
GPU Radiosity for Triangular Meshes with Support of
Normal Mapping and Arbitrary Light Distributions

Günter Wallner
University of Applied Arts Vienna, Austria

Oskar Kokoschka Platz 2
1010 Vienna

wallner.guenter@uni-ak.ac.at

ABSTRACT

This paper describes an implementation of a progressive radiosity algorithm for triangular meshes which works completely
on programmable graphics processors. Errors due to the rasterization of triangles are fixed in a post-processing step or with
a fragment shader during runtime. Adaptive subdivision to increase the accuracy of the radiosity solution can be performed
during render-time. Since we found that the gradient is not very robust to determine whether triangles should be subdivided or
not, we propose a new technique which uses hardware occlusion queries to determine shadow boundaries in image space. The
GPU implementation facilitates the simple integration of normal mapping into the radiosity process. Light distribution textures
(LDTs) enable us to simulate a variety of real world light sources without much computational overhead. The derivation of
such an LDT from a EULUMDAT file is described.

Keywords Radiosity, Global Illumination, GPU, Normal Mapping, Shadow Boundary Detection, Light Distribution Texture

1 INTRODUCTION
Computer image generation has been driven by two ma-
jor factors: realism and interactivity. The former has
led to a variety of global illumination algorithms such
as radiosity. Radiosity was first introduced to com-
puter graphics by Goral et al. [Gor84] to simulate the
light interaction in strictly diffuse environments. The
fraction of the radiant light energy leaving one partic-
ular surface which strikes a second surface is defined
as the so-called form factor. These form factors can
be obtained by computing the coifficients of a set of
linear equations. Cohen et al. [Coh85] introduced
the hemicube to support scenes with occluded surfaces,
which where not considered in the original implemen-
tation. In [Coh88], Cohen et al. presented a progressive
refinement approach which eliminated the O(n2) stor-
age requirements of former methods by calculating the
form factors on-the-fly. Further speed ups can be gained
by implementing the substructuring approach from Co-
hen et al. [Coh86] where light is shot from a courser
mesh to a finer sets of elements. Smits et al. [Smi92]
published a radiosity implementation which focuses on
those parts of the scene which affect an image most. Al-
though radiosity is usually restricted to diffuse surfaces,
generalizations of the radiosity method which can han-
Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Copyright UNION Agency - Science Press, Plzen, Czech
Republic.

Figure 1: GPU radiosity solution of a scene with
6534502 elements distributed over 13627 triangles.

dle general reflectance (e.g. by Sillion et al. [Sil91])
and volumetric scattering due to participating media
like smoke ([Rus87]) have been proposed. A compre-
hensive treatment of the radiosity method can be found
in [Sil94] and [Coh95]. However, for completeness the
essential features are reviewed in Section 2.

Modern GPUs opened up a whole new research area,
allowing researchers to compute a radiosity solution in
much faster time or even at interactive rates. Keller
[Kel97] generates a particle approximation of the dif-
fuse radiance in the scene using quasi-Monte Carlo in-
tegration. Afterwards, the graphics hardware renders
an image with shadows for each particle which are con-
sidered as point light sources. Martin et al. [Mar98]
calculated a hierarchical radiosity solution on the CPU
and refined the result by generating textures that repre-
sent the diffuse illumination. Nielsen and Christensen

Journal of WSCG 1 ISSN 1213-6972



[Nie02] accelerated the hemicube method using graph-
ics hardware. Carr et al. [Car03] used floating point
textures to store the result of the radiosity computation.
Gautron et al. [Gau05] adapted the irradiance cache
([War88]) to graphics hardware. However, all of these
publications used graphics hardware to accelerate cer-
tain elements of the radiosity solution. Coombe et al.
[Coo03] finally proposed a progressive radiosity imple-
mentation which worked solely on the GPU.

This paper follows the approach by Coombe et al. but
extends it to arbitrary triangular meshes. Further con-
tributions are the inclusion of normal mapping into the
radiosity process, the support of arbitrary light distribu-
tions due to the use of light distribution textures (LDTs)
and new way to determine shadow boundaries for adap-
tive subdivision. Figure 1 shows a radiosity solution ob-
tained with our method. The reminder of this paper is
structured as follows. Section 2 reviews in short the ba-
sics of radiosity and the progressive radiosity approach
and Section 3 describes our implementation. Adaptive
subdivision is explained in Section 4. We conclude the
paper by presenting results and sample images (Sec-
tion 5) as well as future work (Section 6).

