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ABSTRACT
This paper describes a solution designed for efficient visualization of large and dense sets of particles, typically

generated by molecular dynamics simulations in materials science. This solution is based on a hybrid distributed

sort-first/sort-last architecture, and meant to work on a generic commodity cluster feeding a tiled display. The

package relies on VTK framework with various extensions to achieve statistical occlusion culling, smart data

partitioning and GPU-accelerated rendering.

Keywords
Hybrid sort-first/sort-last rendering, Statistical culling, VTK, Ice-T, Particle rendering, Dense particle system

1. INTRODUCTION

Materials science increasingly uses numerical simula-

tions at different scales of space and time to better un-

derstand and predict the properties of matter. Molecular

dynamics is one of the most widely used approaches in

computational materials science. Thanks to the joint

advances in parallel computing and in physics mod-

eling, molecular dynamics can now be used to simu-

late systems with millions to hundreds of millions of

particles[Stre 05]. We focus here on such simulations at

nanoscopic to microscopic scales, which describe mat-

ter in dense states by large sets of particles.

Suitable and efficient visualization tools must be pro-

vided besides simulation codes in order to benefit from

these very detailed computations, and especially inter-

active tools that help to explore complex 3D features

such as blast waves, solidifications, dislocations, etc.

We are going to describe how we built a distributed

visualization tool to exploit a small graphics cluster

and tiled display for almost interactive exploration of

such datasets. The solution is quite standard since it

relies on widely used software components, such as

VTK[Schr 06], with various optimizations.
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After reviewing related work which partly inspired

us, we are going to describe the overall organization of

the system, then givemore details on some technical as-

pects of the algorithms we combined: culling by space

partitioning and statistical occlusion, particle rendering

and parallelization.

2. RELATED WORK

Only few existing solutions are specifically designed

for visualization of global phenomena inside large par-

ticle sets on a tiled display.

Many systems are especially designed for biolog-

ical molecular dynamics, like VMD[Hump 96] or

Molekel[Fluk 00]. Some exhibit very advanced ren-

dering techniques, via GPU programming, accelerat-

ing complex shape rendering like TexMol[Baja 04], or

global illumination like QuteMol[Tari 06]. Such tools

are generally optimized to represent domain specific

features or sub-structures with non-spherical shapes,

like ribbons, tubes, or molecular surfaces. These

representations cannot be used in materials physics

where there are no such apparent structures as pro-

teins parts, or identified zones like in Terascale Particle

Visualization[Ells 04].

Our application domain requires to focus on efficient

raw rendering of particles, basically represented as col-

ored opaque spheres. Opaque sphere representation is

very important because on dense particles systems from

materials science it can preserve graphical aspects of

several structure properties, such as some surfaces gran-

ularities, which are lost with non-opaque, point-only
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represented particles, or volume rendering solutions,

such as in Liang et al.[Lian 05] solution.

Moreover, most of the aforementioned tools cannot

be easily integrated in a distributed rendering architec-

ture. Another example in another application domain is

Kruger et al.[Krug 05] solution, a very efficient parti-

cle system rendering to visualize 3D flow fields. Such

a solution takes advantage of new GPUs rendering ca-

pabilities, but as all data is stored in graphic card mem-

ory, scalability and possible extensions to a distributed

architecture are compromised.

Very few solutions are scalable and designed to dis-

play raw real sphere representation of large sets of par-

ticles on large definition displays such as tiled displays.

Atomsviewer[Shar 03] is one of them: it uses efficient

optimizations for sort-first rendering of large sets of

particles: Z-order data organization, octree space parti-

tioning, probabilistic culling method. However, Atom-

sviewer has been adjusted to a specific hardware and

display configuration (ImmersaDeskTM)[Shar 02b].

All these observations have lead us to work on the in-

tegration of culling methods and hardware-accelerated

rendering in a generic distributed architecture.

3. GENERAL OVERVIEW

The main objective of our architecture is to provide new

optimizations while re-using VTK/Ice-T[More 01].

