libugrab - A Versatile Grabbing Library

Ferenc Kahlesz Reinhard Klein
Computer Graphics Group
University of Bonn
53117 Bonn, Germany
{fecu,rk}@cs.uni-bonn.de

ABSTRACT

Current commercial and freely available grabbing libraries are tightly coupled to operating systems and/or imaging hardware.
Moreover, they usually do not support any kind of distributed camera-systems. This forces developers to either reimplement
significant parts of the application or to come up with elaborate abstraction for the grabbing, should the underlying operating
system, hardware (e.g. changing from analog PAL sources to [IDC cameras) or distribution model (e.g. adding remote intel-
ligent cameras, which are capable of image processing themselves) change. In this paper we describe ‘libugrab’, a versatile
grabbing library designed to provide a flexible abstraction of the grabbing process. The main advantages of ‘libugrab’ over sim-
ilar libraries are the following: open source license, cross-platform availability, network transparency, support for both push and
pull grabbing models, built-in support for image-processing via callbacks. The design especially facilitates rapid prototyping

of distributed vision systems, which we demonstrate by several examples.

Keywords:
1 MOTIVATION

Applications that do image processing vary consider-
ably with respect to the complexity of the software logic
they need to acquire data from their imaging sources.
Depending on whether a system has to do offline or
real-time (RT) processing, whether it is monocular or
multiview or whether it uses a single computer or com-
putation is distributed among several nodes, the associ-
ated implementation efforts vary heavily.

1.1 Offline monocular systems

If online processing is not required and the system is
monocular, the software infrastructure can be held sim-
ple: a standalone application records a video-file, which
is later read by an actual processing program. Conve-
niently, the recording application might be built-in in
the used operating-system or comes with the purchased
camera. A skeleton-code for an application that loads
the images from the recorded file and makes them avail-
able for processing can be implemented once and easily
reused for different algorithms. This allows researchers
to concentrate on the vital task at hand: developing the
actual image processing algorithm. Examples for sys-
tems that can be developed this way are computation-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency — Science Press, Plzen, Czech Republic.

Journal of WSCG

105

image processing, middleware, grabbing, intelligent cameras

ally expensive image segmentation or object recogni-
tion methods.

1.2 Offline multiview systems

Even if only the monocular requirement is changed
to multiview, the software infrastructure can get con-
siderably more complex. Although the complexity of
boilerplate-code for multi-source offline processing is
basically the same as for the monocular counterpart
(and all the benefits described above still hold), this
is not necessarily true for the image acquisition phase.
This is due to the fact that the grabbed images usually
have to be synchronized. Depending on the imaging
source used, this can be done in hardware (e.g. gen-
lock) or in software (e.g. adding timestamps to frames
and selecting close ones later). Multiview algorithms
benefit from using a higher number of cameras and re-
searchers normally would like to experiment with dif-
ferent camera placements and numbers. This can lead
to two acquisition difficulties: first, different off-the-
shelf cameras might have different framerates and sec-
ond, the desired number of cameras might prohibit the
use of a single computer, due to harddisk and/or PCI-
bus bandwidth limitations. In the latter case, the grab-
bing application should be written network-aware and
relatively high-precision synchronization of the clocks
of the involved computers is also necessary.

1.3 Online multiview systems

Among other research areas, the currently emerging
field of markerless computer vision based Human-
Computer-Interaction (HCI, for more details see e.g.
[EBNT07]) also necessitate online processing on

ISSN 1213-6972

behalf of the image processing system. Interaction
essentially does not lend itself to offline solution:
“offline interaction” is contradictory in itself. As
immersive user-experience is decisive regarding the
acceptance or refusal of such applications, the RT
aspects of such systems are accentuated, requiring “as-
fast-as-possible” implementations in order to minimize
latency between user action and system reaction. As
methods aiming for success should live up to the RT
expectations, often the need arises for multi-threading
and/or distributed processing among different com-
puting nodes (e.g. PCs or smart cameras). Moreover,
though “offline interaction” does not exist, in order to
make repeatable experiments and algorithm analysis
possible, implemented systems should preferably also
be able to process previously recorded inputs.