2 PROGRESSIVE RADIOSITY
The radiosity method evaluates the intensity (or radios-
ity) of discrete points and surface areas in an diffuse
environment. The radiosity Bi of an element i is given
by [Gor84]

Bi = Ei +ρi

n

∑
j=1

B jFi j (1)

where Ei is the emission, ρi the reflectivity and Fi j
the form factor between element i and j. Fi j is purely
geometrical in nature and describes the fraction of en-
ergy leaving element j impinging on element i. If using
the disc approximation of Wallace et al. [Wal89] to the
differential form factor equation (Figure 2), Fi j is given
by

FdAi,A j(= Fi j) = A j

m

∑
i=1

cos(φi)cos(φ j)

d2π + A j
m

(2)

where m is the number of sampling points on A j. As
noted by Coombe et al. [Coo03] this disc approxima-
tion reduces artifacts between adjoining faces exhibited
by the original form factor formulation [Gor84] when
used in conjunction with projection methods, like the
hemicube approach by Cohen et al. [Coh85]. To as-
sure conversation of energy in a closed environment the
sum of all form factors for a given element i is equal to
unity:

n

∑
j=1

Fi j = 1 for i = 1 . . .n (3)

Contrary to the conventional radiosity algorithm,
where all the form factors for the entire scene are
precalculated, form factors are calculated on-the-fly in

Figure 2: The form factor between a differential area
dAi and a polygon j which is divided into m sections.
Each section gets approximated by a disc.

a progressive radiosity solver. Furthermore, shooting is
always performed from the element radiating the most
light energy, since those typically have the greatest
impact on the illumination, leading to a solution which
converges quickly in regard to accuracy. Additionally
an ambient radiosity term

A = R
n

∑
j=1

∆B jF
′
i j for any i (4)

was introduced by Cohen et al. [Coh88] to estimate
reflected light in the earlier iterations, yielding a more
adequate illumination during early stages. ∆B j repre-
sents the unshot radiosity. F

′
i j is a first approximation to

the form factor and is given by

F
′
i j =

A j

∑
n
k=1 Ak

∀i (5)

and the interreflection factor R is defined as

R =
(

1− ∑
n
k=1 ρkAk

∑
n
k=1 Ak

)−1

(6)

3 IMPLEMENTATION
This section describes our radiosity implementation in
detail. For each triangle two 32bit RGBA floating point
textures are stored which hold the radiosity and residual
energy respectively. The RGB components are used to
store the illumination and the alpha channel is used to
determine if a particular texel of the texture is occupied
by the triangle (A = 1) or not (A = 0).

In a preprocessing step each triangle is rendered or-
thographically into a framebuffer of size (2n − 2)×
(2n−2). During rendering an occlusion query is issued
to retrieve the number of texels occupied by the trian-
gle. The area of a single element of a triangle can then
be obtained by dividing its area with the result of the oc-
clusion query. Note that due to partially covered pixels
the area of an element is slightly underestimated. How-
ever, we found that no significant error is caused by this.

Journal of WSCG 2 ISSN 1213-6972



The texture coordinates are retrieved by multiplying the
vertex coordinates with the modelview-projection ma-
trix used for rendering and shifting the values to the
range [0,1]. The result is then centered in a texture
of size 2n × 2n to allow for interpolation in the post-
processing step. Furthermore all textures are placed in
a texture atlas of size 2m × 2m to reduce the number
of texture switches during the radiosity process and the
number of readbacks during the next shooter selection.
All textures have power-of-two dimensions to allow for
mipmapping.

