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ABSTRACT

Recently, the B-spline family of reconstruction filters has been generalized for the hexagonal lattice, which is optimal for
sampling 2D circularly band-limited signals. In this paper, we extend this generalization to the body-centered cubic (BCC)
lattice, which is optimal for sampling spherically band-limited 3D signals. We call the obtained new reconstruction filters
BCC-splines. Although the explicit analytical formulas are not defined yet, we evaluate the discrete approximation of these
filters in the frequency domain in order to analyze their performance in a volume-rendering application. Our experimental
results show that the BCC-splines can be superior over the box splines previously proposed for the BCC lattice.
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1 INTRODUCTION

Volumetric data usually contains the samples of a con-
tinuous signal sampled on a Cartesian lattice. This rep-
resentation is still the most popular one in practice, as it
has obvious advantageous properties. For example, the
samples are easy to store in a 3D array, and a continu-
ous reconstruction can be efficiently implemented by a
fast separable convolution. However, it is well-known
that the Cartesian lattice is not optimal for sampling
spherically band-limited 3D signals [TMG01], even if
the sampling distance is the same along the three major
axes yielding a Cartesian cubic (CC) lattice. Although
the shape of the spectrum is usually not known in ad-
vance, it is not favorable if the sampling scheme prefers
specific directions in the frequency domain [EM06].
Therefore, the assumption that the spectrum of the orig-
inal signal is bounded by a sphere seems to be natural.

When a signal is sampled on a specific lattice, the
original primary spectrum gets replicated around the
points of the dual or reciprocal lattice [OS89], which
is the Fourier transform of the sampling lattice. The
original signal can be perfectly reconstructed if there
is no overlapping between these replicas. On the other
hand, the sparsest sampling in the spatial domain can
be achieved by the tightest arrangement of the spheri-
cal replicas in the frequency domain. This can be en-
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sured if the replicas are located around the points of a
face-centered cubic (FCC) lattice, which is optimal for
sphere packing [CSB87, Slo98, Hal98]. As a conse-
quence, the BCC lattice, which is the reciprocal of the
FCC lattice, is optimal for sampling spherically band-
limited 3D signals [TMG01].

Although the BCC lattice requires around 30% fewer
samples per a unit volume than a CC lattice does for
a perfect reconstruction of a spherically band-limited
3D signal [TMG01], it is not widely used for practical
applications yet. The reason is mainly the more com-
plicated non-separable resampling scheme, which is re-
quired for a BCC-sampled data. For the CC lattice, re-
construction filters are usually designed in 1D, and ex-
tended to 2D or 3D by either a separable tensor-product
extension [MMK+98] or a spherical extension [ML94].
Although there have been attempts to use separable or
radially symmetric filters also for BCC-sampled data
[TMG01, TMMG02, Mat03], the results did not live up
to the expectations. The separable sheared trilinear in-
terpolation [TMMG02, Mat03] led to a non-isotropic
solution, while the spherical filters [TMG01] resulted
in blurry images.

The first non-separable box-spline filters, which take
the special geometry of the BCC lattice into account,
were derived by Entezari et al. [EDM04] demonstrating
that the theoretical advantages of BCC sampling can be
exploited also in practice. Recently they published a
fast evaluation scheme for these filters [EVM08], which
turned out to be more efficient than the standard tri-
linear or tricubic interpolation for CC-sampled data in
a software-implemented volume-rendering application.
An efficient hardware implementation of box-spline-
based resampling, however, has not been published yet.
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Csébfalvi recommended a prefiltered reconstruction
scheme [Csé05], adapting the concept of generalized
interpolation [BTU99] to the BCC lattice. According to
this approach, first a non-separable discrete prefiltering
is performed as a preprocessing, and afterwards a fast
separable Gaussian filtering is used for a continuous re-
sampling on the fly. Note that the resulting impulse
response is non-separable and not even radially sym-
metric. This method was extended also to the B-spline
family of filters [CH06], and exploiting the separable
postfiltering, an efficient hardware implementation was
proposed.