1.4 Implementation issues

As both offline monocular and multiview systems can
be treated as subsets of online multiview systems, such
a system can also be used for offline processing. Creat-
ing an application framework, which is flexible enough
to easily adapt to changes in the number of cameras,
threads and computing nodes, is a formidable soft-
ware engineering challenge. During research phase,
work is being focused on algorithm development and
quickly creating a working prototype. As scalability
and adaptability tend to be secondary issues, they can
be traded for RT performance, resulting in research pro-
totypes that are usually custom made solutions to given
imaging hardware and node distribution. This hinders
future research, because experimenting with different
algorithms or distribution models requires the time-
consuming rewrite of significant components of the sys-
tem. The components that have to be reimplemented or
modified are responsible for interfacing with the used
camera device drivers, thread management, synchro-
nization and network communication. Also, if a totally
new system is created from scratch, such components
have to be written once again or previous ones have to
be customized for the new system setup.

1.5 libugrab

If the system components mentioned above were avail-
able and could easily be combined programatically with
each other to form a basis for complex solutions, re-
search and prototyping could solely focus on high-level
issues like algorithm selection and development, in-
stead of also committing resources to low-level imple-
mentation aspects that are scientifically irrelevant, but
must be taken care of.

This fact was our main motivation to develop the
‘libugrab’ C++ grabbing framework. The library can
be used as a basis for creating online multiview sys-
tems. The framework was designed with flexibility in

Journal of WSCG

mind in order to provide easy ways to carry out the fol-
lowing tasks that frequently occur during vision system
development:

e adding or removing computing nodes to/from the
system (in order to cope with computational com-
plexity via load-balancing — processing power is in-
expensive),

e change of camera types (e.g. camcorder to DCAM),

e adding or removing of cameras to/from the nodes
(off-the-shelf imaging HW is inexpensive),

e separating low-level image preprocessing into
background threads from the high-level processing
thread (in order to better exploit multi-core CPUs)

e notifying the main processing thread of data-arrival
after preprocessing via events (without the need for
polling),

e changing preprocessing algorithm (e.g. color seg-
mentation to background subtraction),

e conversion of raw camera data to low-level process-
ing input type (e.g. bayer to RGB),

e recording from multiple sources,
e changing from camera input to prerecorded data,

e sensor fusion.

The library handles widely used imaging sources
(e.g. camcorders or webcams) and videoformats, as
well as several format conversions out-of-the-box.
Moreover, the user can register her own custom
sources/converters, which can be used by the system
like its built-in components. Extra care has been taken
to make the library “unintrusive”: to minimize the
amount of user code required to take full advantage
of ‘libugrab’, allowing researchers to concentrate on
algorithm design and implementation.

2 RELATED WORK

There are an abundance of optical motion capture
systems commercially available (e.g. [Sys07]), along
with marker-based tracking products for HCI (e.g.
[GmbO7]). These systems offer turnkey solutions for
the specific task by realizing online multiview systems.
They have a modular design, therefore the observed
area or accuracy can easily be enlarged simply by
adding more cameras and possibly processing nodes
to the system. Their drawback from our point of view
is that they are closed systems designed specifically
to provide a RT solution for the visual marker-based
tracking problem, often coupled with near-infrared
imaging. Although e.g. [Sys07] has products to

ISSN 1213-6972

capture multi-camera streams for offline processing,
the camera images are not available online to the user,
thus, it is not possible to experiment with custom
processing algorithm chains. Therefore, these systems
are not capable of realizing general multi-camera
online systems. Another downside is that although
low cost high-performance computing power and
off-the-shelf imaging hardware becomes more and
more available, commercial solutions tend to utilize
their own proprietary HW.

