
Applied and Computational Mechanics 5 (2011) 239–252

Possibility of identification of elastic properties in laminate

beams with cross-ply laminae stacking sequences
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Abstract

The goal of this work is to show the possibility of the identification of laminate beam specimens elastic pro-

perties with cross-ply laminae stacking sequences using prescribed eigenfrequencies. These frequencies are not

determined experimentally in this paper but they are calculated numerically by means of the finite element (FE)

software MSC.Marc. The composite material properties of the FE model based on Euler-Bernoulli theory have

been subsequently tuned to correlate the determined frequencies in cross-ply laminate beams with the eigenfre-

quencies obtained by the software package. A real-coded genetic algorithm (GA) and a micro-genetic algorithm

(µGA) are applied as the inverse technique for the identification problem. Because a small efficiency of the GAs in

searching for Poisson’s ratio values was found, this parameter and the in-plane shear modulus have been estimated

by using the law of mixtures. Some numerical examples are given to illustrate the proposed technique.
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1. Introduction

Composite materials are widely employed in modern industry. Analysis and design of structures

manufactured from these materials depend directly upon accurate knowledge of their properties.

Hence the property evaluation is one of the important goal of research.

Chu and Rokhlin [5] determined the elastic properties of composite from ultrasonic bulk

wave velocity data. Balasubramaniam and Rao [2] carried out the reconstruction of material

stiffness properties of unidirectional fiber-reinforced composites especially from incident ultra-

sonic bulk wave data. Computer-generated ultrasonic phase velocity data were used as the

input to the GA that has been implemented for the parameters reconstruction. In the above two

references, the Christoffel equation was applied to establish the relationship between material

properties and bulk wave velocity. Complicated techniques were needed to measure the phase

velocity of ultrasonic bulk waves and only single-ply anisotropic materials were considered in

their works.

A number of researchers developed numerical-experimental methods in which experimental

eigenfrequencies were used to identify elastic properties of composites. An indirect identifica-

tion method for prediction the composite properties of plate specimens using measured eigen-

frequencies is presented in [18]. The authors applied the Mindlin plate theory in combination

with a FE model for the laminate analysis. Frederiksen [6] identified the elastic constants of

thick orthotropic plates, whereas a mathematical model based on the higher-order shear defor-

mation theory has been applied. This solution provides reliable estimations of the two transverse
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shear moduli. Ip et al. [10] also investigated eigenfrequencies in the orthotropic material. Fur-

thermore, the mode shapes were measured on specimens with balanced symmetric lamination

which were excited by an impact hammer. In parallel, an analytical model describing the modal

responses of composite shells was developed using the Rayleigh-Ritz method. This model was

subsequently tuned to correlate the theoretical frequencies with the measurements via Bayesian

estimation. In the study [19], physical experiments were performed on the sample plates to mea-

sure the eigenfrequencies by a real-time television holography. The basic idea of the proposed

approach corresponds to simple FE models which are determined only in the reference points

of the experiment design. Therefore, a significant reduction against the conventional methods

of minimization can be achieved in calculations of the cost function.

Liu et al. [15] developed the hybrid numerical method (HNM) which has been employed to

calculate the transient waves in anisotropic laminated plates excited by impact loads. It com-

bines the finite element method (FEM) with the method of Fourier transforms and it is described

in [16]. The HNM and its modified version is then used as a forward solver in some identifica-

tion problems, see e.g. [13, 14]. The GA or µGA, alternatively combined with another method

(for example with the nonlinear least squares method [13]), were usually adopted in these works

as the inverse operator controlling the forward solver for material characterization using elas-

tic waves. In the work [14], the dynamic displacement responses were obtained at only one

receiving point of laminate surfaces. The robustness of procedure of the measurement noise

effect has been investigated by adding Gauss noise to the input displacement response. Han

et al. [9] utilized HNM to reconstruct the elastic constants of the cross-ply laminated axisym-

metric cylinders subjected to an impact load. In this case, the laminated cylinder was divided

into layered cylindrical elements in the thickness direction.