After the preprocessing step the progressive radiosity
solver starts until the result has converged or a maxi-
mum number of iterations has been reached. At the be-
ginning of each iteration the next shooter is determined.
To find the triangle with the highest residual power the
nth level of the mipmap pyramid is constructed from
each residual texture atlas using a fragment program
and a ping-pong rendering scheme. This results in a
texture where each texel corresponds to the averaged
residual intensity (I = 0.3 · R + 0.59 ·G + 0.11 · B) of
a triangle. The reasons for a fragment program are
twofold. First, graphics hardware may or may not sup-
port hardware mipmapping for floating point textures.
Second, only texels which are occupied by the trian-
gle may influence the average. Therefore our fragment
shader only averages texels whose alpha channel equals
one. The alpha channel of the new texel is set to one if
one of the four original texels alpha value is one. The
values are read back and multiplied by the area of the
corresponding triangle to retrieve the residual power.
The resulting values are compared and the triangle with
the highest residual power is chosen as next shooter.
During the next shooter selection the ambient radiosity
term from Equation 4 is calculated. Since the average
residual energy of a triangle is evaluated nevertheless
and the overall interreflection factor can be precalcu-
lated, the computational expense is negligible.

Once a shooter has been selected, all the elements
of the triangle shoot their energy in turn. The selected
triangle is rendered orthographically into a framebuffer
with two color attachments. A fragment shader outputs
the interpolated normals and world positions of this tri-
angle. As suggested by Coombe et. al [Coo03], sub-
structuring ([Coh86]) can be supported by constructing
a lower resolution mipmap of the residual texture. In
our case, we also construct the mipmap from the nor-
mal and the world position map. The resulting residual
mipmap gets sampled and each texel whose alpha chan-
nel equals one shoots its energy.

To determine the visibility from the current shooter,
we follow the approach of Coombe et. al [Coo03] and
render the scene from the point of view of the shooter
using a stereographic projection into a visibility texture.
The position and orientation of the shooter are retrieved
from the world position and normal map. However, in-

Figure 3: Light Grey parts of the image are visible from
the shooter, black ones aren’t. If only one texel in the
visibility texture is evaluated for depth correspondence
artifacts appear near silhouette edges (left). Compar-
ing also the neighboring texels removes those artifacts
(right).

stead of using color-encoded IDs of the polygons, we
store the depth values as proposed by Barsi and Jakab
[Bar04]. Based on the front (fp) and back clipping dis-
tances (bp) the depth value is calculated in a vertex
shader as shown in Algorithm 1.

pos = mul(modelView, position);
float z = (-2*pos.z-bp-fp)/(bp-fp); // [-1..1]
float zDepth = -z/bp // [0..1]

Algorithm 1: Vertex shader code for calculation of the
depth value

Since only vertices are affected by the stereographic
projection, several errors are introduced, especially
near the equator of the hemisphere. For example,
convex quads may get concave after the projection,
which leads to rasterization artifacts. Working with
depth values instead of polygon IDs eliminates dot
artifacts1, since a tolerance value can be used when
the visibility checks are performed later in the process.
Triangles behind the hemisphere are culled away be
checking against the plane defined by the position and
normal of the shooter. For the remaining triangles, an
occlusion query is issued.

Every triangle that might have received energy (tri-
angles which pass the occlusion query test) is rendered
orthographically to a framebuffer of size (2n − 2)×
(2n− 2). However, instead of back-projecting the tex-
els into the shooter’s viewpoint, as done by Coombe
et al. [Coo03], the back projection is done in a ver-
tex shader and the resulting position is passed to the
fragment shader. This way the same error occurs dur-
ing back projection as observed in the creation of the
visibility texture. The fragment shader compares the
depth value of the texel with the depth value stored in
the visibility texture. We found that we can further re-
duce artifacts – mainly in areas of silhouette edges from

1 Due to the limited resolution of the visibility map and errors intro-
duced by the projection, nearby elements of the scene may be mapped
to the same texel.

Journal of WSCG 3 ISSN 1213-6972



the shooter’s point of view – if we also check the neigh-
boring texels in the visibility texture for correspondence
with the – currently examined – texels depth (see Figure
3).

If the texel is declared visible, the form factor equa-
tion from Equation 2 is evaluated by the fragment pro-
gram. The radiosity value is gained by multiplying the
form factor, the shooters energy and the color as well as
the reflectivity r of the receiver and adding it to the ra-
diosity texture. Respectively the residual texture is up-
dated by taking 1−r. After all texels of the shooter have
shot their energy, the residual texture of the shooter is
set to zero.

After the post-process (described in Section 3.1), the
floating point textures are tone mapped using either
a simple exposure function or a GPU implementation
of the global tone mapping operator from Reinhard
[Rei02].