‘OpenCV’ [Lib07] provides portable functionality
to capture from different video sources connected
to one computer. This grabbing interface, however,
supports only pull-access (polling the sources) and
does not directly makes multithreaded background
or network transparent processing possible. ‘unicap’
[uni07] is an extensible C-library for UNIX-like OS-s
providing a uniform interface for various imaging
devices. Although it is possible to register a callback
for arriving data, which is called in the background, the
user has to take care of thread synchronization and data
passing between the background and main processing
threads or any kind of network transparent operation.

Multimedia Frameworks (MMF, e.g. GStreamer
[GSt07] or DirectShow [Dir07], among numerous
others) are media-streaming architectures, designed to
handle media on a computer, usually also in a network
transparent way. Multimedia data passes through a so
called rendering- or filter-graph through filter nodes
from the source to the sink. During e.g. playback, the
source is a movie file that will be demultiplexed and
decoded to video and audio data in the filters and finally
rendered in the video and audio sinks. A similar setup
can realize also to grab from an image source to the
harddisk. Network transparency is achieved by sources
that can read media data from the network and sinks
that can write to the network. The ‘NMM’ presented
in [Loh05] allows even more advanced cross-network
operation, enabling the nodes of the filter-graph to
transparently be instantiated on different computing
nodes.

MMFs realize graph dataflow processing in separate
threads and an arbitrary number of custom filter nodes
can be inserted along the processing path, thus general
vision algorithms can be implemented. As MMFs were
designed to record or playback from a single source,
achieving such goals programatically can be solved
only with a few lines of code. Building a custom pro-
cessing graph with proper error checking from scratch,
however, requires significantly more coding effort. It
is even more problematic to have more than one source
in the graph (which is, however, required for multiview
systems), because synchronization of different source
paths with each other and possibly with the main thread
has to be taken care of manually within the given frame-
work. Furthermore, as the main purpose of MMFs is

Journal of WSCG

to “sink” the data to the screen (or harddisk), getting
the processed data out of the graph can also be prob-
lematic. These facts, unfortunately, mean that low-level
software aspects of algorithm implementation will have
increased importance and have to be mixed up with
“pure” algorithm implementation — [Wim05], for exam-
ple, deals with the problem of implementing a stereo-
scopic player and multiplexer within Microsoft’s Di-
rectShow framework.

MMFs can be considered as a subset of Synchronous
Data Flow (SDF) systems, with a specialized scope
for multimedia processing. SDF is a special case of
data flow in which the number of data samples pro-
cessed by each node (filter) on each invocation is spec-
ified a priori [LM87]. SDF graph programming en-
vironments are widely used for DSP and FPGA pro-
gramming and special extensions have been proposed
in [SKO2] for problems encountered in RT vision. SAI
[Fra04] enhances data flow stream processing into a
hybrid (shared memory and message passing) design
framework for distributed asynchronous parallel com-
putation targeted to realize “Immersipresence” appli-
cations. Example vision applications using the SAI
paradigm clearly demonstrate that image processing
enormously benefits from parallel processing and that
multithreading is not an option, but a “must have”.
The main difference between ‘libugrab’ and the SAI
programming paradigm is that while SAI is a design
methodology for whole applications, based on a data
flow-like code execution model, ‘libugrab’ serves as
fast algorithm prototyping tool retaining scalability at
the code “near” to the imaging hardware.

Finally, distributed system frameworks (DSFs)
should also be mentioned. The purpose of DSFs is
to make it possible to implement algorithms or appli-
cations distributed on a network, utilizing resources
wherever they are available. Resources in this context
are interpreted in a broad sense, meaning not only HW
objects, but software entities implemented on a specific
network node, too. There are a large number of such
frameworks available and it is impossible to review
even a fair portion of them here, for an overview over
DSF programming models and middleware we refer
to [BCPO7]. CORBA [CORO07], for example, is an
object-oriented middleware and lets programmers in-
stantiate and use objects in a network transparent way.
Such general frameworks can be used to implement
e.g. MMFs; this is the case with DirectShow, which is
based on COM [Tec07].