Ice-T is a sort-last rendering solution for tiled dis-

plays, which has been proven[More 03] to be more ef-

ficient than generic solutions for tiled displays such as

Chromium[Hump 02]. Sort-last rendering is scalable

with respect to the size of the data, but the known bot-

tleneck of such an approach is the network bandwidth.

Ice-T brings improvements to usual sort-last rendering,

such as an efficient distribution of images to be com-

posed, or a floating viewport technique. Nethertheless,

network bandwidth remains the bottleneck of such a

method. Our strategy is to achieve distributed sort-first

operations to increase spatial coherence of per process

data to reduce network bandwidth usage, and lower the

number of spheres to be displayed, to reduce the actual

sphere rendering stage. This can be considered to be

an attempt to transpose Samanta et al.[Sama 00] hybrid

architecture to non-structured particle systems visual-

ization.

Before data is to be displayed, we generate a space

partitioning Kd-Tree, and we reorganize the dataset to

gather all data attached to a same leaf of the tree. Each

node of the tree contains its bounds, its data storage

location, a link to its children if it has any, and a density

factor, which is described in section 4.

The global architecture of our system, described in

Figure 1, is meant to run on a cluster of N nodes, with P

of them actually connected to a display with P physical

or logical tiles. Each node runs a MPI process. Each

process has a complete copy of the tree, but only part

of the data, in memory. During a frame rendering, each

process computes frustum and occlusion culling for its

own part of the tree, then all processes merge their re-

sults to have a complete up-to-date tree. At that time

all processes know which data is really to be displayed.

Then they compute a balanced per process redistribu-

tion of the data, load missing data and unload useless

data if necessary, and render them. For the sort-last part

of the architecture, Ice-T library performs a distributed

rendering, and displays the frame.

Figure 1: Global Architecture.

In the following sections, we are going to describe

the tree for space decomposition and the culling algo-

rithms we designed to organize datasets and optimize

Ice-T rendering process. Then we will mention the

GPU optimizations for the sphere rendering stage, the

parallelization strategies, and finally we will highlight

the implementation and a few results.

4. CULLING IN DENSE MATERIAL

PARTICLE SYSTEMS

Although Atomsviewer is based on a specific archi-

tecture, some of the pre-rendering techniques it uses

are very effective, such as the idea of probabilistic

occlusion culling[Shar 02a]. This approach introduces

a notion of density of particles in the cells of an octree,

which is used to randomly drop part of the particles

displayed.

Dense material systems are often composed of large

groups of particles which are very close to each other.

The probabilistic occlusion can be pre-computed, as

our datasets are non-interactively generated. Atom-

sviewer’s density computation, which is the volume
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of particles divided by the volume of the cell, is not

a very good factor to use for culling, because it as-

sumes the distribution of particles is uniform in all cells.

In this section, we propose a complete pre-processing

solution adapted to dense material systems visualiza-

tion, which consists in a space partitioning algorithm,

and a cell density computation. We also propose a

culling algorithm which takes the pre-processing speci-

ficities into account.

Space partitioning

We use a Kd-Tree structure for space partitioning,

which aims at separating dense space and empty space,

in a very quick and simple way. We do not use the

Kd-Tree VTK implementation, because of specific tree

parsing methods and data order tests needs.

4.1.1 Empty space detection Kd-Tree

The algorithm described below is a simple way of

generating a Kd-Tree for empty space detection.

As seen in Figure 2, for each tree node, we check

particles positions for a given axis. If there is a left

or right space between particles and node bounds, an

empty space isolating split is done. Otherwise, a middle

split is performed. Then the particles are sorted by com-

paring their axis position with the split position. Axis

is alternatively x, y, then z.

Figure 2: Kd-Tree generation: empty space partition

The complexity of the generation isO(nln(n)), where
n is the number of particles, as the most consuming part

is the particle sort, which is very much like a global

quicksort, the split position being a pivot value. Opti-

mum depth of the tree is very dependent on particles

repartition in the scene, but empirical tests shows a 15

depth is a good overall value.

4.1.2 Kd-Tree optimization

The main goal of this space partition is to find dense

cells which can occlude other cells. So we want the

dense cells to be as large as possible. This is why we

can optimize the Kd-Tree generation by moving up

the effective splits, which are the empty space ones.