3.1 Rasterization of Triangles
According to the OpenGL specification [Seg03] poly-
gons and line segments are rasterized differently. For
lines OpenGL uses a "diamond-exit" rule. This means
that for each fragment f with center at window coordi-
nates xw and yw a diamond shaped region R f is defined
as

R f = {(x,y)|‖x− xw‖+‖y− yw‖<
1
2
} (7)

A good description of OpenGL’s line rasterization
can be found in [Sun03]. For polygons OpenGL fol-
lows the point-sampling rule. Only fragments which
centers lie inside the polygon are produced by rasteri-
zation. Special treatment is given to a fragment whose
center lies on a polygon boundary edge (see [Seg03]
for details). However, we are not concerned about the
exact details because those fragments get rasterized by
line-rasterization anyway. Figure 4 shows the rasteriza-
tion of a triangle. Since not all fragments – which are
needed for texturing – are rasterized (these are shown
red in Figure 4), the missing fragments are interpolated
from the neighbor intensities in a post-processing step.
To reduce artifacts due to rasterization, two steps are
taken. First, every triangle is rendered twice. One time
the polygon itself and next the outline with a line width
of 1. It should be noted that using a line width greater
than 1 leads to artifacts, since more than one fragment
of the line has the same texture coordinate assigned,
therefore pointing to the same location in the radiosity
map. Second, after the radiosity solver has finished a
textured quad is rendered orthographically to a frame-
buffer at the same resolution as the assigned radiosity
texture to establish a one-to-one correspondence with
the fragments of the framebuffer. A fragment program
linearly interpolates the intensities for fragments which
neighbor at least one fragment whose alpha channel is
one. Only fragments occupied by the triangle are con-
sidered for interpolation. Since the textures are interpo-

Figure 4: Rasterization of a triangle with OpenGL.
Light gray fragments are produced by polygon-
rasterization. Dark gray rectangles depict fragments
which were produced additionally by line-rasterization.
Red fragments represent fragments which would be
needed for GL_NEAREST texture sampling but have
not been rasterized.

lated linearly for rendering, this is done twice, using a
ping-pong technique. Fragments produced by this step
are marked with black (first iteration) and blue (sec-
ond iteration) dots in Figure 4. These fragments are
only used for display purposes, therefore they are nei-
ther considered in the radiosity process nor do they alter
the size of a triangle.

3.2 Light Distribution Textures
To include arbitrary light distributions into the radiosity
process, we propose a so called light distribution texture
(LDT). These textures can be derived from a EULUM-
DAT file or any other similar photometric file format.
An English translation of the EULUMDAT specifica-
tion can be found at [Ash]. Concordant do the speci-
fication we denote the number of C-planes as mc. The
number of light intensities in a C-Plane (vertical planes
through the light distribution) is designated as ng. Fig-
ure 5 shows the light distribution curve of a luminaire
and it’s 3D representation.

Although the EULUMDAT file stores photometric
values and the radiosity method works with radiomet-
ric values, the normalized light distribution can be used
as is. We can show that the radiant intensity Ie = kIv,
where k is some constant and Iv the luminous intensity
(an in-depth treatment of lighting engineering can be
found, for example, in [Gal04]).

Proof. The radiant intensity can be written as

Ie =
dφe

dΩ
(8)

where φe is the radiant flux and Ω the solid angle, and
the luminous intensity can be written as

Iv =
dφv

dΩ
(9)

Journal of WSCG 4 ISSN 1213-6972



Figure 5: The light distribution of a Zumtobel KAREA-S luminaire (left) and its 3D representation with mc = 24
(middle). The red line depicts the intersection of the light distribution with the plane C0/180 and the blue line with
plane C90/270 respectively. The texture derived from the luminaire’s light distribution is shown on the right.

Furthermore the luminous flux φv is defined as

φv = Km

∫ 780nm

λ=380nm
φeλ

V (λ )dλ (10)

For a monochromatic lightsource we can reduce
Equation 10 to

φv = KmV (λ )φe (11)

where Km = 683 lmW−1 is the sensitivity of the eye at
555 nm and V (λ ) = 1 for photopic vision (these values
can be gained from the photopic vision curve V (λ )).
For values of V (λ ) refer, e.g. to [Gal04]. Substituting
into Equation 8 we get

Ie =
1

683 dφv

d∆Ω
=

1
683 Ivd∆Ω

d∆Ω
=

1
683

Iv (12)