3 DESIGN RATIONALE

The data flow paradigm can naturally be used to
describe stream-oriented image processing systems,
therefore it forms the basis for ‘libugrab’. In order
to allow the construction of the grabbing graph with
minimal programmer interaction, we have to limit the

ISSN 1213-6972

possible data flow graph structure. In the following we
derive the graph configurations allowed by the system,
that are complex enough to model the vision pipeline of
a large number of classes of online multiview systems
and at the same time simple enough to facilitate
automatic graph construction.

3.1 An effective multithreaded applica-
tion setup

Let us consider a simple monocular handtracking
system that could be used as a simple alternative
mouse-like input device. The input is read from a
DV-camcorder, which observes the user’s hand from
above. Low-level processing consists of decompress-
ing the DV frames to grayscale images and subtracting
the background in order to get a binary mask of the
user’s hand. A high-level processing step follows
that determines the 2D-position and gesture of the
hand based on the hand-mask. A naive sequential
implementation of such a system is depicted in Figure
1.

Taw e
source low-level high-level
handler processing processing
camcorder HW decompress to Y & gesture recog. &
interface background subtraction position
react to
event

Figure 1: A naive sequential main loop implementa-
tion of a simple mouse-like visual interface. Tyw is the
time needed to get the DV-frame from the camcorder
to main memory and 7y is the duration of the low-level
processing.

There are two problems with such an implementa-
tion. First, one theoretically has to wait Ty time for
the next raw frame (wait until the start of the next full
frame and then wait until that frame arrives). Second,
Tr1 delay happens before high-level processing can take
place, as the raw frame has to be converted to some ap-
propriate format for the actual low-level processing and
then the low-level processing still has to be carried out.
This results in at least Tyw + Tz, 1ag for the user. Fortu-
nately, in the case of push-sources (like camcorders or
DCAMs in isochronous mode) Tyw can be neglected,
as the OS device drivers adapt to the nature of the imag-
ing source and buffer the raw frames. 7y, however, re-
mains, though clearly could be drastically reduced or
even eliminated on modern multi-core systems, simply
by doing the low-level processing in a second thread.

A subtle additional problem is that if we would like
to update our example system to multiview, e.g. to tri-
angulate the position of both hands to allow 3D inter-
action, the individual Tyw + Ty; lags are additive, see
Figure 2.

Journal of WSCG

T Twn
source source
ol andier 1 [
Lin Toi
low-level low-level
processing n|~ 7

high-level react to
processing event

Figure 2: In the case of a multiview system the Tyw +
T;1 individual lags are additive.

Naturally, the solution to these problems is to create
a separate grabbing thread for each source. These grab-
bing threads should carry out the low-level processing
and store their results in buffers. The high-level algo-
rithm runs in its separate thread and accesses the pre-
processed data in a thread safe way, c.f. Figure 3. This
setup has the extra benefit that it fits the operation mode
of push-sources and does low-level processing on de-
mand as the data arrives. It is clear that efficient mul-
tiview systems all have such a setup, thus the creation
of such systems should be possible applying the same
pattern.

thread /
source low-level thread
handler / processing / synchronization
logic
: high-level
Tread 7 processing
source low-level
handler n processing n react to
event
|

Figure 3: Efficient multithreaded setup of a vision sys-
tem. The thick arrows represent the high-level thread
that takes input data from the low-level threads.

Vision systems should solve the given computer vi-
sion problem they were designed for. Implementing a
multithreaded setup for an online system plays an im-
portant role in this task. In the following we will exam-
ine what parts of the full solution should come neces-
sarily from the problem domain addressed by the sys-
tem and what tasks are common enough to be abstracted
away into a library that allows for the automation of set-
ting up the systems described above.

3.2 Changes in the low-level thread

Let us examine what happens if we change different al-
gorithmic aspects of a low-level processing thread. We
will do this by modifying the initial setup of the 2D
mouse-like interface example described previously.

