
Progressive Combined B-reps – Multi-Resolution Meshes for

Interactive Real-time Shape Design

Sven Havemann1, Dieter W. Fellner1,2

1 Institute of Computer Graphics and Knowledge Visualization (CGV), TU Graz, Austria
2 GRIS, TU Darmstadt & Fraunhofer IGD, Germany

ABSTRACT

We present the Combined B-rep (cB-rep) as a multiresolution data structure suitable for interactive modeling and

visualization of models composed of both free-form and polygonal parts. It is based on a half-edge data structure

combined with Catmull/Clark subdivision surfaces. In addition to displaying the curved parts of the surface at an

adaptive level-of-detail, the control mesh itself can be changed interactively at runtime using Euler operators. The

tessellation of changed parts of the mesh is incrementally updated in real time. All changes in the mesh are logged, so

that a complete undo/redo mechanism can be provided.

We introduce Euler macros as a grouping mechanism for Euler operator sequences. The macro dependency graph, a

directed acyclic graph, can be used for creating progressively increasing resolutions of the control mesh, and to guide

the view-dependent refinement (pcB-rep). We consider Progessive Combined B-reps to be of use for data visualization

and interactive 3D modeling, as well as a compact representation of synthetic 3D models.

Keywords

shape editing, interactive 3D modeling, B-rep, Catmull/Clark, Euler operators, tesselation on the fly, selective update

1 INTRODUCTION

The basic motivation for the work presented in this pa-
per was the search for a surface representation that ren-
ders quickly, has adequate – not too many and not too
few – degrees of freedom, and, most importantly, can also
efficiently cope with incremental shape changes through
some kind of selective update scheme. Our assumption
was that operator sequences like the collapse/split se-
quences known from progressive triangle meshes might
be useful for interactive 3D modeling as well.

Progressive meshes as introduced by Hoppe in 1996
[Hop96] are based on an invertible sequence of edge col-

lapse operations. In each step, a pair of vertices is merged
into one, thereby removing one vertex and two triangles
from the triangulation. The choice of the edge to be col-
lapsed and the position of the merged vertex is determined
by a separate algorithm, for instance using quadrics, as
proposed by Garland and Heckbert [GH97]. The simplifi-
cation routine usually works in a preprocessing step, pro-
ducing as output the sequence of edge collapses together
with a coarse base mesh. This turns a triangle mesh into
a multiresolution mesh, as the level of detail can now be
freely adjusted by traversing the edge collapse sequence
in reverse. Starting from the coarse base mesh, vertices
are successively inserted back into the mesh using the in-
verse operation, the vertex split. A serious drawback of
this approach is that the simplification routine has no in-
formation about the intended structure of the 3D model,
and it has, in case of synthetic shapes, no connection to
the modeling history. Consequently, symmetries and reg-
ularities in a simplified model are broken, and even a quite
regular mesh is turned into a “triangle soup”.

This can be avoided if more control over the split se-
quence is granted to the user: The application generating
a mesh, i.e. the modeller, can also automatically generate
the refinement operations from the modeling history. It
can be supervised by the user during the modeling pro-
cess, so that a very coarse LOD still exhibits some regu-
larity. Thus, we were looking at ways for direct authoring

of multiresolution models.

1.1 Combined B-reps

Triangles are the smallest common denominator for repre-
senting polyhedral objects, and also the lowest level of ab-
straction. For higher-level representations, primitive ob-
jects, NURBS, or implicit functions are used, which have
fewer DOFs but also lack fine-grained control.

As a compromise, we have chosen to use B-rep meshes,
based on a fairly conventional half-edge data structure.
Unlike triangles, B-rep faces may have an arbitrary num-
ber of vertices. In addition, our implementation also sup-
ports rings so that a face can have one or more holes. As
B-rep faces may have holes and do not have to be con-
vex, they need to be triangulated in order to render them.
Another way to look at B-rep faces is that they are just
a method for grouping several triangles together. From
this point of view, B-rep edges are feature edges, which
are distinguished from artifact edges in the face interior,
introduced by the triangulation algorithm.

The same approach can be taken to integrate free-form
surfaces with B-reps. The combination of polygonal and
free-form geometry is accomplished by introducing one
additional bit with every B-rep edge, to distinguish be-
tween sharp and smooth edges. This is somtimes re-
ferred to as edge-tagged B-rep, e.g. by Bolz and Schröder
[BS02a].

In regions with only sharp edges, B-rep faces are ren-
dered using standard polygon rendering, while in smooth
regions the B-rep is regarded as a control mesh for Cat-
mull/Clark subdivision to create smooth free-form shapes.
Consequently, the resulting data structure is called Com-

bined B-rep (short cB-rep), as it bridges the gap between
polygonal models on the one hand and free-form model-
ing on the other. Its expressive power was demonstrated
in the field of architectural reconstruction at VAST 2001
[HF01].

This approach follows the above argument in that the
tessellation is considered a transient artifact which can
be quickly (re-)generated on demand, and may also be
deleted if no longer needed. Based on an efficient scheme
for tessellation on the fly, this technique makes it possible
to cope with changes of the control mesh in real time.

B-reps provide a well-defined interface for mesh ma-
nipulation, the Euler operators. A well-known, inher-
ent property of Euler operators is their invertibility, use-
ful e.g. for implementing the undo-functionality of a 3D
modeler. But in order to use this invertibility in interactive
applications, it needs to be intertwined with update strate-
gies for tessellation data. At this point, the contribution
of this paper is to provide an example of a higher-level
shape representation that permits incremental updates of
the tessellation.

It should be noted that B-reps and Euler operators com-
bined with Catmull/Clark subdivision is by no means the
only possible design option for implementing changeable
objects. Reasonable alternatives to Euler operators do ex-
ist, most notably the Splice and EdgeCreate from Guibas
and Stolfi [GS85] and the InsertEdge/VertexCreate oper-
ations introduced by Akleman et al. [ACS02].

The choice of Catmull/Clark surfaces was motivated by
the fact that they are highly compatible with B-rep control
meshes, as the mesh uniquely defines the free-form sur-
face. The overhead of additional data is only one sharp-
ness bit per half-edge. This is an advantage over possi-
ble alternatives such as NURBS or non-uniform subdivi-
sion surfaces [SZSS98]. With NURBS in particular there
are the well-known problems of maintaining (geometric)
continuity with an irregular patch layout. This impairs
their usability in interactive design, especially in compar-
ison with subdivision surfaces, where – due to quite fast
tesselation algorithms – practically instant feed-back can
be guaranteed for interactive modifications involving hun-
dreds of control mesh faces.

To this end, our system is to be seen as a proposal
for a prototype architecture, deliberately based on main-
stream technology that is widely known and well under-
stood. With B-reps and Catmull/Clark surfaces as under-
lying concepts, it contributes important technical prereq-
uisites necessary for interactive design:

• incremental update of a multi-resolution tessellation
• to cope with interactive mesh modifications,
• while still supporting efficient adaptive display.

Please note that we do not use any GPU-based techniques,
for the following three reasons:

• CPU-based algorithms can access finest surface detail
• The GPU can still be used for various other purposes
• GPU-sation might make some things faster, but this

adds no new quality to the issues discussed here.

1.2 Related Work

When designing an object representation for 3D models,
there is a certain trade-off between ease-of-manipulation
and rendering efficiency. For many surface representa-
tions, e.g. NURBS, efficient adaptive rendering schemes
were developed, from Kumar’s torpedo room [KML96] to
the fat borders from Balázs et al. [BGK03]. Alternatively,
surface models can be tessellated and represented by tri-
angle soups, or using simplification and multi-resolution
meshes. An obvious drawback of all these approaches is
that if a shape is changed, the costly preprocessing has to
be re-done. Our proposal is to intertwine the preprocess-
ing with the interactive display.