In addition, other techniques of material properties identification have been introduced in

recent years. For instance, Genovese et al. [7] published a novel hybrid procedure for the

mechanical characterization of orthotropic materials. This identification reverse problem has

been solved by combining spectral interferometry and a combinatorial optimization technique,

known as simulated annealing. Another numerical-experimental method for the identification

of orthotropic materials is given in [12]. A biaxial tensile test was performed on a cruci-

form test specimen. The displacement field observed by a CCD camera and measured by

a digital image correlation technique has been compared with a strain field which was com-

puted by FEM. Newton-Raphson algorithm was used as an optimisation procedure. Kam and

Liu [11] presented method for the determination of bending stiffness distribution of laminated

shafts. The difference between predicted and measured deflections was minimized at any two

points on the shaft using a quasi-Newton method. The view of material properties identifi-

cation techniques is covered by Chen and Kam [4] who developed a two-level optimization

method for material characterization by using two symmetric angle-ply beams with different

fiber angles subjected to three-point bending. The best estimates of shear modulus and Pois-

son’s ratio of the beam with fiber angles 45◦ are determined in the first-level optimization pro-

cess. In the second level, the known shear modulus and Poisson’s ratio are kept constant and

Young’s moduli of the second angle-ply beam with fiber angles different from 45◦ are identi-

fied.

In the present study, the possibility of the prediction of elastic properties in laminate beam

specimens with different cross-ply laminae stacking sequences using prescribed eigenfrequen-

cies is presented. The frequencies are determined by the FE software package in place of using

the experimental method. These values were compared with the spectral analysis results of the

FE models of beam. The GA and µGA are applied to manage the inverse problem.
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2. FE formula in forward analysis

The FE model of beam based on Euler-Bernoulli theory is used for the calculation of the eigen-

frequencies. In the (x1, x2, x3) coordinate system, the displacement field is given by

u1(x1, x3, t) = u(x1, t) + x3 ψ(x1, t) , u2(x1, x2, x3, t) = 0 , u3(x1, t) = w(x1, t) , (1)

where u(x1, t) and w(x1, t) are the displacements due to extension and bending, respectively,

and ψ(x1, t) denotes rotation about the x2-axis. Besides, the displacement u(x1, t) can be re-

written in the form

u(x1, t) = uc(x1, t)− zcψ(x1, t) , where zc = B11/A11 . (2)

The symbol uc(x1, t) denotes the centroidal axis displacement. The stiffness parameters A11

and B11 are defined as

(A11, B11) =

n∑

k=1

Qk
11

∫ hk

hk−1

b(x3)(1, x3)dx3 , (3)

where

Qk
11 =

Ek

1− νLT νTL

and Ek =

{
EL for θk = 0 ,
ET for θk = π/2 .

(4)

The longitudinalEL and transverse ET Young’s modulus including the Poisson’s ratios νLT , νTL

represent the material properties of beam FE model that is consisted of n layers which are

supposed to be orthotropic in the (L, T, T ′) directions, see Fig. 1. Each layer k is extended

from lower face hk−1 to upper face hk in the x3 direction. The angle θk is orientated with

respect to the x1-axis and takes only values 0 or π/2. It is also depicted in Fig. 1 that the FE

model is symmetric in the x1−x3 plane. The beam cross-section is assumed to be uniform with

a various shape having width b(x3) and the overall thickness h. The length of the FE is le.
The two-noded elements are used for the beam discretization. The linear and cubic polyno-

mials are chosen as the displacement shape functions of the element, i.e.

uc(x1, t) = [1, x1][a0(t), a1(t)]
T, w(x1, t) =

[
1, x1, x

2
1, x

3
1

][
a2(t), a3(t), a4(t), a5(t)

]T
. (5)

Consequently, the functions u(x1, t), w(x1, t) and ψ(x1, t) which describe deformations of

a beam element can be expressed in terms of the nodal displacement components qe(t) =
[q1(t), q2(t)]

T , where

q1(t) = [u(0, t), u(le, t)]
T

and q2(t) = [w(0, t), w(le, t), ψ(0, t), ψ(le, t)]
T. (6)
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Fig. 1. FE model of laminated beam with symmetric cross-section
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Because the derivation of the FE beam is based on Euler-Bernoulli theory, the relation ψ =
−∂w/∂x1 is valid. Then only one stress tensor component σ11 = σ1 is generally nonzero.

Therefore the constitutive equations of the kth layer reduce to

σk
1 = Qk

11 ε1 , (7)

where ε1 is a strain tensor component ε11 and the parameter Qk
11 is given by relation (4).