An LDT stores the light distribution of a luminaire
of one half space and has dimension n′g ×mc where
n′g is the number of intensities of a C-Plane in one
half-space. The intensity values are retrieved from the
light distribution and divided by the maximum intensity
value Imax to normalize the values to the range [0..1].
These values are written into the texture, where each
horizontal line represents the intensity values of a C-
Plane. The relationships are shown in Figure 5. Texture
sampling is set to linear to automatically interpolate be-
tween the discrete measurements. To assure continuity
at the boundary of 0° and 360°, the texture wrap mode
in v-direction is set to GL_REPEAT. By storing only
the normalized intensity distribution the texture can be
reused for luminaires with the same light distribution
but different intensities.

To access the LDT, the azimuth φr and elevation φn of
the vector d with respect to the reference system of the
light source given by (n0,r0,u0) is determined. We use
the subscript 0 to denote unit vectors. Figure 6 shows
a geometrical representation of the problem. Normaliz-
ing the angles to the range [0,1] yields

Figure 6: The texture coordinates of the LDT for a
given direction vector d between the lightsource L and
receiver R depend on the azimuth φr and elevation φn
of this vector. The light distribution is depicted as red
curve.

xt = 1+
min(φn−π/2,0)

(π/2)
(13)

yt =

{
1− 0.5φr

π
u0 ·d≤ 0

0.5φr
π

otherwise
(14)

as texture coordinates (xt ,yt). According to Sillion et
al. [Sil91] the energy d2E emitted by a differential area
dAi around a point Ti in the direction of unit vector d0
and falling on a differential area dA j around a point Tj
is then given by

d2E = I(T1,d0)
cos(φ j)cos(φi)

d ·d
dA jdAi (15)

where I(T1,d0) is the intensity leaving the surface. In
our case the intensity is retrieved by sampling the LDT
at position (xt ,yt) and multiplying it with Imax.

3.3 Normal Mapping
Inclusion of normal mapping [Coh98] into the radios-
ity process is straightforward. Instead of taking the in-
terpolated vertex normals for calculation of φ j the per-

Journal of WSCG 5 ISSN 1213-6972



Figure 7: Radiosity solution of a simple box. Once
without normal mapping (left) and one time with nor-
mal mapping enabled (right).

turbed normal is used. If the normals stored in the nor-
mal map are given in tangent space and since the light
calculation is handled in world space, the vector d has
to be transformed appropriately into tangent space. For
static scenes the required tangent vectors can be calcu-
lated during the preprocessing step. Figure 7 and Figure
9 show results obtained with normal mapping.

However, it is worthy to note that if normal mapping
and multitexturing is used simultaneously the resolu-
tion of the radiosity texture should correspond to the
resolution of the normal map. Otherwise artifacts will
appear because the result of light calculation does not
overlay correctly with the texture of the object. Note
also that illumination may change if normal mapping is
used, because the shooting order must not necessarely
be the same as without normal mapping.

4 ADAPTIVE SUBDIVISION
The accuracy of the radiosity solution depends very
much on the underlying mesh. As noted by several
authors (e.g. [Coh95]) uniform subdivision is not the
best approach for radiosity, since some areas may be
undersampled and others oversampled. Furthermore a
too coarse mesh can introduce shadow leakage ([Bul89,
Cam90]). Several techniques to identify elements that
require subdivision have been proposed (see [Coh95]
for an overview). For example, Vedel et al. [Ved91]
subdivides if the gradient of the radiosity values varies
more than a certain threshold. Campbell [Cam92] splits
an element perpendicularly to the line connecting the
maximum and minimum points of an element, if the dif-
ference between the extrema exceeds a certain thresh-
old. Campbell et al. [Cam90] suggested a geometrical
approach where the receiver polygon is tested against
the shadow volume, generated by the light source and
the occluding surfaces. However, the method is compu-
tationally expensive and does not scale well to complex
scenes. We therefore propose the following method to
determine if an element should be subdivided or not, by

rendering the scene three times from the point of view
of the shooter with a stereographic projection.

Step 1 Render the scene without depth testing and with
occlusion queries enabled. This gives the complete
number of rasterized fragments nr for a triangle (in-
dependent from rendering order).

Step 2 Render the scene with depth testing enabled to
initialize the depth buffer.