In this paper, the B-splines are generalized to the
BCC lattice analogously to the Hex-splines. The Hex-
splines were proposed by Van de Ville et al. for the
hexagonal lattice [VBU04], which is optimal for sam-
pling circularly band-limited 2D signals. The key idea
is to take the indicator function of the Voronoi cell cor-
responding to the BCC lattice as a generating function.
The successive convolutions of this generating function
with itself yield the family of our BCC-splines. In the
following we empirically show that a BCC-spline can
be superior over a box spline of the same order of ap-
proximation.

2 THE B-SPLINE FAMILY OF FIL-
TERS

In this section we shortly review the B-spline family
of filters, as we will generalize them for the the BCC
lattice. The B-spline of order zero is defined as a sym-
metric box filter:

β 0(t) =




1 if |t|< 1
2

1
2 if |t|= 1

2
0 otherwise.

(1)

The non-symmetric nearest-neighbor interpolation ker-
nel and β 0(t) are almost identical, they differ from each
other only at the transition values. Generally, the B-
spline filter of order n is derived by successively con-
volving β 0(t) n times with itself. The first-order B-
spline is the linear interpolation filter:

β 1(t) = β 0(t)∗β 0(t) =
{

1−|t| if |t| ≤ 1
0 otherwise.

(2)

Higher-order B-splines are only approximation filters,
as they do not satisfy the interpolation constraint. For
example, the cubic B-spline results in a smooth C2

continuous approximation, therefore it is often used
in practice to reconstruct signals that are corrupted by
noise. The cubic B-spline is defined as follows:

β 3(t) =




1
2 |t|3−|t|2 + 2

3 if |t| ≤ 1
− 1

6 |t|3 + |t|2−2|t|+ 4
3 if 1 < |t| ≤ 2

0 otherwise.

(3)

Since the Fourier transform of β 0(t) is sinc(ω/2) =
sin(ω/2)/(ω/2) and the consecutive convolutions in

the spatial domain correspond to consecutive multipli-
cations in the frequency domain, the Fourier transform
of β n(t) is sincn+1(ω/2).

Note that the frequency response of any B-spline
takes a value of zero at the centers of all the aliasing
spectra (if ω = j2π , where j ∈ Z \ {0}), therefore a
sample frequency ripple [ML94] cannot occur. This
postaliasing effect arises when the frequency response
of the filter is significantly non-zero at the positions rep-
resenting the “DC” component of the aliasing spectra,
and appears in the reconstructed signal as an oscillation
at the sample frequency.

The 1D B-splines can be extended to higher-
dimensional Cartesian lattices by a tensor product
extension. It is easy to see that such an extension of a
B-spline of order n provides an approximation order
of n + 1 as the multiplicity of zero at the dual lattice
points (except the origin) is at least n+1 [SF71].

Figure 1: The Voronoi cell of the BCC lattice.

3 GENERALIZATION FOR THE BCC
LATTICE

The separable 3D B-spline of order zero is actually the
indicator function of the Voronoi cell corresponding to
the Cartesian lattice. Furthermore, the higher-order 3D
B-splines can also be obtained by the successive 3D
convolutions of this indicator function. This concept
can be generalized to the BCC lattice by taking the in-
dicator function of its Voronoi cell (see Figure 1) at the
origin as a generating function:

χBCC(x) =

{1 if x ∈ Voronoi cell,
1

mx
if x ∈ boundary of the Voronoi cell,

0 if x /∈ Voronoi cell,
(4)

where mx is the number of Voronoi cells adjacent at
point x. We define the BCC-spline of order zero as
β 0

BCC(x) = χBCC(x). BCC-splines of higher orders are
constructed by successive convolutions:

β n+1
BCC(x) =

(β n
BCC ∗β 0

BCC)(x)
Ω

, (5)
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where Ω is a normalization term defined as the integral
of χBCC(x):

Ω =
∫

x∈R3
χBCC(x)dx. (6)

T 4 /T�

Ш
BCC

( /T)/Tx
3

Ш
FCC

( )��	
� 	


spatial domain frequency domain

Figure 2: Duality between the FCC and BCC lattices.