Using the principle of virtual work, the element governing equation of the free vibrations

can be written as

Meq̈e(t) +Keqe(t) = 0 , (8)

where Me and Ke are element mass matrix and element stiffness matrix, respectively. The

detail form of these matrices is stated in [22] where the viscoelastic orthotropic beam element

was derived according to Timoshenko theory. However, the FE beam based on Euler-Bernoulli

theory can be easily obtained by omitting the transverse shear strain as it is mentioned in that

paper. Assembling all the element matrices, the free vibration equation of the beam can be

expressed in the form

Mq̈(t) +Kq(t) = 0 , (9)

where M is the total mass matrix, K is the total stiffness matrix and q is the global nodal

displacement vector. When the periodic motion is considered, i.e. q = ν ei Ω t, Eq. (9) can be

rewritten as

(K − Ω2M)ν = 0 , (10)

whose solution leads to eigenvalue problem. The symbols ν and Ω denote eigenvector and

eigenfrequency, respectively. It could be found in [22] that the matrix M depends only on the

material density and the beam geometry provided that Euler-Bernoulli theory has been conside-

red. Therefore, the new eigenfrequencies can be obtained by solving Eq. (10) when the matrix

K is updated with different elastic material constants. The eigenfrequencies calculated from

Eq. (10) are then taken as an input for the inverse analysis.

3. Inverse problem formulation

The main aim of inverse methods is the determination of a selected set of unknown parameters

in a numerical model. It is necessary to define the objective function which has to be minimized

in the feasible domain of optimization parameters. In our case, this function is constructed

using the sum of relative difference squares of the components of two vectors containing eigen-

frequencies. Then the parametric optimization problem could be formulated as follows:

p̂ = arg

{
fo(p̂) = min

p∈D
[f(p)] = min

p∈D

[
n∑

i=1

(1− Ωi(p)/Ω
exp
i )

2

]}
, (11)

where p = [α1, . . . , αs]
T ∈ D ⊆ Rs is a vector of unknown optimization parameters. The

domain D is a convex set and is defined by constraints: αl
k ≤ αk ≤ αu

k for k = 1, 2, . . . , s.

The vector Ωexp = [Ωexp
1 , . . . ,Ωexp

n ]T represents eigenfrequencies that are considered as known.

Finally, Ω(p) ∈ Rn is the vector of eigenfrequencies which are computed from Eq. (10) for ad-

missible values of a vector p. The GAs are then employed to search these unknown parameters

αk. The main procedure of the GAs for our problem is presented below.
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4. Genetic algorithms

These are very effective algorithms searching for optimal or near-optimal solutions over the

investigated finite domain. These methods have been developed by Goldberg [8] according to

the idea of Darwin’s Theory of Evolution. The GAs are suitable for finding the global optimum

of optimization problems which have many local maxima and minima. They also posses the

advantages of easy solving of the mixed problems with continuous and discrete variables, and

without need of the objective function continuity. For these reasons, the GAs have been adopted

to our optimization problem (11).

In the traditional GA, all variables of interest are encoded as binary digits which are known

as genes. Collection of these genes further forms so-called chromosome. After manipulation

of a binary-coded GA, the final binary numbers are then decoded as original real numbers.

On the other hand, a real-coded GA has been also proposed in recent years, see e.g. [3]. The

main discrepancy is that all genes in a chromosome are real numbers. It is more convenient

to deal with most practical engineering applications because the changes from a real number

to the binary digits may be the cause of a loss of the number precision. A real-coding also

promotes the calculation efficiency because of straightforward using numbers in representa-

tion. Moreover, the various types of genetic operations can be simply adjusted or defined, as

given in [17]. For these reasons the real-coded GAs are used in this paper to estimate the

elastic properties in laminate beams with cross-ply laminae stacking sequences. In addition

to the above, it should be mentioned that attempts to utilize the combination of binary and

real genes to identify the unknown system can be found in literature. For example, a hybrid

GA taking the advantage of binary and real digits including quantum computing is presented

in [21].

In this work, the GA making use of the traditional genetic operators is applied as optimiza-

tion technique. The algorithm starts with an initial population of N chromosomes randomly

selected in the searching space D. The selection, crossover and mutation operations are conse-

quently performed to create next generation. The elitism operator is also adopted to replicate the

best individual of current generation. This process is repeated until the convergence criterion or

the maximum generation number Ng is achieved.

It has been pointed out in previous studies that a µGA is more robust algorithm for solving

multi-parameter inverse problems than the traditional GA. According to Liu and Xi [16], the

robustness of a uniform µGA lies in producing of a new genetic information due to the popu-

lation restart process. Therefore, the µGA has been as well used besides the GA to search the

unknown parameters. The structure of this algorithm is a similar to the above described GA

but some differences can be found. The population is very small and usually includes only 5
or 6 individuals. Due to this fact, small discrepancies among individuals in the population are

observed in a few generations and the convergence to some optimum occurs. At this point,

a new population is randomly generated while keeping the best individual from the previously

converged generation and the evolution process is thus restarted. The mutation operator is not

applied for the population evaluation in the µGA because of new chromosomes keep flowing

when the micro population is reborn.

