room model. In a room this small it would not

be practical to use regular photographs for the recon-

struction of the geometry.

Parameter Measurement Reconst. Result

Width 2.70m 1.000 2.70m

Height 2.30m 0.857 2.31m

Length 4.65m 1.718 4.64m

Table 1: Comparing reconstructed parameters to real

world measurements in the home office scene.

The results in Table 1 show, that the reconstructed di-

mensions are in good correspondence with the mea-

Figure 10: Another small office scene using a quite

bumpy light probe.

Figure 11: Confined space (9 m2) home office scene: 3D

view of extracted textures from light probe and detail

perspective images.

sured values. The size of the reconstructed scene is

only 1 cm off the real values.

We would like to point out, that we used the foot of

a lamp to reconstruct, which was a slightly flattened

sphere. This demonstrates that our method can gen-

erate robust results for the geometry with suboptimal

light probes. We gain this robustness through our ex-

tensions to the calculation of the reconstruction plane

(see Section 5) where we calculate the average of the

starting points of the skew reconstruction rays.

Using the deformed light probe the texture correspon-

dence was not always given. This became most obvi-

ous, if the surface projects to the outer regions of the

mirror ball (see Figure 11).

The reconstruction of the camera position was very

precise. We put the hemisphere we used as the light

probe on the door and the walls of the room. This po-

sition was reconstructed correctly.

In order to determine the influence of a deformed

sphere on the reconstruction results, we used a non de-

formed light probe for the living room scene in Figure

12. The results for the geometry was only marginally

better then the one in the home office scene, but the

textures were in better correspondence (except in the

outer regions of the mirror ball).

Figure 12: A living room reconstructed using 2 light

probe images and several pinhole shoots

Journal of WSCG 87 ISSN 1213 – 6972 



9. CONCLUSION

We showed how to reconstruct an indoor scene using

only one or very few images by applying a well-known

method to various omni-cameras. Texture generation

can be largely automated and yields atlas maps for sin-

gle objects or the whole scene exportable to any 3D

graphics format. Crude base blocks can be substituted

with complex 3D geometry reducing the amount of de-

tail work for the user while enhancing quality.

Allowing the usage of non-pinhole camera setups re-

vealed a series of difficulties with the existing ap-

proach we had to tackle. Most of them due to the ad-

ditional error introduced by the pseudo reconstruction

planes we have to use in omni-setups.

The use of a genetic algorithm to get a good ap-

proximation for the initial values of the camera rota-

tion used in the quasi Newton-Raphson minimization

proved to be very precise, and made the estimation

more robust compared to the original approach using

just a Newton-Raphson solver.

By splitting the following estimate of the camera trans-

lation and the model parameters in a step where all

non-rotated blocks are computed and a step that mini-

mizes the parameters for all rotated blocks, we gained

a big advantage in terms of speed and precision. It also

contributed to a more reliable reconstruction.

The most surprising result was, that our method could

robustly reconstruct a scene using non-optimal spheres

as light probes.

In the future, we would like to extend the presented

system by automatic edge detection in the source im-

ages that would speed up the scene preparations. Re-

constructing the illumination of the scene as detailed

in [SHR+99] from the generated textured objects is

another possible enhancement that would be very use-

ful when importing external geometry, as it allows

us to match the lighting of the loaded textures to the

scene.
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