Step 3 Render the scene with depth testing and
GL_LEQUAL as depth function and occlusion
queries enabled. This yields the number of visible
fragments nv.

If nr 6= nv there has to be a shadow boundary on this
triangle. The triangle is subdivided if bl ≤ nv/nr ≤ bu
where 0 ≤ bl ≤ 1 and 0 ≤ bu ≤ 1 are the lower and
upper threshold respectively. This avoids subdivision
of triangles where the shadow boundary is short.

In our implementation, we account for subdivision
before shooting the first time from a triangle. If the area
of the shooter is small, we found that a sufficient trade-
off. In such a case, the rendering of the visibility tex-
ture can be combined with the steps outlined above. We
follow the suggestion of Baum et al. [Bau91] and use
regular refinement for subdivision of triangles. Newly
introduced triangles are tested again for subdivision un-
til a maximum subdivision level has been reached or the
subdivision criteria is not fulfilled. To avoid linear in-
terpolation artifacts due to introduced T-vertices, these
vertices are fixed with bisection refinement in regard to
the balance criterion of Baum et al. [Bau91]: the subdi-
vision level of the neighboring elements should not dif-
fer more than one. If a triangle is subdivided, the radios-
ity and residual texture of the parent triangle is copied
down to the child triangles using linear interpolation.
Since subdivision is done before actually shooting, no
reshooting as for example in [Coh88] is performed.

5 RESULTS
The presented method was implemented with C++,
OpenGL and the Cg shading language from NVidia.
Table 1 shows information about the examples used
throughout this paper. It lists the used radiosity texture
size T S along with the mipmap level used for shooting
(in brackets), the time consumed by the radiosity solver
including the post-process and simple exposure tone
mapping tr and the time for setup and preprocessing
(loading of scene geometry, calculation of tangent
vectors, initializing of the texture atlas etc.) tpp. Fur-
thermore, the number of triangles nt and the number
of elements ne as well as the number of iterations IT
(an iteration includes shooting from all elements of
a triangle) are listed. The subscript nm denotes that
normal mapping has been used. The time in brackets

Journal of WSCG 6 ISSN 1213-6972



Figure 8: The scene consists of 9012 triangles which are divided into 4259072 elements. The street lamp
is simulated with a standard Lambertian light, the head and taillights are simulated with four spotlights. Each
triangle was assigned a 32×32 radiosity texture and shooting was done from the third mipmap level.

Figure 9: A scene illuminated by a Zumtobel wallwasher. There are 18436 triangles in the scene yielding 8440590
elements. The left image shows the scene without normal mapping, the middle and right image where rendered
with normal mapping. The right image is a close-up view of the statue showing the reflecting light from the wall.

Uniform TS tpp tr nt ne IT
[sec] [sec]

boxnm 256(4) 0.96 28.37 42 1365280 16
box 32(3) 0.5 0.92 42 20120 16
bus 32(3) 8.84 58.8 8798 4192282 16
museum 32(3) 8.78 89.98 13627 6534502 10
statue 32(3) 13.45 104 16028 7683931 8

Adaptive TS tpp tr nt ne IT
[sec] [sec]

bus 32(3) 8.84 72.26 9012 4259072 16
(2.14)

statue 32(3) 13.61 138.49 18288 8392967 8
(14.43)

statuenm 32(3) 27.43 164.94 18436 8440590 8
(33.0)

Table 1: Performance for uniform and adaptive mesh-
ing for different scenes

represents the portion of tr required for adaptive
subdivision of the mesh. Except of the statue scene,
all scenes have reached more than 88% convergence
for the given number of iterations. All measurements
where taken on a Intel Core2 CPU with 2.13 GHz with
a Geforce 8800GTS with 640MB DDR3 Ram.

Performance analysis of the code showed that most
time was consumed for rendering the receiver trian-
gles. This is evident since this function is dependent
on the result of the occlusion query to determine visi-
bility. Additionally, setting the appropriate parameters
of the orthographic projection for each triangle requires

context switches of the fragment program. The perfor-
mance of the current implementation is mainly limited
by the available texture memory of the GPU. Once too
many textures have to be maintained, texture memory
thrashing can be noticed.