Before the brief description of used real-coded genetic operations, some notations should

be introduced. Let the vector of unknown parameters pi = [α1i, . . . , αsi]
T , see Eq. (11),

means the ith chromosome in the gth generation of a population P (g) = {p1, . . . ,pPs
} where

i = 1, . . . , Ps while Ps is population size. Furthermore, the parameters pc and pm evaluate

a probability of the performance of crossover and mutation operations, respectively.
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4.1. Selection operation

The tournament selection has been chosen to generate offsprings since it is quite simple and

suitable for checking whether a chromosome is reproduced or not according to its corresponding

objective function. We randomly select 2 (may be up to Ps − 1) individuals from the current

population and the best one minimum objective function value is added to the next population

which is consequently subjected to other genetic operations. The process is repeated Ps times.

In addition, the roulette wheel selection mechanism is described in this part. This method

is utilized below in the selection of suitable crossover type. The roulette wheel selection can

be visualized by an imaginary wheel. Each parameter of observed set occupies an area that

is related to its objective function value. When a spinning wheel stops, which is in practice

represented by a randomly generated number from the range 〈0, 1〉, a fixed marker determines

selected parameter. Such a selection mechanism needs more numerical computations but the

probability of more frequent selection of one parameter can be easily increased, see the next

subsection.

4.2. Crossover operation

As mentioned earlier, probability of crossover pc is one of the parameters of genetic system.

This probability gives us the expected number pc × Ps of chromosomes which undergo the

crossover operation. The process is started by generating a random number r from the range

〈0, 1〉 for each chromosome in the population that was subjected to the tournament selection.

If r < pc, the chromosome is selected for crossover. These parents are consequently mated

randomly to make offsprings, i.e. new chromosomes. The result of this operation significantly

depends on selected type of operator. In this work, the three various types of crossover operators

are applied in evolutional algorithms. Note that the parameter a ∈ (0, 1) contained in the

following relations is generated randomly.

4.2.1. Simple crossover

Let parents pi = [α1i, . . . , αsi]
T and pj = [α1j , . . . , αsj]

T are selected to be crossed after the

kth position where k ∈ {1, 2 . . . , s− 1} is a random number. The offsprings p̃i and p̃j are then

in the form

p̃i = [α1i, . . . , αki, (1− a)αk+1,i + aαk+1,j, . . . , (1− a)αsi + aαsj]
T ,

p̃j = [α1j , . . . , αkj, (1− a)αk+1,j + aαk+1,i, . . . , (1− a)αsj + aαsi]
T . (12)

The results obtained from test cases in [17] showed that the system without simple crossover is

less stable than the system without arithmetical crossover. In these tests, the traditional GA has

been used in solving of optimization problems.

4.2.2. Arithmetical crossover

This operator is defined as a linear combination of two vectors. If parents pi and pj are crossed,

the offsprings are given as follows:

p̃i = api + (1− a)pj , p̃j = apj + (1− a)pi . (13)

It follows from tests performed by Michalewicz [17] that the GA without arithmetical crossover

has slower convergence.
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4.2.3. Heuristic crossover

This operator is unique because it utilizes values of the objective function f(p) defined in

Eq. (11) to the determination of next search direction. Moreover, the heuristic crossover pro-

duces only a single offspring. Regarding to this fact, we generate the parameter a twice for the

given parents pi and pj , and the following process of determination of a chromosome p̃ is also

repeated two times,

p̃ =

{
pj + a (pj − pi) for f(pj) ≤ f(pi) ,
pi + a (pi − pj) otherwise.

(14)

It seems that this operator can help us in searching for more accurate solution. It is in particular

useful to fine local tuning when all chromosomes are already near each other in the population.

Note that this operator may produce offspring outside the domain D. In such a case another

random value a is generated and another offspring is created. If after three attempts no new

feasible solution is found, this crossover is replaced with the arithmetical crossover.

It is obvious that all three types of crossover operations are useful in the evolutional process

and should be applied. But, some operators are better to use at the start of searching and some

of them are more useful to use when the evolutional process finishes. Therefore we defined the

probabilities of a selection for each crossover operation type in the following way:

p1 = 1− (p2 + p3) , p1 ∈ (0, 1) for simple crossover, (15)

p2 = s1 + s2s
−c
3 , p2 ∈ (0, 1) for arithmetical crossover, (16)

p3 = s4 + s5s
−c
6 , p3 ∈ (0, 1) for heuristic crossover, (17)

where s1, . . . , s6 are chosen real parameters and c ≥ 0. Let Si denotes the standard deviation of

numbers in the ith row of a population P (g) and αi is the arithmetic mean of the same numbers.