ISSN 1213-6972

First, suppose that the camcorder is changed to a
bayer format DCAM, in order to gain higher resolu-
tion and framerate. This change does not have any
influence on the grayscale background subtraction
step. The camcorder and the DCAM, however, have
fundamentally different raw frame formats, thus
the “raw-to-algorithm-input” conversion has to be
reimplemented. On the other hand, if we change the
background subtraction to skin-color segmentation in
HSV-space, both the “raw-to-algorithm-input” and the
actual mask-generation algorithm have to be recoded.
These problematic algorithm parts are illustrated in
Figure 4.

bayer DCAM convertto Y &
interface background subtraction
changing imaging HW

camcorder HW decompress to Y &
interface background subtraction

' changing algorithm
decompress to HSV & |

low-level
processing

source
handler

camcorder HW

interface skincolor segment

Figure 4: Modifying the low-level thread. Changes in
the source and the processing algorithm lead to differ-
ent reimplementation issues; reimplementing the con-
version code, however, is necessary in both cases.

It follows from the above facts that conversion from
raw source data to the appropriate low-level algorithm
input can be implemented independently both from the
type of the source and the actual low-level algorithm.
As long as the source and algorithm use a common
specification (that of the library) to specify their out-
put and input, conversion code can be automatically
selected and provided by the library. Moreover, in-
terfacing to different sources is also independent from
the processing code, therefore code to handle different
sources should also be reused.

ringbuffer

OpenGL
/'or CUDA
source type low-level
handler conversion processing |~
display
(compressed) file
network

Figure 5: Different uses of the results of the low-level
thread. They are all independent of actually what kind
of processing was carried out in the low-level box.

As shown in Figure 5, there are several possible ways
to further process the results of the 3 stages of the low-
level thread. It should be noted, however, that if the size
(width, height, padding) and the endianness of the result
are known, any of these additional processing possibili-
ties can be abstracted away by a “sink” (it is not exactly
true for OpenGL sinks, but if the types are assumed to

Journal of WSCG

be known a priori before operation, this problem can be
taken care of during sink initialization). Thus, different
sink functionality can also be accumulated in the library
and reused.

In accordance with the above discussion the final
low-level thread can be decomposed into 4 steps as il-
lustrated in Figure 6. This decomposition scheme has
several benefits:

e because of the fixed size of the graph nodes, such a
graph can be created automatically by a framework
if the source, low-level algorithm and the sink are
given,

e as sources and sinks are automatically provided, the
relevant work can focus in implementing the low-
level algorithm,

e such a framework does not necessarily have to be
used with imaging sources and thus, for image pro-
cessing.

only low-level
processing

source type .
handlerH conversion
Figure 6: Final decomposition of the low-level thread.
All but the low-level box should be provided by the li-
brary.

An important aspect not addressed by the scheme of
the several 4-stage low-level and one high-level threads
is data multiplexing. Disparity maps, for example,
could be computed in the background from two images
rectified in low-level threads, before actually reaching
high-level processing. As in the design discussed so far
the low-level threads are independent from each other,
this is not possible. To alleviate this problem, multi-
plexers (see Figure 7) should also be provided by the
library. As multiplexers have sinks, they can be cas-
caded arbitrarily.

subgraph ringbuftfer|
stub / sink /

subgraph ringbuffer|
stub n sink n

Figure 7: Multiplexing several low-level stubs with ring-
buffer sinks (stubs are the subgraph composed of the
source, converter and low-level processor nodes of the
low-level thread).