To our knowledge, the subject of designing a shape
representation especially for changeable shapes contain-
ing both free-form and polygonal parts has received rel-
atively little attention so far as a subject in its own right.
It is of course also treated in the large body of literature
on interactively deformable models. These approaches
are all based on some kind of underlying shape repre-
sentation that permit real-time manipulation, e.g. triangle
meshes [WW94a], [WW94b, Gai00, GD99], implicit sur-
faces [Baj96, BCX95, HQ01, DTG96, MCCH99], volu-
metric simplicial complexes [CFM∗94], discrete levels of
detail [DDCB01], subdivision solids [MQ02, McD03], or
even point clouds [PKKG03]. The focus of these papers
though is in most cases more the modeling functional-
ity than the underlying shape infrastructure. The subject
of incremental tesselation updates for deforming NURBS
surfaces is only treated by Li and Lau [LL99] in greater
detail.

For Catmull/Clark surfaces, Bolz and Schröder
[BS02b] report rates of 5.5 million quads that can be
generated using their adaptive tesselation scheme. This
raises the question of whether caching the tesselation data
is worthwhile altogether, as 180K quads can be created at
30 fps with this approach. But doing this imposes a 100%
CPU load – while with our approach for progressive
tesselation on the fly, no further computation is necessary
for adaptive display, once the caches are filled. There
is also a body of literature on editing multi-resolution
triangle meshes, summarized e.g. in [KBB∗00]. Using
a decomposition operator, a fine-to-coarse hierarchy is
established, and the shape can be edited at any level.
Shape detail is transferred back on the shape using the
inverse operator, e.g. by subdivision. The correspondence
between different levels is maintained during modeling,
either through a semi-regular connectivity (cf. [ZSS97]),
or via local parametrizations like in [KBS00].

Our approach differs from these in that we restrict the
modeling operations to the base mesh. It captures the

complete shape information, there are no detail coeffi-
cients. The obvious drawback is that with ’pure’ Cat-
mull/Clark, there is no fine level feature editing; no edit-
ing of the basic shape while preserving high-frequency
detail is possible.

These operations are quite useful for sculpting (’virtual
clay’), yet less applicable in high-precision applications
or for creating regular shapes (cf. Figs. 12-15). Yet we
think our Combined B-reps might be suitable for sculpt-
ing as well: Note that we provide a complete set of mesh
construction operators. They maintain topological con-
sistency, but impose no geometric restrictions. Feature
editing can be built on top of Combined B-reps through
locally refining the control mesh, possibly in a manner
similar to how Biermann et al. [BKZ01] computed the
control mesh of approximate subdivision CSG solids.

One major problem when editing multi-resolution
meshes is to maintain a consistent tesselation. Ap-
proaches that maintain several levels of detail explicitly
have limitations with large-scale modifications, espe-
cially with genus changes. Cheng et al. present a quite
interesting approach in [CDES01] for a consistent adap-
tive triangulation of a skin surface, basically an implicit
surface derived from a set of moving weighted points,
e.g. spheres. Their mesh update is based on local oper-
ations (collapse/split), but also has operations to change
genus. This permits smooth transitions even between
objects that differ in genus. Their approach could eventu-
ally be extended to produce a multi-resolution mesh, i.e.,
when the modifications are carried out simultaneously on
different levels.

But all approaches that explictly manipulate individual
triangles (e.g. [GD99, Gai00]) suffer from the fact that (i)
with large meshes, to bother with single triangles is ineffi-
cient, and (ii) local modifications interfere with rendering
optimizations, e.g. triangle strip generation. Our approach
does not have these problems: It is strictly top-down on
a per-patch, per-face basis, where the Catmull/Clark sur-
face is regular and the tesselation scheme can be highly
optimized. Irregular cases are captured on an intermediate
level with our technique of using subdivision rings (cf. Fig
1). Second, the technique of multi-resolution rendering
by patch sub-sampling permits to pre-compute optimized
triangle strips, avoiding cracks in the tesselation even with
arbitrary depth differences of neighbouring faces.

The contribution of this paper, which we think is novel,
is therefore a technique to maintain consistency across all
levels even when the control mesh has changed after the
execution of an arbitrary sequence of Euler operations.

2 COMBINED B-REP MESH: DATA

STRUCTURES

Combined B-reps are based on a conventional half-edge
data structure. Vertices, half-edges and faces are imple-
mented as C++ classes as shown in Table 1, much in line
with Kettner [Ket99]. The highlighted items, Vertex::p

and Halfedge::sharp, are geometric data and can be ma-
nipulated directly. Topological data are accessible only

to Euler operators which maintain the topological consis-
tency of the mesh during manipulation. The set of Eu-
ler operators used in our system restricts the mesh to be
an orientable 2-manifold mesh without boundaries. This
guarantees that all pointers of the incidence relation are
valid. The limitation to manifold meshes considerably
simplifies some consistency issues mentioned below in
Section 4.1. The generalization to non-manifold topol-
ogy is subject to future work, but it can be based on the
same general approach.

Halfedges form a singly linked list on the face bound-
ary via a next-pointer. All half-edges of the mesh are
stored in a single array, and they are allocated in pairs.
Consequently, a half-edge with an even array index finds
its other half, its mate, at the next array position, or vice
versa, which makes an explicit mate pointer redundant.

class Vertex {

Edge* oneEdge;

int status;

Vec3f p;

VertexType type;

int ring;

};

class HalfEdge {

Vertex* vertex;

Edge* next;

Face* face;

int status;

bool sharp;

int patch;

int sourceId;

};

class Face {

Edge* oneEdge;

Face* nextring;

Face* baseface;

int status;

FaceType type;

int ring;

ChunkID triangles;

ChunkID sharpTriangles[4];

ChunkID sharpPoints;

short depth;

Vec3f sphereMid;

float sphereRad;

Vec3f normal;

float normalDist;

float normalCone;

};

Table 1: C++ classes for vertices, edges and faces. For
each class, the topological data come first, followed by
geometric data (bold), and the data to store the dynam-
ically generated tessellation. For culling, faces contain
also a bounding sphere and a normal cone.

A face is either a baseface (CCW orientation) or a ring

(CW orientation) within a baseface. For a face with no
rings, nextring is NULL and baseface points to the face
itself. Faces can have any number of vertices and rings.

2.1 Memory Management for Dynamic

Data

An efficient memory management strategy is crucial for
the overall performance of a highly dynamic interactive
system where the data may quickly vary.

The mesh itself (see Table 2) consists of STL-like con-
tainer data structures (C++ templates) that support fast al-
location and de-allocation: skipvectors and skipchunks. A
skipvector is basically an array of items each containing
an integer field status to distinguish between active (sta-
tus ≥ 0) and inactive (status < 0) items. Active items
may freely use the status field, as long as it remains non-
negative; we abuse the status fields from Table 1 for this

class PCB-repMesh {

skipvector<Vertex> vertices;

skipvector<HalfEdge> edges;

skipvector<Face> faces;

skipchunk<GLuint> triangulation;

skipchunk<GLuint> sharpTriangles;

skipchunk<Vec3f> sharpPoints;

skipvector<CCPatch> patches;

skipvector<CCRing> rings;

skipchunk<Vec3f> ringpoints;

skipvector<Record> records;

skipvector<EulerMacro> macros;

};

Table 2: C++ class representing the actual Combined B-
rep mesh. Triangulation and Patch data are explained in
Section 3. All data is arranged in arrays that support fast
selective element deletion (see Section 2.1).

purpose. Inactive items are considered as deleted, and
the (then negative) status field is used for a linked list of
deleted items. An allocation request thus yields the last
deleted item for re-use, or the item at the end of the ar-
ray if there is no free item. The constructor is executed
only once: when an item is allocated for the first time.
Subsequent allocation/de-allocation is done without any
constructor/destructor calls, but just by changes to the sta-

tus field. If the reserved space is used up, the array size
is doubled, possibly leading to a relocation in memory. In
this case, all pointers to array elements need to be updated
by adding a constant memory offset. This obviously hap-
pens only log(n) times for an array of size n, with total
update cost O(n logn).