6 CONCLUSION AND FUTURE
WORK

We presented a GPU implementation of progressive ra-
diosity for triangular meshes. The rasterization of tri-
angles is the major problem to overcome. We solve
this by rendering the triangle itself and the outline of
the triangle. The remaining artifacts are eliminated in
a post-processing step or can be fixed during runtime
with a fragment shader. Furthermore, we demonstrated
the inclusion of normal mapping into the radiosity pro-
cess, which yields more sophisticated results. Arbitrary
light distributions can also be simulated with the help
of light distribution textures.

The ample use of occlusion queries for determining
visibility and shadow boundaries requires an elaborate
algorithm to avoid stalling of the graphics pipeline. We
are currently optimizing our implementation in this re-
gard. Currently only one texture size is used for all tri-
angles in the scene – independent from the actual size
of a triangle. However, for scenes consisting of ob-
jects with rather coarse and fine meshes, this is subop-

Journal of WSCG 7 ISSN 1213-6972



timal, since some triangles inevitable get undersampled
or oversampled respectively.

We aim to include general reflectance distributions by
means of BRDFs, as published by Sillion et al. [Sil91],
in our method. To allow for efficient reconstruction
of the BRDF during runtime we are investigating the
approach by NVidia [Wyn00]. To account for diffuse
transmission the inclusion of a backward diffuse form
factor [Rus90], which denotes the fraction of energy
leaving a surface from its back side and impinging on
another surface, is considered.

REFERENCES
[Ash] Ian Ashdown. English translation of the eulumdat spec-

ification. Available online: http://www.helios32.
com/Eulumdat.htm.

[Bar04] Attila Barsi and Gabor Jakab. Stream processing in global
illumination. Proceedings of 8th Central European Semi-
nar on Computer Graphics, 2004.

[Bau91] D. R. Baum, S. Mann, K. P. Smith, and J. M. Winget. Mak-
ing radiosity usable: automatic preprocessing and meshing
techniques for the generation of accurate radiosity solu-
tions. In SIGGRAPH ’91: Proc. of the 18th annual con-
ference on Computer graphics and interactive techniques,
pp. 51–60. ACM Press, New York, NY, USA, 1991.

[Bul89] J. M. Bullis. Models and Algorithms for Computing Realis-
tic Images Containing Diffuse Reflections. Master’s thesis,
Dept. of Computer Science, Univ. of Minnesota, 1989.

[Cam90] A. T. Campbell and Donald S. Fussell. Adaptive mesh gen-
eration for global diffuse illumination. In SIGGRAPH ’90:
Proceedings of the 17th annual conference on Computer
graphics and interactive techniques, pp. 155–164. ACM
Press, New York, NY, USA, 1990.

[Cam92] Alvin T. Campbell. Modeling global diffuse illumination
for image synthesis. Ph.D. thesis, Austin, TX, USA, 1992.

[Car03] N. A. Carr, J. D. Hall, and J. C. Hart. Gpu algorithms for
radiosity and subsurface scattering. In HWWS ’03: Proc.
of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pp. 51–59. Eurographics Association,
Aire-la-Ville, Switzerland, 2003.

[Coh85] Michael F. Cohen and Donald P. Greenberg. The hemi-
cube: a radiosity solution for complex environments. In
SIGGRAPH ’85: Proc. of the 12th annual conference on
Computer graphics and interactive techniques, pp. 31–40.
ACM Press, New York, NY, USA, 1985.

[Coh86] M.F. Cohen, D.P. Greenberg, D.S. Immel, and P.J. Brock.
An efficient radiosity approach for realistic image synthe-
sis. Computer Graphics and Applications, vol. 6(3):pp.
26–35, 1986.

[Coh88] Michael F. Cohen, Shenchang Eric Chen, John R. Wal-
lace, and Donald P. Greenberg. A progressive refine-
ment approach to fast radiosity image generation. In SIG-
GRAPH ’88: Proceedings of the 15th annual conference
on Computer graphics and interactive techniques, pp. 75–
84. ACM Press, New York, NY, USA, 1988.

[Coh95] Michael F. Cohen and John R. Wallace. Radiosity and Re-
alistic Image Synthesis. Morgan Kaufmann, 1995.

[Coh98] Jonathan Cohen, Marc Olano, and Dinesh Manocha.
Appearance-preserving simplification. In SIGGRAPH ’98:
Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pp. 115–122. ACM
Press, New York, NY, USA, 1998.

