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ABSTRACT

In high energy physics the structure of matter is investigated through particle accelerator experiments where particle collisions

(events) occur at such high energies that new particles are produced. Providing tools for interactive visual inspection of billions

of such events occurring in an experiment in an intuitive way is a challenging task. In order to solve this problem we built on

previous approaches for visual browsing through image databases and extend them in several ways in order to allow efficient

navigation through the collision event datasets. The key features of our novel browsing technique are its applicability to the very

large event datasets, a more intuitive selection method for specifying a region of interest, and finally a clustering-based technique

that further simplifies and improves the navigation process. We demonstrate the potential of our novel visual inspection system

by integrating it into an event display application for the COMPASS experiment at CERN.
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1 INTRODUCTION

High energy physics (HEP) investigates the inner struc-

ture of matter by performing experiments where highly

accelerated particles collide with each other or with a

fixed target. Each such collision results in the birth

of multiple new particles with individual characteristics

(charge, momentum, etc.), which is called an event. A

particle accelerator experiment utilizes a setup of differ-

ent detectors to identify events and to be able to recon-

struct the trajectories of the new particles produced in

an event (called tracks) and thus their respective physi-

cal characteristics. A number of applications, typically

called event displays, have been developed for the pur-

pose of visualizing the reconstruction of an event and

its tracks. However, current state-of-the-art event dis-

plays (e.g. [18, 24, 16, 2, 7, 12, 17]) focus primarily on

visualizing single events in various ways [6].

With the ever growing size and energy of modern

particle accelerators, the number of events produced in

an experiment and used in later analysis constantly in-

creased over the last years. A typical event dataset en-

countered in analysis consists of millions of events, and

hundreds of such datasets are produced in the course

of a year. In the COMPASS experiment at CERN [1],
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Figure 1: The interactive browsing system (visible to the

right) in use in the COMPASS event display.

about 350 TB raw data per year are produced. Through

preprocessing and filtering this raw data is reduced by

factor 100, and the results are stored in several 2 GB

files containing roughly half a million events each.

In event displays, the visualization typically starts by

specifying an event dataset, from which events to be

visualized can be chosen using very simple techniques,

for instance by specifying the identification number of

an event or by moving the focus to the preceding or

following event in the time line. The CMS event display

further has an option to automatically display a random

event from the data source every 3 seconds [4].

These present tools for event navigation are neither

suited nor designed for purposeful navigation. We

therefore believe that a more sophisticated event nav-

igation tool, which permits interactive browsing of the

event dataset in an intuitive way will greatly simplify

the interactive analysis of physical event data. The in-
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teractive event browser described in this paper exactly

fulfills this purpose.

Its workflow was inspired by Rubner et al. [22], who

proposed a similar navigation for image databases. The

basic idea is to represent events on a two-dimensional

map where similar events are located close to each

other. To produce such two-dimensional maps, we fol-

low Rubner’s approach in that we use multidimensional

scaling and define a similarity measure for the events

based on the so-called Earth Mover’s Distance.

To make the approach scalable to very large numbers

of events, in terms of usability as well as computation

time, only subsets of events are shown on the map at a

time, but the map can iteratively be refined by the user

through selecting regions of interest.

While the use of two-dimensional maps has a great

potential for navigation through a complex dataset, a

major problem is the distortion of distances introduced

by the dimensionality reduction that is needed for cre-

ating the map. This is especially relevant when the user

selects a certain region of interest in the map to inter-

actively browse through similar events or to refine the

map to a certain subset of similar events. For this pur-

pose, the selection of similar events solely based on

a 2D neighborhood would certainly not be adequate,

since because of the generally unavoidable distortion,

some pairs of events shown close to each other may

exhibit significant dissimilarity (even though the dis-

tance of points in the map is in general proportional to

the dissimilarity of the respective events). Such out-

liers should not be included in the refined map to avoid

unnecessarily high distortions, which would hinder an

efficient navigation.

In this paper, we tackle this problem by defining a

new criterion for transferring a selected region on the

map to a selection of events in the non-Euclidean space

(Section 5). This technique accounts for local distor-

tions in the map projection and is robust to the afore-

mentioned kind of outliers. Another important aspect

of the new technique is that it can also be applied when

subsampling strategies have been applied during the

calculation of the maps, on which the user selects the

regions of interest, i.e. when only a partial Euclidean

embedding of the respective event set has been deter-

mined. This is of relevance because such subsampling

strategies are inevitable to make the approach applica-

ble also to very large datasets, as we will explain in

Section 3.2.