A skipvector is basically an array with holes. The great
advantage of arrays is that cache coherence is maximal
when iterating over all elements, which is a common oper-
ation with meshes. In our experience, performance drops
increasingly due to memory fragmentation when the new

and delete operators of C++ are used (as with some im-
plementations of the STL standard allocator). Skipvec-
tor iterations require an additional test if(item→status≥0)

to skip over inactive items. This is a space-time trade-
off: time could be saved by interlinking only the active
items. This would need more space and make alloca-
tion/deallocation more expensive, but might save time in
iterations. Skipvectors instead provide a garbage collec-
tion that makes the active items contiguous by sorting the
inactive items to the end of the array. This implies also a
pointer update.

Skipchunks are much like skipvectors, but instead of
single array elements, whole chunks of consecutive data
can be allocated. When de-allocating a chunk, it is only
marked as unused. Garbage collection is done automati-
cally when the number of unused items is larger by a con-
stant factor than the number of used items. In our case,
the factor is 5.

3 COMPUTING THE TESSELATION

The connectivity of the mesh together with the distri-
bution of smooth and sharp edges determine how faces
are tessellated and rendered. The appropriate tessellation
method is chosen on a per face basis, depending on a clas-
sification of vertices and faces. The tessellation is gener-
ated from the input mesh and handles to it are stored in
fields of the appropriate entities, i.e. vertices, edges, or
faces.

3.1 Vertex and Face Classification

Vertices are classified according to whether they have less
than two, exactly two, or more than two incident sharp
edges (see Table 3). The face classification (Table 4) de-
pends on the vertex classification, on the edge types and
on whether the face has rings. We have basically adopted
the classification rules from Hoppe et al. [HDD∗94], but
we have introduced sharp faces as additional class which
is treated specially (see Section 3.5).

Smooth all incident edges are smooth,
control point of the freeform surface

Dart 1 sharp edge,
endpoint of a crease curve

Crease 2 sharp edges,
control point of a crease curve

Corner more than 2 sharp edges, interpolated

Table 3: Vertex classification according to the number of
incident sharp edges

Smooth no rings,
at least one smooth edge

Sharp planar, may have rings,
all edges are sharp

Polygonal planar, may have rings,
all edges are sharp,
all vertices are corners

Hollow the face is a ring,
or a baseface not to be rendered

Table 4: Face classification according to the vertex classi-
fication, edge types, and whether the face has rings.

3.2 Polygonal Faces

A polygonal face can be a complicated geometric ob-
ject, as it may contain arbitrarily many vertices and holes.
Thus, it must be triangulated for display. We use a stan-
dard O(n logn) triangulation algorithm that is based on
a 2D sweep-line [Meh84]. In order to omit a 3D to 2D
transformation, the technique of projecting to a principal

plane is used. The selection of one of the (xy),(yz),(zx)
planes, or (xz),(zy),(yx) respectively, is based on the (av-
eraged) face normal. A normal where the x-component

is positive and largest in absolute value results in a pro-
jection on the (yz) plane by considering only (py, pz) in-
stead of p = (px, py, pz). This technique can also cope
with faces which are only approximately planar if the pro-
jection to the chosen principal plane contains no foldover.

The result of the triangulation is an array of index
triplets (of type GLuint) that is stored in a chunk from
PCB-repMesh::triangulation. The indices directly refer
to the vertex indices in PCB-repMesh::vertices. A com-
plete face can then be rendered with a single call of the
OpenGL function glDrawElements (see also Fig. 3 from
Section 3.5).

We have also considered to create strips/fans instead of
individual triangles. But this would not only increase the
time for triangulation, but also require more than one call
to render, one for each strip/fan. Also, the optimal strip
length depends on the OpenGL implementation and the
size of the accelerator’s vertex cache. But the sweepline
algorithm creates triangles in left to right order, so that
in most cases, vertices will actually be still in the cache,
and they can be uniquely identified by the OpenGL driver
through their indices.

3.3 Smooth Faces

A face with at least one smooth edge is regarded as part of
the control mesh of a Catmull/Clark subdivision surface.
The first subdivision step introduces the face centroid and
the edge points, and partitions the face into quadrangle
patches which are the basic unit for display. Each patch
corresponds to a half-edge (Fig. 1a) and can be accessed
through HalfEdge::patch.

Patches can be tessellated independently from the
mesh, as they operate on subdivision rings (Fig. 1c, and
also Fig. 16). For more detail we refer to [Hav02]. There
is one subdivision ring for each vertex that belongs to
a smooth face, and one for each smooth face. The face
and the vertex points of the first subdivision are the only
possibly irregular vertices of a patch: The four corners of
a patch are one vertex and one face point and two edge
points of the first subdivision. So the irregular part of the
subdivision can be captured by connecting each patch
to the subdivision rings of its respective vertex and face
point, which are said to be of class CCRing (class Ring

in [Hav02]). The availability of subdivision rings for all
depths make the top left and bottom right points from the
4×4 control mesh in Fig. 1b redundant. The tessellation
of the patch itself then contains only regular points and
can be optimized a lot.

The basic idea of the tessellation on the fly and the
adaptive rendering is that each patch of class CCPatch

consists of a fixed-size array of 9×9 = 81 points and nor-
mals, corresponding to 64 quads (Fig. 1d). But points
are computed only on demand, and adaptive display is ac-
complished by choosing from a set of precomputed index
lists using the patch as vertex array.

The main feature of the tessellation scheme is that once
all vertices of a patch are computed, no further calcula-

tions at all are needed to switch the subdivision depth. So

the depth can be adjusted from frame to frame. Smooth
faces are assigned a quality value Face::depth ranging
from −1 (not visible, back-facing) to 3 (four times sub-
divided). Depth 0 is the first subdivision where one quad
per patch is rendered, which is computed when the patch
is created. Refining points are computed only on demand,
according to the required depth. This takes the neighbor
faces’ depth also into account, possibly refining towards
the face with higher resolution. With increasing depth, the
9×9 array is successively filled with valid points.

3.4 Crease Curves

According to the definition, a smooth face can also have
sharp edges. Now suppose there is a path of sharp edges in
an otherwise smooth mesh. Such a path is called a crease

in the surface, and all vertices along the path are crease
vertices. For Catmull/Clark subdivision, the canonical
way to deal with a crease is to regard it as a uniform cubic
B-Spline curve. The subdivision stencils on both sides of
the crease are decoupled: For computing the tessellation
of a patch next to a crease, the vertices on the other side
of the crease do not matter – but of course does the neigh-
bor depth. For patches next to a crease, the neighbor face
depth can be incremented by one. This improves the vi-
sual quality of creases, as can be clearly seen in the color
section.

Crease curves can also establish a link between smooth
and polygonal parts of the mesh: A polygonal face next
to a smooth face is called a sharp face, and both meet in a
common crease curve.

3.5 Sharp faces

Given a face with only sharp edges it may be that not all
of its vertices are corner vertices: some may be crease
vertices. Such a face is classified as sharp face, and it
is treated almost like a polygonal face. The difference is
that it has not only straight line segments on its border, but
also (at least two) edges which are part of a crease. The
uniform B-spline must be evaluated prior to triangulation:
A creased edge is replaced by 16 line segments so that the
sharp face matches the neighboring patch at its highest
resolution. The curve is evaluated by recursive subdivi-
sion of the border polygon using the weights (1

2 , 1
2) and

(1
8 , 6

8 , 1
8) for edge and vertex points. Vertices are taken to

the limit position on the curve using the weights (1
6 , 4

6 , 1
6).

When all crease segments are evaluated, the face can be
triangulated just like a polygonal face.