Density computation is explained in section 4.2.

Figure 3 explains such an optimization: when a mid-

dle split is performed, a temporary tree branch is com-

puted, until an empty space split is found, or maximum

depth is reached. On the first case, the empty space

split is applied on base node and the branch is computed

again, otherwise the branch is kept as it is.

V node is an empty space splitting node (Void

split)

M node is a middle splitting node

Figure 3: Kd-Tree optimization

Statistical occlusion culling

The following step in pre-processing is tree cells

density computation. Density must describe the culling

effect of a cell in relation to another one. We use a

Monte-Carlo method to compute the probability for a

ray to go through a space-partitioning cell containing

spheres.

We launchN rays with random position and direction

through the cell, and we check if the ray goes through

any of the spheres or not (see Figure 4). Sphere radii

are fixed attributes of the particles. It is a five degrees of

freedom problem, and Monte-Carlo basic method pro-

vides a 1/
√

N error convergence. A typical number of

casted rays for a 1% error on density for one cell is

100,000 casts.

Figure 4: Monte-Carlo method for computing cell den-

sity.

This provides a 0 to 1 density factor, which represents

the probability a ray has to go through the cell, and can

be used as a trust percentage of this cell to occlude an-

other. Each node of the tree has such a density factor.
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Culling algorithms

We had to make a choice between the two most

frequently used strategies for occlusion and frustum

culling. The first one is silhouette comparison in view-

port coordinates, like in [Coor 97]. The other one uses

occlusion maps[Zhan 97]. We chose a strategy similar

to the first one, because occlusion maps require a lot

of GPU memory, which we would like to keep for the

VBO cache system as described in section 5.2.

4.3.1 Silhouette computation

Occlusion culling is achieved by computing a silhou-

ette of the occluding cell, and checking if a potentially

occluded cell is inside the silhouette in viewport coor-

dinates (cf Figure 5). Graham scan algorithm[Grah 72]

gives us a y-sorted couple of point list which represents

left side and right side of the silhouette.

Figure 5: Block silhouette occluding another block

For each potentially occluded cell vertex, we find the

left and right segments of the silhouette that share the

same y-position as the top. Then we compare the x po-

sition of the top and the segments (see Figure6).

Figure 6: Silhouette occlusion check: X position com-

pared to Y including segment

Depth check is done by comparing the z position of

a vertex in relation to one or two planes. Planes are

defined by triangles made by silhouette points close to

the checked point, as seen in Figure 7. It is worth noting

that this depth check is possible because we compare

only disjoint cells.

4.3.2 Application to Kd-Tree

As seen in section 4.2, the Monte-Carlo pre-processing

gives us a trust factor for cell opacity. If we set a thresh-

old on this factor, we can consider some of the cells

Figure 7: Depth check: triangles for planes definitions

are completely opaque, and then make a global culling

comparison between tree nodes.

Each node has three possible states: not occluded

(visible), partially occluded, and occluded. By default,

all nodes are not occluded (visible). Leaves, as elemen-

tary undividable nodes, can only be tagged as not oc-

cluded (visible) or occluded.

As the tree is pre-computed, each node has a density

attribute, and a maximum density of all the nodes be-

neath it. Then we recursively browse the tree from root

to leaves, stopping as soon as a node with enough den-

sity is found.

For each occluding node, we perform the occlusion

test, as seen in Figure 8: if the potentially occluded

node (PON) contains no particle, or we already know it

is occluded by another node, it is obviously occluded. If

it is a child of the occluding node (ON), a test between

theON’s direct children and the PON. If theON and the

PON are the same node, and have children, they can po-

tentially occlude a part of themselves, so we achieve a

test between one of them and their children. If the PON

is already partially occluded, we know that part of his

children are already occluded, so we test his children.

Otherwise, the silhouette of the ON is computed, and

the occlusion is effective. Note that occlusion test be-

tween a node and one of is children can be meaningless

because they can share bounds.

4.3.3 Frustum culling

Frustum culling is rather simple: the whole silhouette

algorithm works in viewport coordinates. We only have

to check if all cell coordinates are out of bounds per

axis, i.e. if for any axis, cell coordinates are all either

lower than −1 or higher than +1 in viewport coordi-

nates.