4 ORDER OF APPROXIMATION
Note that β 0

BCC(x) guarantees a partition of unity by de-
finition, thus it tiles the 3D space on a BCC pattern:

XBCC(x)∗β 0
BCC(x) = 1, (7)

where XBCC(x) is a shah function defined on the BCC
lattice (see Figure 2). Transforming Equation 7 into the
frequency domain (see the details in the Appendix), we
obtain:

1
4
XFCC

( ω
4π

)
· β̂ 0

BCC(ω) = δ
( ω

2π

)
. (8)

According to Equation 8, the Fourier transform
β̂ 0

BCC(ω) of β 0
BCC(x) takes the value of Ω at the

origin and equals to zero at all the other FCC lattice
points. Therefore, based on the well-known Strang-Fix
conditions [SF71], an approximation order of one
is ensured by β 0

BCC(x). The order of approximation
is an asymptotic measure, which expresses how fast
the approximate signal f̃ (x) converges to the original
signal f (x), when the distance T between the samples
is decreased. According to the approximation theory,
it depends only on the reconstruction filter φ(x) that is
convolved with the original BCC samples of f (x):

f (x)≈ f̃ (x) =
XBCC(x/T ) · f (x)

T 3 ∗φ(x/T ). (9)

To ensure that || f̃ (x)− f (x)|| tends to zero as T L, the
approximation order of the filter φ(x) should neces-
sarily be L. When higher-order BCC-splines are con-
structed, each successive convolution (which is equiv-
alent to a successive multiplication in the frequency
domain) increases the multiplicity of zeros (or vanish-
ing moments) by one, thus the approximation order of
β n

BCC(x) equals to n+1.

5 EXPERIMENTAL RESULTS

Non-separable 3D filters have been proposed for the
BCC and FCC lattices [EDM04, QEE+05], and re-
cently even for the separable CC lattice [EM06]. Due to
their non-separability, however, these filters are either
difficult to express by a simple closed form, or compu-
tationally expensive to evaluate. Nevertheless, their im-
pulse response can be evaluated in a 3D lookup table in
a preprocessing, and afterwards such a discrete approx-
imation can be used for a fast resampling on the fly.
Higher-order non-separable filters defined by succes-
sive convolutions of a generating function are usually
evaluated in the frequency domain [QEE+05, EM06],
where the convolution is replaced by a multiplication.
We apply the same approach for our BCC-splines of
higher orders as well.

Each successive convolution of the generating func-
tion increases the support of the resulting BCC-spline
filter, but its shape remains the same as that of the
Voronoi cell, which is a truncated octahedron (see Fig-
ure 1). The slices of the first-order BCC-spline β 1

BCC(x)
are shown in Figure 3. Note that β 0

BCC(x) and β 1
BCC(x)

are interpolating filters (β 1
BCC(x) vanishes reaching the

first neighboring lattice points), while the higher-order
BCC-splines are just approximating filters.

Figure 3: Slices of the first-order BCC-spline.

In order to empirically compare the BCC-splines to
the box splines of the same approximation orders, we
implemented a software ray caster, which uses a pre-
calculated 3D lookup table of resolution 2563 for rep-
resenting the approximate filter kernels. First, we ren-
dered the classical Marschner-Lobb test signal sampled
at resolutions of 32×32×32×2, 64×64×64×2, and
96×96×96×2. In Figure 4 the first-order BCC-spline
is compared to the linear box spline of the same approx-
imation order. The upper six images show the shaded
isosurface of the test signal, whereas the lower six im-
ages show the angular error of the gradients calculated
by central differencing on the reconstructed function.
Although both filters ensure approximately the same
speed of convergence, the BCC-spline produces much
less annoying artifacts, and it reconstructs the high-
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frequency components significantly better, especially
when the original signal is not oversampled.