This improved strategy for selecting a region of in-

terest in the dataset allows for a better user control of

the navigation process since it avoids refining into re-

gions corresponding to unwanted outliers contained in

a selected map region. Additionally, the control over

the navigation process can be further improved by in-

tegrating a cluster selection technique which allows not

only to inspect certain clusters of interest more easily,

but also helps to produce less distorted maps during it-

erative refinement.

The paper is organized as follows: Section 2 sketches

the previous work on navigation approaches and also

briefly describes the basics of the fundamental algo-

rithms for dimensionality reduction and clustering used

in this paper. Section 3 describes how we define a sim-

ilarity measure for HEP event datasets, which is a pre-

requisite for being able to determine map representa-

tions of events. Additionally, it discusses how we make

this approach applicable to large-scale datasets by the

use of sampling. Section 4 describes the process of

interactive navigation through event datasets including

cluster selection and iterative refinement. Furthermore,

the applicability and limitations of recent approaches

to select a region of interest for the refinement are dis-

cussed. Section 5 describes the proposed new technique

for specifying the region of interest. Finally, Section 6

demonstrates the usefulness of the proposed navigation

technique on examples of real event datasets, and Sec-

tion 7 concludes with a summary.

2 PREVIOUS WORK

If a similarity measure in form of a metric can be sup-

plied for a specific type of data we speak of metric data.

We call the distance in the corresponding metric space

dissimilarity to emphasize the fact that the metric space

is in general not an Euclidean space.

2.1 Map Navigation

The general idea of a map representation of metric data

is to embed it into the Euclidean R
2 where the dis-

tance between two points in the Euclidean space ap-

proximates the dissimilarity between the corresponding

objects according to the given metric.

In the context of image databases, Rubner et al. [22]

describe a navigation technique based on map represen-

tations of images. To compute such map representa-

tions, a metric for images is proposed based on color

distribution. Which images are shown on a map is spec-

ified by queries where a query itself is stated in terms

of a color distribution. In the navigation process de-

scribed in [22] the user can create a new map by select-

ing a point in the current map. For the selected point a

query is generated and the k images, which are the most

similar to the queried point according to its color distri-

bution, are shown on the new map. The number k of

visible images is decreased after each navigation step.

The semantic image browser by Yang et al. [27] also

makes use of map representations of images. To se-

lect which images are shown on such a map, the user

must specify a sample image and a dissimilarity thresh-

old which can be interactively chosen through a scaling

bar. Exactly those images are selected whose dissim-

ilarities to the specified sample image are not greater

than the specified threshold.
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map, which is what we call an event map. The map

creation process is summarized in Fig. 2.

In the following we will show how the metric embed-

ding is solved and discuss the computational complex-

ity of the map creation process and the thereby resulting

need for subsampling of large datasets.

3.1 Embedding into metric space

An event is fully described by describing the therein

produced particles with their trajectories (tracks). The

number of tracks in an event is variable and the tracks

have no specific order. All tracks can be characterized

by the same fixed number p of real-valued physical pa-

rameters. Thus a track can be represented by a vector

t ∈ R
p, while an event in turn cannot be considered as

a vector of tracks.

In general, it is difficult to define a metric on events

because there exists no precise notion of similarity for

events in physics. But in contrast to that, defining a

metric on tracks is easier because we can exploit the

rich set of metrics in R
p. A suitable metric on tracks

must take into account (a) the inhomogeneous ranges of

the different physical parameters and (b) the correlation

between different parameters. Both requirements are

met by the statistical Mahalanobis distance

dMahalanobis( f ,g) =
√

( f −g)T Σ−1( f −g) (3)

where Σ is the covariance matrix for all parameters.

Events are sets of track and, since we can consider a

set as a special kind of discrete distribution by assign-

ing each item the same weight, we can use the EMD

as described in Section 2.2 to define a metric on events.

For this, we formalize an event e as an equally weighted

discrete distribution of its n tracks (represented as vec-

tors ti)

e = {(t1,1/n),(t2,1/n), . . . ,(tn,1/n)} (4)

and use the metric (3) as ground distance between

tracks.