A problem occurs if lower resolutions are needed. To
deal with this case, not only one, but four triangulations
are computed for every sharp face: With all sharp edges
being uniformly replaced by 16, 8, 4 and 2 segments. The
reason for this is that coarser triangulations cannot be ob-
tained by straightforward downsampling of triangulations
from a higher level, especially not for non-convex faces
(cf. Fig. 2). Although this looks like a large overhead,
it essentially requires only twice the space of the high-
est resolution: The triangulation of a polygon with n ver-
tices has n− 2 triangles, so the triangulation of a sharp

a) b) c) d)

Figure 1: Partition of a B-rep face into patches. The top left vertex of the quad face is regular (valence 4), so the control
mesh of the patch contains 16 points (b). They are stored in subdivision rings (c) around the possibly irregular vertex
and face points. The four patches of a quad face yield 16×16 = 256 quads as the highest resolution tesselation (d).

Figure 2: Triangulations of a sharp face for different res-
olutions of the border curve

void renderSharp(PCBMesh* mesh, Face* face)

{

Vec3f* normal = &face→normal();

ChunkID chunkid = face→sharpTriangles[face→depth];

glEnableClientState(GL_VERTEX_ARRAY);

glVertexPointer(3,GL_FLOAT,sizeof(Vec3f),

sharpPoints.chunk(face→sharpPoints));

glNormal3f(normal→x,normal→y,normal→z);

glDrawElements(GL_TRIANGLES,

mesh→sharpTriangles.size(chunkid),

GL_UNSIGNED_INT,

mesh→sharpTriangles.chunk(chunkid));

glDisableClientState(GL_VERTEX_ARRAY);

}

Figure 3: OpenGL code to render a sharp face adaptively.

face with n crease vertices has 16n−2 triangles, which is
more than the 8n− 2 + 4n− 2 + 2n− 2 = 14n− 6 trian-
gles for the other three triangulations. The ratio is worse,
of course, when a face has many straight line segments.

The downsampling of the curve is only implicit, as the
index triplets returned by the triangulation algorithm refer
to the full-depth point list. This list is stored as a chunk
in PCB-repMesh::sharpPoints, while the different triangu-
lations are held in PCB-repMesh::sharpTriangles[depth].
Again, this enables the use of OpenGL vertex arrays, so
that a triangulation can be rendered with a single call, and
there is no cost for switching between resolutions. The
code example in Fig. 3 demonstrates how a sharp face is
rendered.

To render a sharp face one additional pass is necessary
to determine the maximum neighbor depth, which gives a
sharp face’s depth. This is also sufficient, as patches au-
tomatically refine towards a neighbor with higher depth.

The four triangulations of sharp faces are computed
only on demand, i.e. triggered from the display routine
– but they are cached as long as they are valid. This amor-

tizes the time for tessellation updates over a number of
frames. The advantage is that once the triangulations are
done, the resolution of a sharp face can be switched at
no further cost. The disadvantage is that any change of
vertex positions, sharpness flags, or topology, implies a
re-triangulation.

Catmull/Clark has no rules for rings, so a smooth face
with rings is automatically treated as a sharp face, and all
its edges as sharp. If a face with rings is supposed to be
a freeform face, additional edges must be introduced to
break up the rings (see makeEkillR in Fig. 4).

4 EULER OPERATIONS

Euler operations are a conceptually clean way to modify
a mesh. Insertion and deletion of edges, vertices, faces,
creation of rings, and genus modifications all maintain a
valid orientable 2-manifold connectivity, and they are in-
vertible.

The five topological operators and their inverse oper-
ators are depicted in Fig. 4, basically following a pro-
posal from Mäntylä [Män88]. As for cB-reps, operators
that create an edge actually have one more parameter, a
boolean edge sharpness. Note that there is no makeVFS,
but only a makeVEFS operation to create a new shell,
which behaves like makeVFS followed by makeEV. The
reason is that there is no direct link between faces and
vertices in our data structure. This also implies that a ring
cannot consist of an isolated vertex alone.

There is one version of makeEV to a create a dangling
edge, which is equivalent to makeEV(e0,e0, p). For
killing a dangling edge, killEV can receive either of
the two half-edges as parameter. In case e0→mate =
e0→faceCCW, we set e0 to e0→mate so that killEV has
to deal only with the case of a dangling edge shown
in Fig. 4. The topological dual of a dangling edge is
a one-vertex-loop created by makeEF(e0,e0) but this
is less useful for modeling. Using the three operations
makeVEFS, makeEV and makeEF, all objects of genus 0
can be built, i.e. any set of connected components each
topologically equivalent to the sphere. The remaining
two operators are related to rings and the modification of
genus.

A ring can be created from an edge where both half-
edges are incident to the same face. When it is re-
moved, the inner polygon is decoupled from the border

p1
killVEFS(eNew)

p0

makeVEFS(p0,p1)

e0e0

p

makeEV(e0,p)

killEV(eNew)

e0

e1

p

makeEV(e0,e1,p)

killEV(eNew)

e0
e1

e1

killEF(eNew)e0 e0

e1
makeEF(e0,e1)

e0
killEmakeR(eNew)

e1 e1

e0

makeEkillR(e0,e1)

e1makeFkillRH(e0)

e0

e1

killFmakeRH(e0,e1)
e0

Figure 4: Planar diagrams of Euler operators.

and is turned into a ring, while the border becomes the
ring’s baseface. The ring is clockwise oriented, which
is consistent with the rule that the face interior is to the
left of a half-edge. As with all the operators, the or-
der and orientation of the parameters is crucial: In Fig.
4, killEmakeR(eNew→mate) is also legal and would ex-
change the roles of ring and baseface, leading to a geo-
metrically invalid configuration. But makeEkillR(e1,e0)
is rejected because e1→face is not a ring but a baseface,
to guarantee topological consistency.

The genus modification also uses rings, which makes
it extremely simple. In the situation shown in Fig. 4,
makeFkillRH simply turns the ring into a baseface of its
own. As a result, a new connected component, a shell,
is created: a two-sided quadrangle. Edge e0 is then part
of the backfacing quadrangle that from our viewpoint is
clockwise oriented – just as the ring was. Any orientable
manifold mesh can be created by these five pairs of oper-
ations. But for convenience, we use the extended set of
12 Euler operators including moveV to move a vertex and
sharpE to change the sharpness of an edge. Both of them
are self-inverse.

mate

vertexCW

vertexCCW

faceCW

faceCCW

Figure 5: Half-edge navigation functions.

As a design decision, operators check only for topolog-
ical and not for geometrical consistency (face planarity
etc.). We consider geometric consistency to be in the re-
sponsibility of the software layers above the Euler opera-
tors. The reason is that some consistency issues can only
be decided when knowing the semantics of the model.
Geometry checks on the level of Euler operators would
introduce great overhead, often be redundant, and rule out
inconsistent intermediate configurations that are some-
times indispensable (see Fig. 7).

The absence of geometry checks however can lead to
confusion when perceivably impossible configurations
are created, with self-intersections, reversed orientations,
or rings outside the baseface border. Consequently, an
intermediate software layer is favorable that checks the
user input and sends only topologically and geometrically
valid operator sequences to the mesh.

4.1 Operator Sequences and Undo/Redo

Our architecture provides a logging mechanism that cre-
ates a record for each Euler operation that is executed. It
stores the data needed to undo the operation, and to redo
it again. So the record for an operation op needs to store
the parameters of both op and inverse(op): The record for
killEF must also store the parameters needed by makeEF
to reconstruct the deleted edge, namely e0→faceCCW
and e0→mate→faceCCW. Consequently, every pair of
mutually inverse operators has the same number of items
in their records (Table 5, last column).

The signatures of the Euler operations and the individ-
ual fields of the undo records are summarized in Table 5,
basically derived from the configurations in Fig. 4. Note
that for killEV in the table, we set eA=e0→vertexCW ex-
cept for a dangling edge where we set eA=e0→faceCCW
to avoid that eA=e0. The records in our log are of equal
size and match the union of the signatures of the Euler op-
erators: A record can hold three edge indices, two points,
and a boolean. All records are stored in the skipvector
PCBMesh::records.