Figure 5 shows the comparison of the third-order
BCC-spline to the cubic box spline1 of the same
approximation order. In this case, both filters provide
approximately the same image quality and convergence
to the original signal. However, the BCC-spline leads
to slightly stronger oversmoothing for the lower-
resolution representation. For rendering data sets of
high signal-to-noise ratio this is clearly a drawback, as
the high-frequency details might be removed. On the
other hand, practical data sets are usually corrupted by
noise, which can be suppressed by a filter of stronger
oversmoothing. In order to test the BCC-splines on a
real world data set as well, we downsampled an MRI
scan of a human brain consisting of 256× 256× 166
CC samples onto a lower resolution BCC lattice
yielding 128×128×83×2 BCC samples. Entezari et
al. used a similar downsampling [EMBM06] to obtain
a BCC representation of an originally CC-sampled
data set. However, we exploited that in the frequency
domain a perfect low-pass filtering can be performed
before the subsampling. Therefore we multiplied the
discrete Fourier transform of the original CC-sampled
data by the indicator function of the FCC Voronoi
cell, that is, the frequency response of the ideal
low-pass filter for BCC downsampling. Afterwards
we transformed the data back into the spatial domain
and took the samples of the BCC sublattice. Figure 6
shows the reconstruction of the human brain from
the 128× 128× 83× 2 BCC samples. The images
demonstrate that artifacts caused by the noise and
postaliasing are better reduced by the BCC-splines than
by the box splines of the same approximation orders.

Concerning the computational cost, the BCC-splines
of order one and three require 8 and 64 neighboring
voxels to access respectively. It is interesting to note
that the equivalent B-splines for the Cartesian lattice re-
quire exactly the same number of voxels to read. Nev-
ertheless, using a 3D lookup table to approximate the
filter kernels, the BCC-splines are about twice as ex-
pensive to evaluate than the box splines of the same
approximation orders, since the linear and cubic box
splines need just 4 and 32 neighboring voxels to take
into account respectively. Thus, the price of the quality
improvement is the additional computational cost.

6 CONCLUSION AND FUTURE
WORK

In this paper a new family of filters has been proposed
for the BCC lattice, which can be interpreted as a non-

1 In [EDM04] the convolution of the linear box spline with itself is
referred to as a “cubic box spline” as it provides the same approxi-
mation power as the tricubic B-spline for the CC lattice. Throughout
this paper we also use the term “cubic box spline”, although this filter
is quintic in fact [EVM08], as it consists of quintic polynomials.

separable generalization of the separable tensor-product
extension of B-splines. It has been empirically demon-
strated that, for an additional computational effort, our
BCC-splines can provide higher image quality than the
box splines of the same approximation orders. For our
experiments we approximately evaluated the filter ker-
nels in the frequency domain.

The derivation of the explicit analytical formulas,
however, is the subject of our future work. Recently
it has been shown that a cubic box spline can be ef-
ficiently evaluated by factorizing the filter into a fi-
nite difference operator and its Green’s function cor-
responding to the given filter kernel [EVM08]. We plan
to follow a similar strategy for the efficient analytical
evaluation of our BCC-splines. This would be favor-
able for a fast hardware implementation as well, since
the 3D lookup table representing the approximate filter
kernel would not take the texture memory from larger
data sets. Furthermore, we would like to derive the fre-
quency responses of these filters in order to quantita-
tively measure their postaliasing and oversmoothing ef-
fect.

An additional possibility for improving the recon-
struction of BCC-sampled data is to use a discrete pre-
filtering before the continuous filtering. For example,
the approximation power of higher-order BCC-splines
could be better exploited by applying prefitered inter-
polation or quasi-interpolation schemes.
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APPENDIX
The shah function for the BCC lattice is defined as two
overlapping Cartesian shah functions:

XBCC(x) = ∑
i, j,k∈Z

δ (x− [i, j,k]T )+ (10)

∑
i, j,k∈Z

δ

(
x−
[
i+

1
2
, j +

1
2
,k +

1
2

]T
)

.