3.2 Making the Approach Applicable to

Large-Scale Datasets

As stated in the introduction, our aim is to provide in-

teractive navigation for event datasets, which consist,

even when restricted to relatively short time-frames,

of millions of events. Similarly to the known naviga-

tion approaches for image databases (see Section 2.1),

also our navigation approach, which will be described

in Section 4, requires frequent recalculation of Eu-

clidean embeddings for different subsets of the dataset.

Unfortunately, it is practically infeasible to calculate

two-dimensional Euclidean embeddings for millions of

events in a way suitable for such an interactive applica-

tion. This is detailed in the following section. To cir-

cumvent this issue we use the strategy of subsampling

as described further below.

Feasibility of the map creation

Computing a map representation of a set of events in-

volves first the computation of all pairwise dissimilar-

ities based on the EMD, and second the calculation of

the Euclidean embedding via MDS.

According to [19], calculating the EMD is, in gen-

eral, in O(M3), where in our case M corresponds to the

average number of tracks per event. For certain spe-

cific ground distances such as the L1-metric, there ex-

ist faster algorithms for calculating the EMD [10, 15],

which utilize the special structure of the ground dis-

tance to solve the linear program more efficiently. How-

ever, for the Mahalanobis ground distance (3) used in

our approach these improvements are not applicable.

Therefore, in our case the time needed for calculat-

ing the full N ×N dissimilarity matrix for a set of N

events is in O(N2 ·M3). Since also the storage space re-

quired for the full dissimilarity matrix is quadratic with

respect to the number of events, computing and storing

the full matrix quickly becomes infeasible with an in-

creasing number of events. Therefore, instead of calcu-

lating the full dissimilarity matrix before constructing

the Euclidean embedding via MDS, we calculate the

dissimilarities on demand, i.e. at the time when they

are needed for the MDS calculation. This however im-

plies that new EMD evaluations may have to be per-

formed whenever new Euclidean embeddings are cal-

culated during the interactive navigation process.

In addition to the time required for calculating dis-

similarities, also the time required for calculating the

Euclidean embedding via MDS is of relevance in this

context. In case of the classical MDS, which has in

general a lower time-complexity than the metric or non-

metric MDS variant, this calculation requires O(N3)
time for a set of N events if singular value decomposi-

tion (SVD) is used for determining the basis of the Eu-

clidean space [20]. In our case where a dimensionality

reduction to only two dimensions is desired, the practi-

cal runtime of the MDS can be largely improved by us-

ing a Lanczos iteration [5] instead of the SVD to com-

pute only the first two eigenvalues and eigenvectors. In

addition, we use the fast approximation technique for

evaluating the MDS proposed by [28]. With these im-

provements we observe in our practical application that

the time for computing the MDS projection is rather in-

significant in comparison to the time required for the as-

sociated EMD evaluations. Nevertheless practical tim-

ings show the quadratic dependence of the overall run-

time on the number of events.

Subsampling

To make the approach applicable to large-scale datasets

despite the computational complexity discussed above,

we use sampling strategies as follows. Instead of cal-

culating the Euclidean embedding of the whole event
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dataset or of the whole set of events that the viewer is

currently interested in, the Euclidean embedding is con-

structed only for a subset of this set of events, whose

size allows for a rapid evaluation and thus for a prompt

feedback in the navigation process. We found that for

the most real datasets, the selection of a representative

subset is possible, that exhibits the same, or at least

similar, characteristics as the original complete set of

events. For a meaningful map representation of a set of

events, first of all its overall structure, which is charac-

terized by the formation of clusters and their position-

ing in relation to each other, is important for the viewer.

Dominant clusters that exhibit a large number of events

are retained in the map representation with high proba-

bility irrespective of the sampling strategy used. There-

fore, the use of random sampling is usually sufficient.

4 INTERACTIVE NAVIGATION

In this section we describe our approach for interactive

navigation through huge event datasets by the use of

event maps, which we call event browsing. There are

two motivations for employing such a browsing through

several event maps representing smaller and smaller

subsets of the dataset, corresponding to successively

narrower regions in event space:

• Stress. Due to the distortion of the MDS-scaling, an

event map of all events cannot convey the fine struc-

tures and sub-structures of the dataset. In contrast,

a map representation corresponding to a smaller re-

gion in event space exhibits less distortion and can

thereby convey finer structures.