Then the parameter c is defined as

c = max {|S1/α1| , |S2/α2| , . . . , |Ss/αs|} . (18)

If the probabilities are calculated according to Eqs. (15)–(17), the selection process based on

the roulette wheel is performed and the selected type of crossover is applied in the algorithm.

Note that the parameter c which means the absolute value of the variation coefficient is also

used in the restart process. When the condition

c < ε for ε > 0 (19)

is satisfied, a new population is always generated in the evolutional process.

4.3. Mutation operation

This operator is performed on a gene-by-gene. The probability of mutation pm provides the

expected number pm × Ps × s of mutated genes. Every gene should have an equal chance to

undergo mutation. Hence, we generate a random number r from the range 〈0, 1〉 for each gene

in the whole population. If r < pm, the gene is replaced. The main purpose of mutation is to

keep the variety of population in the evolutional process and allows possible movement away

from a local optimum in the search for a better result. On the other hand, a frequent mutation can

be the reason of a low convergence of the whole algorithm. Therefore parameter pm is usually

set less than 0.05. These are the reasons why we decided to use only a uniform mutation in our

algorithm. In this case, a selected gene is replaced by a random number from the admissible

domain D.
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5. In-plane shear modulus estimation

It is clear from Eqs. (4) and (7) that the FE model based on Euler-Bernoulli theory described

in the section 2 is not able to identify the in-plane shear modulus GLT of a cross-ply laminate.

But if some fibres and matrix material properties of longitudinal composite layers are known,

the modulus GLT could be estimated by means of the law of mixtures [1] as presented below.

Let us consider that the values of Poisson’s ratios and density of fibres and matrix are known.

These parameters are usually constant for the specified material type and could be commonly

found on the web site of manufacturers. Besides this, we assume that the composite material

density ρ can be calculated with the aid of weight and volume of the specimen. Then the fibre

volume fraction Vf can be obtained from the simplified relations expressed by

ρ = ρf Vf + ρm Vm and Vm = 1− Vf , (20)

where ρf and ρm are fibres and matrix density, respectively. The parameter Vm denotes matrix

volume fraction. Further, we expect that the parametric optimization problem has been per-

formed and the Young’s moduli EL and ET were identified. If we suppose the validity of the

law of mixtures for the moduli EL and ET , i.e.

EL = Ef Vf + Em Vm and
1

ET

=
Vf

ETf

+
Vm

Em

, (21)

and if we define the coefficients

rmf =
Em

Ef

∈ (0, 1〉 , rff =
Ef

ETf

≥ 1 and rLT =
EL

ET

≥ 1 , (22)

where Em is matrix Young’s modulus and Ef and ETf are longitudinal and transverse fibres

Young’s moduli, respectively, we can obtain the quadratic equation of variable rmf in the form

(Vf Vm rff ) r
2
mf + (Vf

2rff + Vm
2 − rLT ) rmf + Vf Vm = 0 . (23)

Solution of this equation for the “reasonable” input coefficients rff and rLT leads to finding

an admissible root rmf from feasible domain defined in (22)1. Consequently, the relation

1

GLT

=
Vf

GLTf

+
Vm

Gm

(24)

is used to determine the in-plane shear modulus GLT . The symbol GLTf denotes the in-plane

shear modulus of fibers and Gm is the shear modulus of matrix. It is concurrently assumed that

these moduli could be determined for isotropic matrix material and generally orthotropic fibres

material using the relations

Gm =
Em

2 (1 + νm)
and GLTf =

Ef

2 (1 + νf ) rGf

, (25)

where rGf = 1 for isotropic and rGf > 1 for orthotropic fibre material. The symbols νf and

νm mean the major Poisson’s ratio of fibres and the Poisson’s ratio of matrix, respectively. By

combining Eqs. (21)1, (22)1 and (25) with Eq. (24), we obtain

GLT =
EL rmf

2 (Vf + Vm rmf) [Vf (1 + νf) rGf rmf + Vm (1 + νm)]
. (26)
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6. Numerical examples and discussion

Identification of elastic properties is demonstrated on examples of single-end clamped beams.

These beams are assumed to be made of cross-ply laminates with various stacking sequences of

layers as shown in Table 1. The geometric properties are chosen as follows: length and width of

beams are 240mm and 8mm, respectively, each laminate has the same material properties of all

layers which have the uniform thickness 0.5mm. The mechanical properties of two investigated

orthotropic composite materials are taken from [20] and are introduced in Table 2.