3.3 Rationale summary

‘libugrab’ uses a two-stage model for per node process-
ing: there is a low-level and a high-level stage. Low-
level processing is driven by the capturing device run-
ning in its own thread. Any algorithm that is used in

109 ISSN 1213-6972

depth map depth map r/ ‘/
NODE 1 y NODE 2
@ depth map 1..3
[\ NODE 3
depth map |

Figure 8: A relatively complex 3D reconstruction system easily realizable by ‘libugrab’.

the low-level stage is assumed to be fast enough to be
executed between successive frames. The high-level
stage depends on one or more low-level preprocessing
results and is carried out when necessary data arrives.
Low-level output can be used directly by the high-level
stage or multiplexers can be employed as an additional
intermediate step to combine several low-level results
for high-level processing. The multiplexing and the
high-level step are detached from the low-level threads
through the use of buffers, consequently there are no
assumptions made about its execution time. Network-
transparency is achieved similarly to MMFs by allow-
ing (possibly multiplexer) sinks to write to the network
and sources to read from the network. Data stream-
ing directly supported by ‘libugrab’ is downstream:
from the imaging sources to final high-level processing
thread, where some relevant result should be computed.
An example for a relatively complex system that is eas-
ily realizable is depicted in Figure 8.

4 IMPLEMENTATION DETAILS

In the following we describe some parts of the library
to provide better insight into its internal workings.

4.1 Type system

Types build the fundamentals for automatic graph
building. Determining whether two graph nodes can be
connected is based on checking their output and input
types. Types are stored in the type registry, in distinct
“type-trees”. Type-trees are a hierarchical collection of
connected types. Two types can be equivalent, have a
subtype relationship between them or no relationship
at all. Leaf elements in the type-trees are actual types,
other elements are general types. In a created graph all
input and output types should be leaf-types. In order to
allow users to implement their own sources with output

Journal of WSCG

[DV_PAL_frame][DV_NTSC_frame| [RGB_8bit| [RGB_16bit]

[RGB_24bit] [BGR_24bit] [BGRA_32bit] [RGB_48bif]

Figure 9: Example of “type-trees” in the type registry.

types not included in the library, custom types can be
added to the registry. The relationship of some built-in
types is shown in Figure 9.

4.2 Automatic graph building

Maybe the most important feature of ‘libugrab’ is the
automatic graph-building. In contrast to other systems,
the structure of realizable graphs is restricted, this, how-
ever allows automatic creation of low-level subgraphs
with one function call. A graph can hold any number
of subgraphs, the multiplexers with their sinks count as
subgraphs in this regard, too.

In order to create a subgraph (without multi-
plexer output) the user must specify the source,
the low-level processing algorithm and the sink.
Sources are specified by string, for example
‘PUSH1394_00097eff51200083’ refers to our firewire
bayer DCAM with GUID ‘00097eff51200083° and
‘/dev/v4l/video(’ to a connected webcam. This means
that by changing the source string literal (possibly by
taking it from the command-line) one can easily use
different sources for processing.

The essence of the subgraph is the processing al-
gorithm. This is the only important piece that the
user has to provide. It can simply be done by inher-
iting from the Callback or Inplace_callback
classes. The callback should specify its input type along

ISSN 1213-6972

with the desired storage properties: alignment of the in-
put data pointer and row padding. These two parame-
ters are needed, since special processing implementa-
tions, e.g. using SSE2 instructions cannot work with
arbitrary alignment and padding. When there is no need
for callback processing in the subgraph, the user should
simply specify needed type and storage properties.

Finally, a sink must be specified. Either the user in-
stantiates one implemented in ‘libugrab’ or can sublass
Memory_sink or Nonmemory_sink to provide her
own. These two types of sinks are distinguished in or-
der to allow “optimal” subgraph building without extra
buffering between the nodes. A memory sink (e.g. a
ringbuffer) provides its own data area where it requires
the result of processing to be placed, in contrast to e.g.
a sink that can flush its input to network on the fly.

The library maintains a registry of source factories,
which are all queried whether they can create an in-
stance based on the source ID string. If one is found,
it is used to create the source. The source gets the re-
quired processing input as a hint. If possible, it can
obey this request, however, it does not have to. If the
source does not provide the requested type, a converter
is created with the help of the converter factories. The
user can register her own sources or converters that
will be automatically picked up by the subgraph cre-
ation process. Finally, the callback (if any) and the sink
are initialized and the subgraph is ready for process-
ing. Subgraphs connected to a multiplexer can be sim-
ilarly created by delayed initialization of the subgraph
stubs. For example, to create all the low-level graphs on
‘NODE 4’ in Figure 8 the user has to make 4 function
calls: 3 times adding the appropriate stubs with the net-
work sources and finally adding the multiplexer with its
sink.