The implementation of operator inversion is some-
what complicated by the fact that some of the B-rep
modeling operations actually delete entities, as the
whole extended set of 12 Euler operations can be
used. Examples include the removal of edges between
coplanar faces and the deletion of an edge to create a
ring using killEmakeR. But the inverse of a sequence
containing [. . . ,opi(makeEV),opi+1(killEV), . . .] will read

Operation Edges Points Flags #
e = makeVEFS(p0, p1,s) e p0, p1 s 4

killVEFS(e0) e0 e0→vertex→p,
e0→mate→vertex→p e0→sharp 4

e = makeEV(e0,e1, p,s) e, e0, e1 p s 5
killEV(e0) e0, eA, e0→faceCCW e0→vertex→p e0→sharp 5

e = makeEF(e0,e1,s) e,e0,e1 s 4
killEF(e0) e0, e0→faceCCW, e0→vertexCW e0→sharp 4

e = makeEkillR(e0,e1,s) e,e0,e1 s 4
e = killEmakeR(e0) e0, e0→faceCCW, e0→vertexCW e0→sharp 4

makeFkillRH(e0) e0, e0→face→baseface→oneEdge 2
killFmakeRH(e0,e1) e0, e1 2
moveV(e0, p) e0 e0→vertex→p, p 3
sharpE(e0,s) e0 e0→sharp, s 3

Table 5: Data in undo-records of the extended set of 12 Euler operations. e,e0,e1 are edges, p, p0, p1 are 3D points,
and s is a boolean sharpness flag. The value of eA from killEV is explained in Section 4.1.

[. . . , invi+1(makeEV), invi(killEV), . . .] as the operators are
inverted and the sequence is reversed. So care must be
taken that invi kills the right edge, because invi+1 proba-
bly recreates the edge in a different memory location than
before, due to the skipvector’s behavior.

The solution to this problem comes from the observa-
tion that every edge has a unique original creator, i.e., the
operation that created it. Consequently, every half-edge
stores the record index of the operation from which it was
created in the HalfEdge::sourceId field. The above prob-
lem is now solved by taking the sourceId as the edge index
that is stored in a record. Edges are then referred to indi-
rectly via the operation that created them, and the source
operation is the unique place where the edge’s current ar-
ray index is stored.

In the above example, opi creates an edge e. Its array
index is stored in reci, and e→sourceId is set to i. Before
the next operation opi+1 kills e, it stores the sourceId i

as a reference to e’s creator in reci+1. Now for an undo
of the sequence, invi+1(makeEV) recreates the edge as e′.
But the e′→sourceId is set to the original creator i, and
the array index of e′ is written back to reci as the current
location of the edge. Then opi can also be safely undone.

Matters are slightly complicated by the fact that half-
edges encode a direction. This issue can be resolved by
reserving the least significant bit of the sourceId for the
distinction between mates. In our example, e′→sourceId
is actually not set to i but to 2i, while the sourceId of
e′→mate, created together with e′, is set to (2i + 1). Ac-
cordingly, if opi+1 was killEV(e′→mate), invi+1 would
write the array index of e′→mate back to reci.

The described procedure is sufficient for meshes which
are created from scratch by Euler operators. But if a 3D
object is imported from a file, there is no operator se-
quence. If this mesh is changed, there are no source oper-
ations to refer to. In this case, a dummy record is inserted
into the operator sequence. It serves as a synthetic unique
source record for an edge, so that Euler operators can refer
to it. Thus, all modeling operations can also be invertibly
applied to externally created meshes.

4.2 Tesselation Update

The choice of a tessellation method is based on the face
classification, which in turn depends on the vertex clas-
sification (cf. Section 3.1). Every Euler operation results
in a possible class transition of the entities involved in
the operation. However, there is no simple transition ta-
ble: The vertex classification, for instance, depends on
the number of incident sharp edges. Now, as shown in
Fig. 4, makeEV(e0,e1) splits a vertex into two and parti-
tions the vertex’s edges between them. So this may very
well create two crease vertices, or even a smooth vertex,
from a corner vertex. In order to accomodate all possible
changes, we follow a simple strategy: Each Euler opera-
tion touches entities, i.e., marks them for re-classification.
Touching is done basically on each input edge, i.e., both
end vertices and both faces are marked, using the respec-
tive status fields.

After changing the mesh but before redisplay, a commi-

tUpdate routine processes all new and all touched entities
to assert a consistent triangulation. It first re-classifies all
vertices of touched faces, and then all faces incident to
these vertices. This makes sure that if a smooth face is
touched, information is propagated to the neighbor faces
as well. This is necessary because of the C2 continuity of
Catmull/Clark patches, as a smooth vertex belongs to the
control mesh of all smooth faces in its 2-neighborhood.

All touched faces, and new entities as well, are re-
classified and re-tessellated, i.e., the procedure from Sec-
tion 3 is applied to them. This strategy is not optimal,
as sometimes tessellations are unnecessarily recomputed.
As an example, let e0, e1 be edges of a smooth face f .
A makeEF(e0,e1) then touches the vertices of e0 and e1

and triggers a re-triangulation of all faces incident to these
vertices. But if some edges are sharp, not all such faces
may require a re-triangulation. An example can be seen
in Fig. 6.

In order to avoid a combinatorial explosion for all pos-
sible combinations of touched smooth, sharp and polygo-
nal faces, the described simple touching scheme is used.

Figure 6: A makeEF inserts an edge and touches both
adjacent faces and vertices. All neighbor faces are re-
triangulated, including the top right quadrangle, which
is a sharp face where the tessellation actually does not
change.

5 PROGRESSIVE COMBINED B-REPS

There is an interesting relation between Euler operators
and progressive triangle meshes (PMs): The split se-
quence can be expressed also in terms of Euler operators.
An edge collapse is basically a killEV and two killEF, as
it removes three edges, two vertices and one face. Conse-
quently, a split sequence could equivalently be expressed
as a sequence of Euler operators, exploiting their invert-
ibility for coarsening and refinement. But compared to
PMs, the Euler sequence is operating at a finer granular-
ity and also more general in that not only one operation is
encoded in the sequence, but all Euler operations can be
used.

But while the PM split sequence is obtained through
automatic simplification, we propose instead to gather the
Euler sequence at the time when the object is being built,
and to let the user control the process through the model-
ing application. Even more important: All the modeling
tools that are offered by a 3D modeler must eventually
modify a mesh – and can be implemented in terms of Eu-
ler operators (or alternative operator sets). This is exactly
what we advocate.

Compared with a triangle mesh, a cB-rep mesh is typ-
ically much smaller as subdivision surfaces are used for
smoothly tessellated regions. But for very large meshes,
their built-in level of detail alone is not sufficient for in-
teractive rendering. Instead, the control mesh itself must
be coarsened. When the Euler sequence is used for LOD
control, the resulting data structure is called Progressive

Combined B-rep, or pcB-rep for short.

5.1 Euler Macros

In database terms, each Euler operation is an atomic
operation, and an arbitrary sequence of them can be
grouped together to form a transaction, which we call
Euler Macro. Such a macro is either active, for example
right after its creation, or inactive: To undo a macro, its
record sequence is traversed back to front, and the inverse
operators are executed. Euler Macros are therefore the
basic unit for undo/redo, unlike PMs, where individual
edge-collapse/vertex-splits are the undo/redo unit.