Table 1. Stacking sequences of used cross-ply laminates

Laminate model ID VAR1 VAR2 VAR3

A [02/904/04] [02/902/0]S [0/90]5
B [902/04/904] [902/02/90]S [90/0]5

Table 2. Mechanical properties of used unidirectional laminae

Composite material type T300/BSL914C epoxy E-Glass/MY750/HY917/DY063 epoxy

Material model ID MAT1 MAT2

Fibre volume fraction, Vf [−] 0.6 0.6

Longitudinal modulus, EL [GPa] 138 45.6

Transverse modulus, ET [GPa] 11 16.2

Shear modulus, GLT [GPa] 5.5 5.83

Major Poisson’s ratio, νLT [−] 0.28 0.278

Transverse Poisson’s ratio, νTT ′ [−] 0.4 0.4

The vector Ωexp of frequencies is not stated experimentally but is calculated numerically

with the help of software MSC.Marc. This approach was chosen to verify the quality of the ma-

terial identification process when the FE model with beam elements described in this work has

been employed. At first, we analyzed the influence of the number of used FEs on values of first

four flexural frequencies. The mesh of 32 × 2 regular four-node isoparametric shell elements

with linear approximations of displacements was created using the software of MSC.Mentat.

On the contrary, the beam element model contained only 8 elements. It was observed that the

increase of element number in both model has a very small influence on the change of flexural

eigenfrequencies values. As shown in Table 3 for laminate model VAR1, the eigenfrequency

errors are about 5% in comparison to both numerical model results. We came to similar con-

clusions in all other calculated cases.

Table 3. First four flexural frequencies in cycles per time, laminate model VAR1

FE model ID MAT1 MAT2

1 2 3 4 1 2 3 4

Shell elements (MSC.Marc) A 124.2 770.4 2124 4073 63.54 397.5 1111 2171

B 51.01 319.5 894.7 1754 42.72 267.8 750.5 1474

Beam elements A 124.9 782.2 2190 4292 64.66 405.1 1134 2223

B 53.64 336.0 940.5 1844 45.94 287.7 805.5 1579
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The identification process of elastic Young’s moduli and the major Poisson’s ratio was

performed according to optimization problem (11). However, it could happen that the same

eigenfrequencies Ω(p) can be obtained from different values of input material parameters

p = [EL, ET , νLT ]
T because the beam is made from orthotropic layers of a various orienta-

tion. Therefore, the objective function f(p) in Eq. (11) is constructed as a weighted sum of

functions

f(p) = ξ1 fA(p) + ξ2 fB(p) , ξ1 = 1 , ξ2 = 1 , (27)

while the same material model ID is assumed. The indexes A and B mean various layer se-

quences stated in the columns of Table 1. This modification of objective function should lead

to the unique solution of elastic parameters. Only first four flexural eigenfrequencies for every

variant A and B are accepted in the whole optimization process. This limit is set for the reason

of ability to reliably detect their maximum values in experimental way in the future.

The GA and the µGA were used to solve the optimization problem (11) where the objective

function was constructed according to (27). The tournament selection and elitism were applied

in all presented simulations. The restart process with parameter ε = 0.001 was also active in

all calculations. The crossover and the mutation probabilities were set to be equal to 0.95 and

0.05, respectively, in the case of GA. When the µGA was employed, the crossover operation

was used with the same probability but the mutation operation was omitted. The parameters in

Eqs. (16) and (17) which have influence on the selection of the crossover operation type were

chosen as follows: s1 = 0.3, s2 = 0.1, s4 = 0.2, s5 = 0.3 and s3 = s6 = 1·106. The maximum

number of generated chromosomes during the process was invariable and was set equal to 3000.

Furthermore, every optimization problem was independently repeated 50 times and the obtained

results were evaluated statistically.

Table 4. Statistical evaluation of EL [GPa] and ET [GPa], laminate model VAR1

Ps ·Ng MAT1 MAT2

Ea
L SEL

Ea
T SET

Ea
L SEL

Ea
T SET

100·30 131.3 0.415 9.609 0.012 44.52 0.548 13.70 0.008

60·50 131.3 0.519 9.612 0.029 44.49 0.594 13.71 0.026

30·100 130.7 2.691 9.634 0.149 44.21 1.247 13.73 0.129

6·500 131.3 0.612 9.605 0.014 44.22 0.817 13.71 0.028

The identification process was started for the following estimation intervals of unknown ma-

terial parameters: EL ∈ 〈10, 1000〉 [GPa], ET ∈ 〈1, 100〉 [GPa], νLT ∈ 〈0.1, 0.4〉 [−]. It can be

seen from Table 4 for the case of laminate model VAR1 that the average values of longitudinal

modulus Ea
L and transverse modulus Ea

T give very similar results for various population size Ps.