4.3 Getting data out of the graph

Until now, we have created all the subgraph process-
ing threads. The main thread depending on the back-
ground threads still has to be notified about the fact
that data has arrived for processing. In order to al-
low this, the subgraph nodes can specify signals (based
on condition variables to avoid missed signals), which
can be subscribed to by another (usually the main)
thread. Using these signals and a special helper class
(the Signal_multiplexer) the thread in question
can wait for any, a subset or for all subthreads to pro-
duce data. In order to avoid the starvation of slower
sources, the Signal_multiplexer checks for ar-
rived signals in a Round Robin fashion. Please note,
that this signaling scheme allows for not only waiting
for new data, but any “interesting” event: e.g. the end of
the learning phase of background subtraction or frame-
drop.

There is a special signal, the graph error signal, which
must be subscribed to if any other signal of the graph is

Journal of WSCG

subscribed to. This is enforced in order avoid deadlocks
if the thread listened to does not produce data any more
for some reason.

4.4 Error handling

As mentioned above, every graph has an error signal. It
must be signaled by any subgraphs of the graph if an
error occurs. This way, the graph can stop all of its sub-
graphs in an exceptional case. If a graph is spanning
multiple computing nodes, the error condition is propa-
gated through the network on special “service” sockets
created by the involved network sinks and sources.

4.5 Pull sources — offline processing

As previously argued, it is very useful for algorithm de-
bugging or evaluation purposes to be able to process
prerecorded input. The user can specify video-files, di-
rectories with images, etc. as sources for this purpose —
simply by changing the source ID string. In this case, a
special two-threaded pull-source is created that pumps
data into the graph. One thread reads the next data
chunk, the other pushes the data down the subgraph.
Framedrop is avoided by suspending the reader thread
until the sink of the subgraph finishes processing.

S EXAMPLES

The first example application of the system was to
implement multi-node/multi-source grabbing based on
‘libugrab’. Actually the main implementation effort
was to create a special writer multiplexer. This special
writer multiplexer allocates as large ringbuffers for the
local sources as possible and simply writes the arriving
frames with their timestamps (timestamps are created in
the sources for the data coming from the devices) into a
common file. After recording, frames with the smallest
time difference are merged across the network from the
common files into streams that have the same number
of frames. This was implemented as an extra function
(that is why we have created an extra application for it),
could have been done theoretically in the sink destruc-
tors, though. In order for this simple scheme to work,
we had to synchronize the clocks on our local network.
This has been done by ‘ntpd’, as suggested in [Loh05].

We used our library to implement both the 2D and
3D interaction systems mentioned in the Design Ra-
tionale with near-infrared background subtraction and
skincolor segmentation, too. ‘libugrab’ was also used
to create a 3-view model-based handtracking system
based on adaptive color segmentation. The segmenta-
tion was implemented as a callback and the skincolor
distribution was updated based on the registered hand-
model area in the camera images. As the model based
registration was not as fast the grabbing sources, this
update had to be asynchronously injected into the sub-
graph threads. Though ‘libugrab’ does not support up-
stream data out-of-the-box, the update was safely real-

ISSN 1213-6972

ized by using mutexes for the distribution access in the
implemented callback.

We have found the greatest use of the library dur-
ing the development of our RT markerless handtrack-
ing system ([SKSKO7]). The first prototype setup con-
sisted of 3 cameras with preprocessing on 3 Linux PCs
and a master Windows PC carrying out the high-level
algorithm. Later, when we optimized both low- and the
high-level processing, we were able to migrate the sys-
tem seamlessly to a single Windows computer thanks
to ‘libugrab’.