5. PARTICLE RENDERING

In this section we describe some of the techniques we

used to manage GPU memory and rendering.

Sphere rendering

We use GPU OpenGL shaders[Kess 06] programming

to render particles as spheres. The big advantage of

this technique is the per pixel precision of the ren-

dering: thanks to the fragment shader program, all
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Figure 8: Occlusion Test

spheres are rendered pixel per pixel, and not with a

group of vertices. This provides a direct level of de-

tail feature, because rendering precision is only depen-

dent on the number of pixels the sphere needs to be dis-

played. This also allows non standard lighting effects,

like Phong[Phon 75] illumination, an example of which

is shown in Figure 9.

Figure 9: Phong illuminated spheres

GPU memory management

Vertex Buffer Objects (VBO)[Nvid 03] are a powerful

way of managingGPUmemory and RAM-to-GPU data

transfers. We use them to create a cache system on GPU

memory: for each tree leaf which is to be displayed, we

create a VBO containing actual particles data used in

rendering stage (positions, colors, radii). We unload it

only if GPU memory is full and the leaf not displayed.

6. PARALLEL ALGORITHMS

This section presents the distributed strategies applied

to previously described occluding and rendering algo-

rithms.

Sort-last stage

As said before, we chose to use Ice-T, with Reduce to

Single Tile[More 01] method: each process is assigned

to one of the display tiles. First it renders the part of

the scene which consists of the data loaded by this pro-

cess. Then each process splits the rendered image, and

for each part of the image, which is to be displayed by

a tile, sends the part to one of the processes of the tile

group. Each process receives a balanced number of par-

tial images to be displayed by the tile. Then the pro-

cesses of a same tile group compose their images by

binary-swap before display. Moreland[More 03] tests

on a generic architecture with a cluster and a tiled dis-

play were conclusive.

Since the Ice-T algorithm is very dependent on net-

work bandwidth, it includes some optimizations, like

floating viewport, which reduces the size of images

transfered for compositing by detecting not rendered

zones on the global viewport. This feature plays an im-

portant part in the sort-first algorithms efficiency and

we used it as is.

Sort-first stage

6.2.1 Partitioning of rendered tree parts

We try to share parts of the tree to balance per cluster

node rendering time and network transfers.

All processes have the complete tree structure loaded.

Tree nodes numbering is in Z-order, like in [Shar 02a],

which provides a good spatial coherence between nodes

with close numbers.

For each frame, we assign the first not occluded

leaves with an average number of particles to the first

process, the following leaves to the second process, and

so on, until all leaves are assigned, as seen in Figure 10.

This average number or particles is the nearest integer

to (Visibleparticles)/(Numbero f clusternodes), mod-

ulo the cardinality of the last leaf assigned to the current

process.

The per node data is then spatially coherent, which is

good for Ice-T floating viewport technique. Moreover,

as two successive frames have relatively similar trees,

cluster nodes have to render almost the same leaves, and

the cache system is efficiently used.

6.2.2 Overlapping culling algorithm

The occlusion culling algorithm was easily modified to

become distributed.
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Figure 10: Displayable leaves assignment

Each frame, each cluster node performs an occlusion

test, with only his previously assigned tree parts as po-

tentially occluded cells. Then all nodes broadcast a sig-

nature of the tree, and each node merge them to have

the entire tree configuration. The tree signature is a

(Numbero f leaves)/4 bytes buffer: each leaf is coded

with 2 bits, because it has three states. All untested

nodes are not occluded.

Although signature broadcast is not a very good scal-

able method, the really small size of the signature im-

plies that this part does not slow down the overall pro-

cess. As an example, with a typical depth of 15 for the

tree for the 32million particles dataset described in next

section, the signature has a size of 8192 bytes, which is

no more than Ethernet Gigabit maximum MTU (9000

bytes).

7. IMPLEMENTATION AND FIRST

RESULTS

Base framework

Ice-T is integrated in Paraview[Ahre 05], based on the

generic framework VTK. For our current implementa-

tion we use only core VTK and Ice-T, with a number of

additional C++ classes compliant with VTK. We also

created a vtkMapper family of classes to integrate VBO

usage in VTK rendering process.