• Subsampling. In most practical cases subsampling

of a huge event set is needed to create the event map.

On such an event map not all events are accessible.

But the subset of a small enough event space region

can be shown on an event map without subsampling.

The main navigation technique in this approach is a

technique we call refinement where the user selects a

region of interest on an event map and subsequently a

new map is computed based on the selection. Repeated

application of this refinement yields maps of smaller

and smaller subsets of the dataset until a sufficiently

narrow region of interest in event space is reached. We

call this interactive process iterative refinement.

The second technique used in our system is based on

clustering the event dataset. Besides improving the vi-

sualization of the dataset structure, clustering can sup-

port the navigation process by providing an alternative

selection method we call cluster selection.

We first describe the cluster selection in Section 4.1,

while the discussion of iterative refinement is post-

poned to Section 4.2.

4.1 Cluster Selection

The integration of clustering techniques (cf. Sec-

tion 2.4) into the interactive event browser was

motivated by the following observation: When ana-

lyzing an event dataset using the proposed similarity

measure, the contained events typically fall into several

clusters and sub-clusters of similar events. Therefore,

the detection and labeling of clusters in the event map

is an important component of our system to support

intelligent user navigation through the dataset.

To visualize the cluster membership of events, the

events on an event map can be colored according to

their cluster membership. This cluster visualization lets

the user recognize regions on the map where due to the

MDS projection separate clusters have been mapped on

top of each other. Furthermore, the user can select cer-

tain clusters and restrict the event map to show only

events from this clusters, i.e. in further iterative refine-

ment only events originating from the selected clusters

are considered. We call such a restriction of the event

set to events from selected clusters cluster selection.

Selecting and exploring clusters provides a strategy

to solve the problem of overlapping clusters in a map

representation. This can be seen as clutter reduction

technique [8] but additionally the cluster selection has

the advantage, that for the restricted set of events a new

map layout is calculated, which is usually less distorted.

4.2 Iterative Refinement

During iterative refinement, the user selects a region of

interest on the map from which a new event map is com-

puted which only consists of events inside the region of

interest. The underlying idea is to enable the user to ex-

amine a subset of the event dataset (which corresponds

to a narrower region in event space) in more detail. But

due to distortion introduced by MDS projection, a re-

gion on the map may contain events which are highly

dissimilar to most of the other events inside that specific

region. Providing a selection method which is robust to

such outliers is non-trivial.

Another requirement for a selection method emerges

from the fact that the event set has been subsampled

for the calculation of the map. By a selection, we want

to determine not only events from the subsample, but

rather a region in the event space. Directly mapping the

selected region (containing only visible events) into the

event space (containing the whole event dataset) is not

possible in general since the event space is a pure metric

space.

Applicability of recent selection methods

Classical 2D selection techniques like rectangular, el-

liptic, or freehand selection tools select only a subset of

the events visible on the map. Thus they do not meet

the requirements for a selection technique on subsam-

pled event maps in the context of iterative refinement.

A selection method similar to the navigation through

image databases as proposed by Rubner et al. [22]
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selection of events in the non-Euclidean, metric space.

The proposed technique takes the local stress in the map

projection into account and is robust to outliers. This

makes the iterative refinement process more intuitive

and better controllable for the user compared to previ-

ous navigation approaches.

To make the interactive navigation feasible for large

datasets, we subsample the event set corresponding to

the region of interest in order to obtain a representative

subset consisting of not more than a certain fixed num-

ber of events before calculating its Euclidean embed-

ding. This is also taken into account when calculating

a refined map in such a way that all events in the event

space are considered and not just the subsample rep-

resented on the map where the region was selected by

the user. In addition, we integrated a second navigation

technique, namely cluster selection, into our approach

to further improve the navigation process.

The practical usability of the proposed approach was

verified by applying it to real large-scale datasets from

the COMPASS experiment.

It seems also important to note that our improvements

of the navigation process in comparison to the recent

work are independent of the transferring of these tech-

niques to the domain of HEP event datasets. Therefore,

as future work we would like to evaluate these improve-

ments also in context of other large-scale datasets.
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