Finally, we also used the library to implement a toy
surveillance system that consisted of 5 PCs in 5 rooms
and a master PC. Background subtraction was used
to detect whether someone was present in any of the
rooms. The slave PCs sent just a boolean value to mas-
ter, simulating programmable TCP cameras.

6 CONCLUSIONS AND FUTURE
WORK

We introduced the design and implementation of ‘libu-
grab’, a versatile grabbing library. The main design
goals were efficiency and to allow researches to concen-
trate on the scientifically significant parts of algorithm
development. We demonstrated with several examples
the ease-of-use of our library.

We plan to release the full library under BSD-
license in the near future (apart from the code that uses
GPL/LGPL licensing). In order to be able to do this, the
most important task is to create better documentation.
Releasing the library would also allow for anyone to
participate in the development effort and contribute new
ideas. Please visit our website at ‘http://cg.cs.
uni-bonn.de/project-pages/libugrab/’.

We have several ideas to improve the current imple-
mentation, like driver programs configurable by plugins
for simpler graphs and to allow subimage processing as
data is streamed from the cameras, as opposed to the
current frame oriented implementation.

REFERENCES

[BCPO7] Alex Buchmann, Geoff Coulson, and Nikos
Parlavantzas. http://dsonline.computer.
org/middleware/, December 2007.

[COR07] CORBA. http://www.omg.org/, De-
cember 2007.

[Dir07] DirectShow. http://msdn2.
microsoft.com/en-us/library/
ms783323.aspx, December 2007.

[EBNT07] A. Erol, G. Bebis, M. Nicolescu, R.D.
Boyle, and X. Twombly. Vision-based hand pose esti-
mation: A review. 108(1-2):52-73, October 2007.

[Fra04] Alexandre R.J. Francgois. A hybrid architec-
tural style for distributed parallel processing of generic

Journal of WSCG

data streams. In Proceedings of the International Con-
ference on Software Engineering, Edinburgh, Scot-
land, UK, May 2004.

[Gmb0O7] Advanced Realtime Tracking GmbH.
http://www.ar—-tracking.de, December
2007.

[GSt07] GStreamer. http://gstreamer.
freedesktop.org, December 2007.

[LibO7] Open Source Computer Vision Library.
http://www.intel.com/technology/
comput ing/opencv, December 2007.

[LM87] Edward A. Lee and David G. Messerschmitt.
Synchronous data flow. In Proceedings of the IEEE,
Vol. 75., No. 9, September 1987.

[Loh05] Marco Lohse. Network-Integrated Multime-
dia Middleware, Services, and Applications. PhD the-
sis, Department of Computer Science, Saarland Uni-
versity, Germany, June 2005.

[SK02] Dirk Stichling and Bernd Kleinjohann. CV-
SDF - a model for real-time computer vision appli-
cations. In WACV 2002: IEEE Workshop on Applica-
tions of Computer Vision, Orlando, FL, USA, Decem-
ber 2002.

[SKSKO7] M. Schlattmann, F. Kahlesz, R. Sarlette,
and R. Klein. Markerless 4 gestures 6 dof real-time vi-
sual tracking of the human hand with automatic initial-
ization. Computer Graphics Forum, 26(3):467-476,
September 2007.

[Sys07] VICON Motion Systems. http://www.
vicon.com, December 2007.
[TecO7] Component Object Model Technologies.

http://www.microsoft.com/com/, Decem-

ber 2007.

[uniO7] unicap. http://unicap-imaging.org,
December 2007.

[Wim0O5] Peter Wimmer. Stereoscopic player and
stereoscopic multiplexer: a computer-based system
for stereoscopic video playback and recording. In
Stereoscopic Displays and Virtual Reality Systems XII,
Proc. of SPIE Vol. 5664A, pages 400—411, 2005.

ISSN 1213-6972

	wscg2008_Journal_Numbered.pdf
	C31-full.pdf
	C31-full.pdf

	G23-full.pdf