Protocol

We use a 32 millions particles dataset, describing a typ-

ical atomic system used in molecular dynamics detona-

tion wave simulations. The graphics and display hard-

ware is a four-tiled, 2048x1536 display, with an 8-node

Gigabit Ethernet commodity cluster. Each node is a Bi-

Xeon 3.4Ghz with a NVidia Quadro FX 4500 graphics

board.

We compared three sort-first methods: a non hierar-

chical non ordered method, i.e. only a big VBO per

cluster node; a Z-ordered repartition without occlusion;

and the full occlusion method. In the first method, net-

work is only used to send synchronization signals: data

is distributed among nodes, and loaded once in GPU

memory.

Figure 11: 32 million particle cylinder displayed on the

4-tile, 2m wide screen (around 3.3 M pixels)

As the full solution was designed to globally explore

datasets, we tested two different camera movements:

a rotation with constant long or short distance from

dataset center; and a zoom towards a point of interest.
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Figure 12: Camera rotating around dataset

On Figure 12 we can see the importance of Z-order

in cluster nodes repartition.

We can notice that with eight nodes on the far view

tests, culling (in blue) does not bring much better re-

sults than the naive (in green) method. The reason is

that good Z-order data rendering repartition strongly re-

duces the floating viewport surfaces, which lower the

network bandwidth usage. For example, in the 8 nodes

far view test, bandwidth usage drops from 750Mb/s (ef-

fectivemaximumbandwitdth)with non Z-ordermethod

to an average 250Mb/s in both native and occluding

method. On the close tests, Figure 12 shows the ob-

vious efficiency of culling in such a situation. Z-order

repartition and culling each reveal their efficiency in

one of the different rotation scenarios.
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Figure 13: Camera zooming in dataset

Zooming results confirm this (Figure 13). As the

camera gets closer to the dataset, the scene takes more

and more space in the viewport. The network is sat-

urated (like rotation tests, from an average 250Mb/s

to 750Mb/s), and actual rendering becomes more and

more time-consuming. Z-order is not very important,

because the floating viewport is not activated here.

The rendering quality is a step function of the density

threshold. If the density threshold is high enough, there

is almost no difference between occluding and non oc-

cluding rendering. The threshold used for above re-

sults is 95%. For the camera rotation movement, 30%

to 60% of the particles were culled. In the zoom test,

culling got up to 94%. Lower threshold values obvi-

ously provide more interactive rendering, but artefacts

do appear, like holes in the displayed dataset (cf Figure

14).

Figure 14: Artefacts with low density threshold

As priority for such a solution is global exploration

and zone of interest detection, the most important fac-

tor in results is close rotation framerate. Our solution

provides twice the framerate as the GPU only solution.

It is important to note that density is used the same

way in far and in close cases. It should be interesting

to lower threshold as camera’s distance from datae in-

creases. This could greatly improve results in far cases.

8. CONCLUSION AND FUTURE

WORK

Our system provides a good framework for the ex-

ploration of large particle datasets representing dense

material simulations. Sort-first rendering based on

a specific Kd-Tree partitioning and statistical culling,

with Monte-Carlo density computation, improves Ice-

T sort-last strategies to reduce network bandwidth us-

age. Spheres rendering is also accelerated by GPU

shaders. Future scale up tests will be achieved on a

12 tiled display fed by a 12 nodes cluster. We could

further improve rendering by using better illumination

methods, like ambient occlusion[Tari 06], to exploit the

maximum potential of modern GPU power. Tests on

a lower-latency and higher bandwidth network such as

Infiniband should also be interesting.

Our next solution improvement will be to take cam-

era’s distance to the dataset into account to choose den-

sity threshold. We expect far camera tests framerate to

be greatly improved.

Interactive tree computation is already fast, but with

some optimizations, it could be done in real time. The

main problem is density computation. One of the solu-

tions could be to use General-Purpose computation on

GPUs (GPGPU), like NVidia CUDA technology to ac-

celerate the Monte-Carlo method.
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