Euler macros may contain any number of operators. A
PM could be emulated by a sequence of Euler macros that

Figure 7: Motivation for Euler macros. The center image
shows an intermediate configuration from the construc-
tion of a profile (right). In order to avoid such inconsistent
LODs, all operations leading from one consistent state to
the next can be grouped into one Euler macro.

each contain three Euler operations. But Euler Macros
were introduced with a different idea in mind: Semantic

LOD. Experienced modelers often work in a coarse-to-
fine fashion: They start with some basic shapes or prim-
itives and successively refine them and add detail. This
modeling style fits well with the macro concept, starting
a new macro every now and then in the modeling pro-
cess. The drawback of a low macro granularity is that
undo/redo gives popping artifacts. But the great advan-
tage is that the user – or, synonymously, a higher software
layer – can steer the refinement process, and actually au-
thor a multi-resolution mesh. It is possible to group ar-
bitrary modeling operations together that belong to the
same level of structural refinement. Thus, user-defined
macros can be based on the model semantics instead of
on the output of a simplification cost function that con-
trols the coarsening of the model. And in terms of pro-
gressive meshes, the edges of a pcB-rep are feature edges

– and changing them always produces artifacts, unless the
object covers just a few pixels, which is the usual way to
hide popping when using LOD.

Another reason for a grouping facility is that it helps to
avoid geometrically inconsistent intermediate configura-
tions. There is not much use for detail such as a beveled
edge or a profile being constructed only halfway (Fig. 7).

There is a canonical dependency relation between
macros: Euler operations are formulated in terms of
half-edges, and operators in a modeling sequence may
have input parameters produced by operators occuring
earlier in that sequence. A macro mA is a parent of mB

iff an operator from mB has an input parameter that was
produced by mA. In this case mB is called a child of
mA. An undo of mA will first undo mB. To redo mB,
first mA must be redone. So all parents of active macros
are also active, and all children of inactive macros are
also inactive. The graph induced by the parent-child
relation can be regarded, and used, as the continuation
of a scene graph below the object level: the object graph
or modeling graph. As this graph is a directed acyclic
graph (DAG), a partial order exists, which can be used
for navigating in the graph. Macros can be dynamically
added and deleted, so each macro maintains two explicit
sets of parents and children. In order to completely delete
an active macro, first all children are recursively deleted,
then the macro itself is undone. Finally, the macro’s
records are deleted and returned to the skipvector for

edx bf

dy

cb

cf

Figure 8: Overlap test between view cone and bounding
sphere through apex translation

later reuse. After a change in the graph, the partial order
is recomputed in linear time using depth first search.

6 RENDERING A PROGRESSIVE COM-

BINED B-REP

The commitUpdate routine already mentioned keeps track
of bounding volumes for each face and for each macro.
As was described in [Hav02], a face of the control mesh
contains a normal cone and also the bounding sphere of its
vertices. For a smooth face, the face normal is the limit
normal of the face point, and the sphere also contains the
limit positions of the vertex and face points. It is bene-
ficial to attach these data to each face because it greatly
facilitates view frustum culling and LOD determination,
and it pays off as each face of a Combined B-rep typically
comprises many triangles: A smooth quad face contains
four patches with 2 to 512 triangles altogether, depending
on the subdivision depth.

6.1 Rendering Faces

Frustum culling is done for each face via apex translation
of the view cone, as shown in Fig. 8. The use of a view
cone is based on the assumption that the aspect ratio of
the viewport is usually close to 1. The cone is determined
only once, from the slope s of a line through frustum cor-
ners c f , cb with respect to the axis through the midpoints
f and b of front- and backplane. The overlap test with
a bounding sphere (ms,rs) can be reduced to a point test
by using a translated apex e′ = e + rs dx, where dx is the
displacement for the unit sphere. It can be determined by
solving for dx in equations d2

x + d2
y = 1 and dy/dx = s.

With a normalized view vector v no sqare root is nec-
essary for testing whether the sphere center ms is inside
the cone with modified apex e′: With dm = ms − e′ and
dxs = 〈dm,v〉 we have dy2

s = 〈dm − dxsv,dm − dxsv〉, and
the point is inside the translated cone iff dy2

s/dx2
s < s2.

The LOD of front-facing smooth faces is determined
in a different way than in [Hav02], namely also via the
bounding sphere. To assure that larger and closer faces
have a higher resolution, the subdivision depth is com-
puted as the projected size of the bounding sphere, rela-
tive to the size of the view cone. It is biased for faces with
higher curvature by adding cnormal:=face->normalCone,

the sine of the normal cone’s opening angle (stored with
the face). It can also be biased for smaller faces through a
square root. Finally it is scaled by an overall quality factor
q, determined a posteriori from measuring the frame rate.
The resulting value is clamped to the useful depth range
[0,3].

depth :=

⌊

q ·

(
√

rs

s ||ms − e||
+ cnormal

)⌋

6.2 LOD from Euler Macros: Macro

Culling

Each macro holds an axis-aligned bounding box (AAB-
Box) of the 3D points and the positions of vertices occur-
ring in its operator sequence. It also holds a child sphere,
which is recursively defined as enclosing the macro’s own
AABBox and the child spheres of the macro’s children.
The sphere tree is computed in linear time together with
the partial order of the macro DAG every time a macro is
added or deleted.

The sphere tree and the macro DAG are used together
for LOD adjustment. It is most useful when the complete
model has many faces or a great spatial extent: The pro-
cedure in Section 6.1, although quite fast, has to process
each face in every frame, consequently it will not scale
with very large scenes. This can be resolved by macro

culling.
In a first attempt to realize this concept, we follow a

simple strategy much like the active tree in the papers
from Hoppe [Hop97] and Luebke [LE97]. The active

front contains active macros that have inactive children. In
every frame each macro in the active front is tested: If the
projected size of its bounding sphere is below a threshold
sundo, the macro (with its active children) is deactivated
(undo), and its parents are added to the active front. Oth-
erwise, testing continues with the children. If the size of
an inactive child is greater than a threshold sredo, it is re-
activated (redo), and added to the active front. When all
children are active, the macro is also removed from the
active front. Macros with no children are always tested.

Note that in measuring the projected size the view di-
rection is not taken into account, so it measures actually
the solid angle of a macro’s child sphere with respect to
the viewer location. The reason is that the view direction
is less stable than the viewer’s position, and the undo/redo
of Euler macros has a relatively long latency. This is
also the reason why different threshold values are used for
undo and redo, for instance sundo = 0.15 and sredo = 0.30
of the field of view angle. In summary, this mechanism
works like a semantic magnifying glass, where most of
the detail is present only in the vicinity of the viewer.

6.3 Results

We have deliberately used two older benchmark plat-
forms: PC1 is a dual Pentium3 866 MHz with Nvidia
Geforce 3 and 256 MB RAM, while PC2 is a Pentium4
1700 MHz with Nvidia Geforce4 and 512MB RAM, both
running under Windows 2000.

0

0.05

0.1

0.15

0 100 200 300 400 500 600 700 800

quality
seconds

0
2
4
6
8

10
12
14

0 100 200 300 400 500 600 700 800

MTris/sec

Figure 9: PC2 with Gothic sequence.

0

0.05

0.1

0.15

0 100 200 300 400 500 600 700 800

quality
seconds

0
0.5

1
1.5

2
2.5

3
3.5

4

0 100 200 300 400 500 600 700 800

MTris/sec

Figure 10: PC1 with Gothic sequence.

0
500

1000
1500
2000
2500
3000

0 100 200 300 400 500 600 700

Faces
seconds

Figure 11: PC1 with Flower sequence.

Our benchmark object is the Gothic window shown in
Fig. 12. The B-rep mesh has 16 319 vertices, 58 910 half-
edges, and 13 306 faces. Most of its faces are smooth: It
has 54 184 patches, almost as many as half-edges. The
tessellation results in as many as 7 008 558 triangles at
highest resolution, which is slightly oversampled then.
First we have tested the time for creation and rendering
in highest resolution, where adaptive LOD is switched off
and all faces have static depth 3. On PC2, commitUpdate

takes 0.219 s for classification, memory allocation, setup
of subdivision rings and patches, and for computing the
first subdivision. When the first frame is rendered, the
Catmull/Clark tessellation is triggered and takes 0.944 s
to compute. OpenGL output of the 7M triangles finally
takes 0.49 seconds. On PC1, the timings are 0.437s for
update, 1.978s for tessellation and 1.13s for rendering. It
must be noted that on both machines, the first update takes
much longer (1.078s/2.781s) due to the memory alloca-
tion which takes place in this step, leading to relocations
of skipvectors and skipchunks.