The results in the last row of Table 4 were obtained by using the µGA whereas the others by

using the GA. The average estimations of the longitudinal modulus for MAT1 and MAT2 were

different about 5% from expected values in Table 2. But the errors about 15% (difference of

2.5GPa between real and calculated values) were detected for the transverse moduli. Besides,

it can be concluded from Table 4 that the robustness of the GA and the µGA in regard to choice

of initial Young’s moduli values is very good because the standard deviations SEL
and SET

are

small in comparison to average values of Ea
L and Ea

T . Much worse results were obtained in

the Poisson’s ratio calculation. As shown in Table 5, determined average Poisson’s ratios ν a
LT

are not near to expected values of this parameter, even though the best Poisson’s ratios ν b
LT are

rather close to the real values given in Table 2. It is obvious that the identification problem has
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Table 5. Statistical evaluation of νLT [−], laminate model VAR1

Ps ·Ng MAT1 MAT2

νbLT νaLT Sν νbLT νaLT Sν

100·30 0.281 0.241 0.068 0.286 0.239 0.078

60·50 0.281 0.245 0.087 0.277 0.242 0.080

30·100 0.282 0.263 0.118 0.276 0.252 0.106

6·500 0.266 0.233 0.105 0.276 0.270 0.101

a small sensitivity in relation to this parameter, which can be shown by means of the standard

deviation Sν in Table 5, because the ratios of Sν to νa
LT give relatively large values against to

coefficients of variation SEL
/Ea

L and SET
/Ea

T . However, the value of the Poisson’s ratio can be

usually found in a local range for specified material type and it can be estimated reliable using

the law of mixtures

νLT = νfVf + νm Vm . (28)

In view of the fact that similar results were also obtained in the case of the laminate model

VAR2 and VAR3, the Poisson’s ratio νLT has been next calculated according to Eq. (28) and

was removed from a vector of unknown parameters p. The value of νLT is then equal to 0.26
for both material models MAT1 and MAT2 while the Poisson’s ratios of fibres and matrix have

been adopted from [20], see Tables 6 and 7. Differences of computed and real (Table 2) values

are less than 7%.

Table 6. Mechanical properties of used fibres

Fibre type T300 Silenka E-Glass 1200tex

Longitudinal modulus, Ef [GPa] 230 74

Transverse modulus, ETf [GPa] 15 74

In-plane shear modulus, GLTf [GPa] 15 30.8

Transverse shear modulus, GTT ′f [GPa] 7.0 30.8

Major Poisson’s ratio, νf [−] 0.2 0.2

Table 7. Mechanical properties of used matrices

Matrix type BSL914C epoxy MY750/HY917/DY063 epoxy

Modulus, Em [GPa] 4.0 3.35

Shear modulus, Gm [GPa] 1.48 1.24

Poisson’s ratio, νm [−] 0.35 0.35

The identification process has been repeated again to generate a new vector of unknown

material parameters p = [EL, ET ]
T . The Poisson’s ratio νLT was assumed constant during

every computation and equals to 0.26 for all laminate and material models. The longitudinal

and transverse moduli obtained using the µGA and the GA for various numbers of Ps and Ng

gave very similar results. Therefore, only the results of the µGA are presented in the following

text. The ranges of investigated parameters were chosen as above, i.e. EL ∈ 〈10, 1000〉 [GPa],
ET ∈ 〈1, 100〉 [GPa].

As it is obvious from Tables 8 and 9 for VAR1 and VAR2, the value of the Poisson’s ratio

νLT has a neglected influence on computation of Young’s moduli EL and ET in comparison

to results in Table 4. The low values of the standard deviations SEL
and SET

mean that our

optimization algorithm is robust for searching parameters. However, these conclusions are not
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Table 8. Statistical evaluation of longitudinal modulus EL [GPa], νLT = 0.26 [−]

Model MAT1 MAT2

VAR1 VAR2 VAR3 VAR1 VAR2 VAR3

Eb
L 131.7 131.9 137.5 44.53 44.80 45.52

Ea
L 131.3 131.6 95.29 44.46 44.57 27.97

SEL
0.109 0.148 35.40 0.033 0.079 15.19

Table 9. Statistical evaluation of transverse modulus ET [GPa], νLT = 0.26 [−]

Model MAT1 MAT2

VAR1 VAR2 VAR3 VAR1 VAR2 VAR3

Eb
T 9.619 10.43 11.00 13.72 13.88 15.65

Ea
T 9.606 10.30 38.64 13.71 13.77 26.83

SET
0.006 0.037 27.03 0.005 0.029 11.73

valid in the case of VAR3 because incorrect results were obtained for average Young’s moduli.