[Coo03] G. Coombe, M. Harris, and A. Lastra. Radiosity on graph-
ics hardware, 2003.

[Gal04] Dietrich Gall. Grundlagen der Lichttechnik - Kompendium.
Pflaum, 2004.

[Gau05] Pascal Gautron, Jaroslav Krivanek, Kadi Bouatouch, and
Sumanta Pattanaik. Radiance cache splatting: A gpu-
friendly global illumination algorithm. Eurographics Sym-
posium on Rendering, 2005.

[Gor84] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Bat-
taile. Modeling the interaction of light between diffuse sur-
faces. In SIGGRAPH ’84: Proc. of the 11th annual con-
ference on Computer graphics and interactive techniques,
pp. 213–222. ACM Press, New York, NY, USA, 1984.

[Kel97] Alexander Keller. Instant radiosity. In SIGGRAPH ’97:
Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, pp. 49–56. ACM
Press/Addison-Wesley, New York, NY, USA, 1997.

[Mar98] I. Martin, X. Pueyo, and D. Tost. A two-pass hardware-
based method for hierarchical radiosity. Computer Graph-
ics Forum, vol. 17(3):pp. 159–164, 1998.

[Nie02] Kasper H. Nielsen and Niels J. Christensen. Fast texture-
based form factor calculations for radiosity using graphics
hardware. J. Graph. Tools, vol. 6(4):pp. 1–12, 2002.

[Rei02] Erik Reinhard. Parameter estimation for photographic tone
reproduction. J. Graph. Tools, vol. 7(1):pp. 45–52, 2002.

[Rus87] H. E. Rushmeier and K. E. Torrance. The zonal method for
calculating light intensities in the presence of a participat-
ing medium. In SIGGRAPH ’87: Proc. of the 14th annual
conference on Computer graphics and interactive tech-
niques, pp. 293–302. ACM Press, New York, NY, USA,
1987.

[Rus90] H. E. Rushmeier and K. E. Torrance. Extending the radios-
ity method to include specularly reflecting and translucent
materials. ACM Trans. Graph., vol. 9(1):pp. 1–27, 1990.

[Seg03] Mark Segal and Kurt Akeley. The OpenGL Graphics Sys-
tem: A Specification (Version 2.0). 2003.

[Sil91] Françis X. Sillion, James R. Arvo, Stephen H. Westin,
and Donald P. Greenberg. A global illumination solution
for general reflectance distributions. SIGGRAPH Comput.
Graph., vol. 25(4):pp. 187–196, 1991.

[Sil94] François X. Sillion and Claude Puech. Radiosity and
Global Illumination. Morgan Kaufmann, 1994.

[Smi92] Brian E. Smits, James R. Arvo, and David H. Salesin. An
importance-driven radiosity algorithm. In SIGGRAPH ’92:
Proceedings of the 19th annual conference on Computer
graphics and interactive techniques, pp. 273–282. ACM
Press, New York, NY, USA, 1992.

[Sun03] Chengyu Sun, Divyakant Agrawal, and Amr El Abbadi.
Hardware acceleration for spatial selections and joins. In
SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD in-
ternational conference on Management of data, pp. 455–
466. ACM Press, New York, NY, USA, 2003.

[Ved91] C. Vedel and C. Puech. A testbed for adaptive subdivision
in progressive radiosity. 2nd Eurographics Workshop on
Rendering, 1991.

[Wal89] J. R. Wallace, K. A. Elmquist, and E. A. Haines. A ray trac-
ing algorithm for progressive radiosity. In SIGGRAPH ’89:
Proceedings of the 16th annual conference on Computer
graphics and interactive techniques, pp. 315–324. ACM
Press, New York, NY, USA, 1989.

[War88] Gregory J. Ward, Francis M. Rubinstein, and Robert D.
Clear. A ray tracing solution for diffuse interreflection. In
SIGGRAPH ’88: Proceedings of the 15th annual confer-
ence on Computer graphics and interactive techniques, pp.
85–92. ACM Press, New York, NY, USA, 1988.

[Wyn00] Chris Wynn. Nvidia corporation. real-time brdf-based
lighting using cube-maps. 2000.

Journal of WSCG 8 ISSN 1213-6972


	wscg2008_Journal_Numbered.pdf
	C31-full.pdf
	C31-full.pdf

	G23-full.pdf