We have benchmarked the adaptive display of the static
model using a pre-scripted camera path over approx. 800
frames on both machines (Figs. 9 and 10). The upper di-
agrams show the quality vs. seconds to render a frame,
where the maximal quality 1.0 was scaled to 0.15 to fit.

The animation first shows the whole object, then goes
to a close-up view, slides parallel to the object in close
distance, and finally the view is tilted showing again the
whole object. This is reflected in the diagrams, as the
quality increases when less of the object is visible but in
higher detail; this is due to the view cone culling. The ab-
solute number of triangles rendered varies significantly,
but the lower diagrams show that the rendering rate (in
million triangles per second) is relatively stable. Both di-
agrams also show that it is more efficient to display fewer
faces in higher detail, than to spread the triangles over all
faces of the whole object. PC2 even reaches maximum
quality at close-up, revealing the highest level of refine-
ment.

The next thing we have tested was macro culling. We
found the performance hard to quantify, it is largely de-
pendent on the scene structure. The Flower Scene an-
imation (see Fig. 14) starts with the object behind the
far plane, zooms in close to one flower, and zooms out
again. The diagram in Fig. 11 shows the number of B-rep
faces versus the render time. It exhibits a typical behav-
ior: First, the object is completely inactive. Then the basic
structure is created, and the face number remains constant
for a while. Then, at a certain point, there is a peak in ren-
dering time: Many of the equally sized flowers have their
detail enlarged beyond the threshold. Thus, the mesh is
greatly changed during only a few frames. Zooming fur-
ther in, the number of B-rep faces remains constant and
subdivision surface LOD takes over. The zoom out then
is very gradual, and the update effort can be spread over
more frames than before. – The castle scene (Fig. 15)
uses macro culling with the Euler operations creating the
round arches, which works quite well but unfortunately
exhibits some popping as well.

To summarize, macro culling is most effective when
gradually adding or removing complex detail at greater
distance, and less efficient when a great number of objects
have to be processed at the same time. The solution could
be a budget admitting only a limited number of changes
per frame.

Finally, we have tested the performance for interactive
modeling with a model that is being rebuilt in every frame.
Fig. 18 shows the interactive manipulation of a procedu-
ral gear. The basic model has 493 faces, 464 of which
are smooth, resulting in 1862 patches. The gear construc-
tion parameters are animated using a spacemouse. So the
mesh size varies as a function of e.g. the number of teeth.
Benchmarks are promising: On both PCs, the model can
be re-generated at ≥ 20 fps, including update, tesselation,
and display. The relative quality on PC1 is 0.23 in aver-
age, where most faces have depth 1, and around 22K-28K
triangles are effectively displayed per frame. For PC2, the
quality is 0.65-0.71, most faces have depth 3, and 120K-
180K triangles are generated and displayed at 20 fps. This
clearly demonstrates the effectiveness of our approach for
adaptive tesselation and display. For this reason the cB-
reps have become in our group a work horse for interac-
tive display of complex freeform objects (see Fig. 17).

7 CONCLUSION AND FUTURE WORK

We have presented the design of a surface representation
for interactive 3D design and manipulation, together with
techniques for incremental update and interactive render-
ing. Our emphasis was on developing one component of
a layered architecture, with clear responsibilities on each
layer.

a) The lower level contributes the memory management
for dynamic data, the generation of display primitives
on demand through 2D triangulation and tessellation
of subdivision surfaces, and view frustum culling and
LOD management for rendering.

b) The intermediate level provides a commit routine to
propagate changes from the upper level to the lower
level, selectively recomputes invalid low-level data,
and maintains the integrity of normals, bounding vol-
umes and other hinting information needed by the low
level.

c) The highest level of the presented architecture pro-
vides the Euler operators as a concise, clean interface
to higher-level software, e.g. to the application layer.

The emphasis in the design of the interface was on iden-
tifying a closed and sufficient set of operations to build
up Combined B-rep meshes, which is our chosen surface
representation. This marks in fact a paradigm shift from
a static object description (such as indexed face sets) to a
procedural, operation-based description. We consider the
procedural paradigm to be mandatory when dealing with
dynamically varying data – simply because this requires
to find ways for describing the variations.

Much remains to be done in the future. First, we would
like to extend our framework to true non-manifold ge-
ometry and more general simplicial complexes, hopefully
still with efficient free-form geometry. Second, the macro
culling can be further improved, especially if there is a
good way to detect and deactivate occluded Euler macros.
A related problem is to find the right macro resolution in
order to minimize popping artefacts, something for which
we will have to gather more experience in model building.
The third line of research is on the conversion of given
geometry into a procedural description. There are expo-
nentially many ways to decompose a static mesh into a
sequence of Euler operations, for instance through simpli-
fication. Our focus will be on finding suitable sequences
that exhibit some self-similarities, and ways for a concise
description of them through parameterized Euler macros.

Finally, we would like to go one step beyond: After
tessellation on the fly and model generation on the fly,
we would also like to generate the Euler operations them-
selves only on demand, e.g. by evaluating a high-level ge-
ometry description language, making use of our frame-
work’s capability to add and delete Euler macros at run-
time.

An interactive demo for pcB-reps can be downloaded
from the homepage of the Generative Modeling Language

at http://www.generative-modeling.org .

REFERENCES

[ACS02] AKLEMAN E., CHEN J., SRINIVASAN V.:
A prototype system for robust, interactive
and user-friendly modeling of orientable 2-
manifold meshes. In Proc. SMI’02 (Bannf,
Canada, May 2002), pp. 43–50. 2

[Baj96] BAJAJ C.: Free-form modeling with implicit
surface patches. In Implicit Surfaces, Bloo-
menthal J., Wyvill B., (Eds.). Morgan Kauf-
man Publishers, 1996. 2

[BCX95] BAJAJ C. L., CHEN J., XU G.: Modeling
with cubic A-patches. ACM Transactions on

Graphics 14, 2 (Apr. 1995), 103–133. 2

[BGK03] BALÁZS A., GUTHE M., KLEIN R.: Fat

borders: Gap filling for effective view-

dependent lod rendering. Tech. rep., Univer-
sität Bonn, June 2003. 2

[BKZ01] BIERMANN H., KRISTJANSSON D., ZORIN

D.: Approximate boolean operations on
free-form solids. In Proc. SIGGRAPH 2001

(2001), ACM Press, pp. 185–194. 3

[BS02a] BOLZ J., SCHRÖDER P.: Rapid evalua-
tion of catmull-clark subdivision surfaces. In
Proc. Web3D 2002 (Tempe, February 2002),
Web3D Consortium. 1

[BS02b] BOLZ J., SCHRÖDER P.: Rapid evalua-
tion of catmull-clark subdivision surfaces. In
Proc. Web3D 2002 Symposium (2002). 2

[CDES01] CHENG H.-L., DEY T. K., EDELSBRUN-
NER H., SULLIVAN J.: Dynamic skin tri-
angulation. Discrete Comput. Geom., 25
(2001), 525–568. 3

[CFM∗94] CIGNONI P., FLORIANI L. D., MONTANI

C., PUPPO E., , SCOPIGNO R.: Multireso-
lution modeling and visualization of volume
data based on simplicial complexes. In ACM