In addition, large values of standard deviation were computed. The reason of errors lies in the

unsuitable assemblage of composite layers, see Table 1. The laminate model VAR3 can be taken

into account as quasi-isotropic on a macroscopic scale in both variants A and B. Therefore, the

vector of computed eigenfrequencies is the same in variant A and B. Due to this fact, there is not

only one solution of the optimization problem in the domain D. This conclusion follows from

the very low objective function value at the end of the optimization process when the number

of generated chromosomes is equal to 3 000. This occurrence was observed in all considered

cases.

It was discussed in the section 5 that the presented mathematical model of the beam is

not able to identify the in-plane shear modulus GLT . Therefore, the method of this modulus

estimation has been proposed. The calculations of GLT were performed for the average Young’s

moduli given in Tables 8 and 9, and for the Poisson’s ratios given in Tables 6 and 7. The

coefficients rff and rGf were set according to elastic moduli values of fibers in Table 6. While

E-glass fibers have isotropic properties and due to the both coefficients were set equal to 1, T300
carbon fibres are orthotropic and the coefficients were determined as follows: rff = 230/15

.
=

15.3, see Eq. (22)2; GLTf ≡ ETf =⇒ rGf = rff/[2 (1 + νf)] = 15.3/[2 (1 + 0.2)]
.
= 6.39,

see Eqs. (22)2 and (25)2. The volume fraction Vf = 0.6 (Table 2) was assumed constant in all

calculated problems. Note that the mechanical properties of a certain material class, as Young’s

moduli or the Poisson’s ratio, are usually almost invariable. This fact can be also supported

for the carbon fibres (namely for fibre types AS4 and T300) by experimental data given in [20].

Therefore, we can suggest the set of coefficients rff = 15 and rGf = 6.2÷6.4 when the specific

material properties of the carbon fibres are unknown.

The results of GLT calculations for VAR1 and VAR2 are stated in Table 10. The variant

VAR3 was not considered. When we compare the values of shear modulus from Tables 2

and 10 it is evident that the best computed value was found in the case of the material model

MAT1 and VAR2 where the relative error was less than 4%. In the rest cases, the relative

difference between the known and calculated values is about 12%, which is result comparable

to results obtained for the transverse moduli. If we compute the shear modulus GLT only with

real data from Tables 2, 6 and 7, we obtain even more better results. These moduli are as

follows: GLT = 5.69 [GPa] for MAT1 (error 3.4%) and GLT = 6.09 [GPa] for MAT2 (error

4.5%).
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Table 10. Calculated values of average shear modulus GLT [GPa], Vf = 0.6 [−]

Model MAT1 MAT2

VAR1 VAR2 VAR1 VAR2

rLT 13.67 12.78 3.243 3.237

rmf 0.030 0.034 0.088 0.089

GLT 4.804 5.286 5.145 5.168

7. Conclusion

It has been shown in this paper that the robustness of genetic algorithms is very good for the

determination of Young’s moduli values. This method is particularly effective for a low time-

consuming computation of chromosomes in a generation. Acceptable values of the modulus

EL were calculated but worse results were obtained for moduli ET and GLT . These results are

partially influenced by the selection of used mathematical model of a beam because of the dif-

ferences between eigenfrequencies obtained from shell and beam elements. The calculation of

the shear modulus GLT was then directly dependent on the values of EL and ET . The computa-

tion of the Poisson’s ratio νLT gave high standard deviation values when inverse procedure was

used for identification. However, a small influence of νLT value on values of Young’s moduli

was found. In practice the value of νLT is quite close in vicinity of 0.3 and can be stayed close

to this value or can be computed by using the law of mixtures when the volume fraction of fibers

and the Poisson’s ratios of the fibers and the matrix are known.

The proposed methodology has some disadvantages. The measurement of eigenfrequencies

has to be performed on two independent specimens with different layer sequences. Due to

this fact, the beam specimen made of a quasi-isotropic laminate is not suitable to use for the

identification of material properties. In addition, we have to determine the volume fraction of

fibers and we have to know some material properties of fibers and matrix when we want to

apply the law of mixtures in the calculation of νLT and GLT . It requires the knowledge of

fibers and matrix material properties. On the other hand, the proposed methodology brings

some advantages. The method enables to utilize the simple specimens. Mechanical properties

are directly calculated for a final laminate. Only a few eigenfrequencies given by the simple

test are needed to be computed values of Young’s moduli EL and ET . The required measuring

aparatures are not as expensive as typical static testing machines.

In future, the real measuring of eigenfrequencies is prepared and different mathematical

model of the beam which gives higher accuracy of calculated frequencies should be used.
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