Analogously, the shah function for the FCC lattice is
constructed as four overlapping Cartesian shah func-
tions:

XFCC(x) = ∑
i, j,k∈Z

δ (x− [i, j,k]T )+ (11)

∑
i, j,k∈Z

δ

(
x−
[
i, j +

1
2
,k +

1
2

]T
)

+

Journal of WSCG 84 ISSN 1213-6972



∑
i, j,k∈Z

δ

(
x−
[
i+

1
2
, j,k +

1
2

]T
)

+

∑
i, j,k∈Z

δ

(
x−
[
i+

1
2
, j +

1
2
,k

]T
)

.

The Fourier transform of XBCC is derived as follows:

XBCC(x)⇐⇒ ∑
i, j,k∈Z

δ
( ω

2π
− [i, j,k]T

)
+ (12)

∑
i, j,k∈Z

δ
( ω

2π
− [i, j,k]T

)
· eJ [ 1

2 , 1
2 , 1

2 ]ω

= ∑
i, j,k∈Z

δ
( ω

2π
− [i, j,k]T

)(
1+(−1)(i+ j+k)

)

In Equation 12 only those terms are non-zero, where i+
j + k is even. This is possible if all these three integers
are even, or two of them are odd and one is even. Thus
we can separate the sum into four terms:

XBCC(x)⇐⇒ ∑
l,m,n∈Z

δ
( ω

2π
− [2l,2m,2n]T

)
·2+

(13)

∑
l,m,n∈Z

δ
( ω

2π
− [2l,2m+1,2n+1]T

)
·2+

∑
l,m,n∈Z

δ
( ω

2π
− [2l +1,2m,2n+1]T

)
·2+

∑
l,m,n∈Z

δ
( ω

2π
− [2l +1,2m+1,2n]T

)
·2

Exploiting that δ (Aω) = δ (ω)/det(A), we obtain:

XBCC(x)⇐⇒ ∑
l,m,n∈Z

δ
( ω

4π
− [l,m,n]T

)
· 1
4
+ (14)

∑
l,m,n∈Z

δ

(
ω
4π
−
[
l,m+

1
2
,n+

1
2

]T
)
· 1
4
+

∑
l,m,n∈Z

δ

(
ω
4π
−
[
l +

1
2
,m,n+

1
2

]T
)
· 1
4
+

∑
l,m,n∈Z

δ

(
ω
4π
−
[
l +

1
2
,m+

1
2
,n

]T
)
· 1
4

=
1
4
XFCC

( ω
4π

)
.
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32×32×32×2 voxels. 64×64×64×2 voxels. 96×96×96×2 voxels.

Isosurface reconstruction using the first-order BCC-spline.

Isosurface reconstruction using the linear box spline.

Angular error of the gradients calculated with the first-order BCC-spline.

Angular error of the gradients calculated with the linear box spline.

Figure 4: Reconstruction of the Marschner-Lobb signal using the first-order BCC-spline and the linear box spline
of the same order of approximation. In the error images the angular error of zero degree is mapped to black,
whereas the angular error of 30 degrees is mapped to white.
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32×32×32×2 voxels. 64×64×64×2 voxels. 96×96×96×2 voxels.

Isosurface reconstruction using the third-order BCC-spline.

Isosurface reconstruction using the cubic box spline.

Angular error of the gradients calculated with the third-order BCC-spline.

Angular error of the gradients calculated with the cubic box spline.

Figure 5: Reconstruction of the Marschner-Lobb signal using the third-order BCC-spline and the cubic box spline
of the same order of approximation. In the error images the angular error of zero degree is mapped to black,
whereas the angular error of 30 degrees is mapped to white.
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Linear box spline. First-order BCC-spline.

Cubic box spline. Third-order BCC-spline.

Figure 6: Reconstruction of a human brain from 128×128×83×2 BCC samples of an MRI scan.
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