Symposium on Volume Visualization (Wash-
ington, Oct 1994), pp. 19–26. 2

[DDCB01] DEBUNNE G., DESBRUN M., CANI M.-P.,
BARR A. H.: Dynamic real-time defor-
mations using space and time adaptive sam-
pling. In Proc. SIGGRAPH 2001 (2001),
ACM Press. 2

[DTG96] DESBRUN M., TSINGOS N., GASCUEL M.-
P.: Adaptive sampling of implicit sur-
faces for interactive modelling and anima-
tion. Computer Graphics Forum 15, 5 (Dec.
1996), 319–325. 2

[Gai00] GAIN J.: Enhancing Spatial Deformation

for Virtual Sculpting. PhD thesis, The Com-
puter Laboratory, University of Cambridge,
June 2000. Technical Report TR499. 2, 3

[GD99] GAIN J., DODGSON N.: Adaptive refine-
ment and decimation under free-form de-
formation. In Eurographics UK ’99 (Cam-

bridge(UK), April 13-15 1999). 2, 3

[GH97] GARLAND M., HECKBERT P. S.: Surface
simplification using quadric error metrics. In
Proc. SIGGRAPH 97 (August 1997), ACM
SIGGRAPH, pp. 209–216. 1

[GS85] GUIBAS L., STOLFI J.: Primitives for
the manipulation of general subdivisions and
computation of voronoi diagrams. ACM

Transactions on Graphics 4 (1985), 74–123.
2

[Hav02] HAVEMANN S.: Interactive rendering of cat-
mull/clark surfaces with crease edges. The

Visual Computer 18 (2002), 286–298. 5, 10

[HDD∗94] HOPPE H., DEROSE T., DUCHAMP T.,
HALSTEAD M., JIN H., MCDONALD J.,
SCHWEITZER J., STUETZLE W.: Piecewise
smooth surface reconstruction. Proc. SIG-

GRAPH 94 (July 1994), 295–302. 4

[HF01] HAVEMANN S., FELLNER D.: A versatile
3d model representation for cultural recon-
struction. Proc. VAST 2001 (2001). 2

[Hop96] HOPPE H.: Progressive meshes. In Proc.

SIGGRAPH 96 (New Orleans, Louisiana,
August 1996), Computer Graphics Proceed-
ings, Annual Conference Series, ACM SIG-
GRAPH / Addison Wesley, pp. 99–108. 1

[Hop97] HOPPE H.: View-dependent refinement of
progressive meshes. Proc. SIGGRAPH 97

(August 1997), 189–198. ISBN 0-89791-
896-7. Held in Los Angeles, California. 10

[HQ01] HUA J., QIN H.: Haptic sculpting of vol-
umetric implicit functions. In Proc. Pacific

Graphics 2001 (Tokyo, Japan, Oct 2001),
pp. 254–264. 2

[KBB∗00] KOBBELT L., BISCHOFF S., BOTSCH M.,
KÄHLER K., RÖSSL C., SCHNEIDER R.,
VORSATZ J.: Geometric modeling based on
polygonal meshes. In Eurographics 2000 Tu-

torial. Eurographics Association, 2000. 2

[KBS00] KOBBELT L., BAREUTHER T., SEIDEL H.-
P.: Multiresolution shape deformations
for meshes with dynamic vertex connectiv-
ity. Computer Graphics Forum 19 (2000),
C249–C260. Proc. Eurographics 2000. 2

[Ket99] KETTNER L.: Using generic programming
for designing a data structure for polyhedral
surfaces. Computational Geometry 13, 1
(1999), 65–90. 3

[KML96] KUMAR S., MANOCHA D., LASTRA A.:
Interactive display of large nurbs models.
IEEE Transactions on Visualization and

Computer Graphics 2, 4 (December 1996).
2

[LE97] LUEBKE D., ERIKSON C.: View-dependent
simplification of arbitrary polygonal envi-

ronments. Proc. SIGGRAPH 97 (August
1997), 199–208. 10

[LL99] LI F., LAU R.: Real-time rendering of de-
formable parametric free-form surfaces. In
Proc. ACM Symposium on VR Software and

Technology (VRST) (Dec 1999), pp. pp. 131–
138. 2

[Män88] MÄNTYLÄ M.: An Introduction to

Solid Modeling. Computer Science Press,
Rockville, 1988. 6

[MCCH99] MARKOSIAN L., COHEN J. M., CRULLI

T., HUGHES J.: Skin: a constructive ap-
proach to modeling free-form shapes. Com-

puter Graphics 33, Annual Conference Se-
ries (1999), 393–400. 2

[McD03] MCDONNELL K. T.: DYNASOAR: DY-

NAmic Solid Objects of ARbitrary topology.
PhD thesis, Stony Brook University, August
2003. (Advisor: Professor Hong Qin). 2

[Meh84] MEHLHORN K.: Data Structures and Algo-

rithms, vol. 3: Multi-dimensional Searching
and Computational Geometry. Springer Ver-
lag, 1984, ch. VIII.4.1 and 4.2, pp. 147–172.
4

[MQ02] MCDONNELL K. T., QIN H.: Dynamic
sculpting and animation of free-form subdi-
vision solids. The Visual Computer 18, 2
(2002), 81–96. 2

[PKKG03] PAULY M., KEISER R., KOBBELT L.,
GROSS M.: Shape modeling with point-
sampled geometry. In Proc. SIGGRAPH

2003 (2003), pp. 641–650. 2

[SZSS98] SEDERBERG T. W., ZHENG J., SEWELL

D., SABIN M.: Non-uniform recursive sub-
division surfaces. In Proc. SIGGRAPH 1998

(1998), ACM Press, pp. 387–394. 2

[WW94a] WELCH W., WITKIN A.: Free-form shape
design using triangulated surfaces. In Pro-

ceedings of SIGGRAPH 94 (July 1994),
vol. 12 of Computer Graphics, pp. 247–256.
2

[WW94b] WELCH W., WITKIN A.: Free-form shape
design using triangulated surfaces. Com-

puter Graphics 28, Proc. SIGGRAPH ’94
(1994), 247–256. 2

[ZSS97] ZORIN D., SCHRÖDER P., SWELDENS

W.: Interactive multiresolution mesh edit-
ing. Computer Graphics 31, Annual Confer-
ence Series (Aug. 1997), 259–268. 2

Figure 12: The top row shows images from the Gothic Window animation discussed in Section 6.3. The bottom row
show the polygonal B-rep mesh, and subdivision surface tessellations in low and high resolution, and also the individual
patches.

Figure 13: View cone culling. The slight excess of the view cone with respect to the view frustum can be seen especially
in the right image, on the top and bottom sides of the view frustum (in white).

Figure 14: The Flower scene for benchmarking macro culling. A dense distribution of equally sized small flowers is
progressively built from the stored Euler operator sequence. Each flower is built from three macros, the tessellation
and the control mesh are updated at runtime.

Figure 15: The Castle scene is another demonstration for macro culling: In this case, each single arkade has a limited
spatial extent and can therefore be constructed lazily. The complexity of the scene is comparable to the Gothic window
with 11745 B-rep faces containing 42294 Patches, resulting in 5557821 triangles at the highest resolution.

Figure 16: Close-up of single patches. Each patch contains 8×8 quads (left).
Note that the top face has degree five just like its face point. The right image
shows the subdivision rings around possibly irregular vertex (yellow) and face
(cyan) points.

Figure 17: Application of Com-
bined B-reps: Interactive display
of the ribbon structure form a
molecule used in organic chemistry.

Figure 18: The interactive gear. The spacemouse is a 6-DOF input device with three translational and three rotational
degrees of freedom. They are used as input parameters for the procedural construction of the gear model. The whole
model is re-generated and displayed with at least 20 fps on both of our benchmark PCs, at relative qualities of 0.23 and
0.69 in average.

Journal of WSCG 136 ISSN 1213-6972

	wscg2008_Journal_Numbered.pdf
	C31-full.pdf
	C31-full.pdf

	G23-full.pdf

