
Optimizing GPU Volume Rendering

Daniel Ruijters
Philips Medical Systems

Veenpluis 6
 5680DA Best, the Netherlands

danny.ruijters@philips.com

Anna Vilanova
Technische Universiteit Eindhoven

Den Dolech 2
5600MB Eindhoven, the Netherlands

a.vilanova@tue.nl

ABSTRACT

Volume Rendering methods employing the GPU capabilities offer high performance on off-the-shelf hardware.

In this article, we discuss the various bottlenecks found in the graphics hardware when performing GPU-based

Volume Rendering. The specific properties of each bottleneck and the trade-offs between them are described.

Further we present a novel strategy to balance the load on the identified bottlenecks, without compromising the

image quality. Our strategy introduces a two-staged space-skipping, whereby the first stage applies bricking on a

semi-regular grid, and the second stage uses octrees to reach a finer granularity. Additionally we apply early ray

termination to the bricks. We demonstrate how the two stages address the individual bottlenecks, and how they

can be tuned for a specific hardware pipeline. The described method takes into account that the rendered volume

may exceed the available texture memory. Our approach further allows fast run-time changes of the transfer

function.

Keywords

Volume Visualization, Direct Volume Rendering, Texture Slicing, Hierarchical Rendering, GPU.

1. INTRODUCTION
New developments in medical imaging modalities,

numerical simulations, geological measurements, etc.

lead to ever increasing sizes in volumetric data. The

ability to visualize and manipulate the 3D data

interactively is of great importance in the analysis and

interpretation of the data. The interactive

visualization of such data is a challenge, since the

frame rate is heavily depending on the amount of data

to be visualized. Inherently, the demand for faster

visualization methods is always existing, in spite of

hardware innovations.

An established method for interactive volume

rendering on consumer hardware is GPU-based

texture slicing [Ake93, CCF94, CN93, EE02,

EKE01, MGS02, RGW+03, KW03]. Although this

approach performs very well compared to CPU-based

algorithms, since it benefits from the parallelism

available in the GPU pipeline, it can be accelerated

significantly by taking into account the various

bottlenecks that are encountered in the graphics

hardware. Every individual bottleneck has a different

optimal data chunk size and data throughput. In this

article, we present a novel approach to accelerate

GPU-based volume rendering that allows to tailor

and balance the load on the individual bottlenecks to

reach an optimal exploitation of the graphics

hardware power.

In section 2, we present an overview of related work.

Section 3 discusses the main bottlenecks that come

into play when performing GPU-based volume

rendering. Then an outline of the proposed approach

is drawn in section 4. Sections 5, 6 and 7 deal with

the details of our approach. In section 8, the results

are presented and discussed, and in section 9 we

summarize our conclusions.

2. RELATED WORK
The first rendering methods using the 3D texture

capabilities of the graphics hardware were proposed

by Cullip and Neumann [CN93], Akeley [Ake93] and

Cabral et al. [CCF94]. Essentially these techniques

consist of drawing polygons, which slice the volume

in a back to front order. The data set is mapped as

texture information on the polygons using tri-linear

interpolation. The successive polygons are blended

into the existing image.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006

Plzen, Czech Republic.

Copyright UNION Agency – Science Press

Journal of WSCG 9 ISBN 1213-6972 ISBN 80-86943-09-7

Bricking is a technique to divide the volume data set

into chunks, called bricks [Eck98, WWE04]. It can

be employed to deal with data sets exceeding the

available texture memory. The bricks have then a size

that is equal to or smaller than the size of the texture

memory, and are loaded sequentially from main

memory into the texture memory while rendering.

However, this leads to significantly lower frame rates,

since the bus architecture, connecting the graphics

hardware to the main memory and CPU, proves to be

a major bottleneck. Tong et al. [TWTT99] propose a

bricking technique that allows skipping empty

regions. Their method, however, requires new

textures to be generated for every change of the

transfer function, which is time consuming for very

large data sets.

Texture compression can help to fit the entire volume

in the main memory, and to alleviate the bus

bottleneck. However, all presently available

compression methods supported by graphics

hardware (S3TC, FXT1, DXT1, VTC, etc) are

limited to lossy 8-bit RGB(α) compression, which

make them unsuitable for the compression of the

(often 12- or 16-bit) scalar values found in medical

data, and therefore we do not use them. Further,

Meissner et al. [MGS02] show that the lossy

compression algorithms severely reduce the image

quality. Wavelet compression, as proposed by Guthe

et al. [GWGS02] is a promising technique, but there,

not all parts of the volume are rendered at the highest

resolution.

Not rendering all parts of the volume in the highest

resolution possible is a way to reach higher frame

rates, as demonstrated by LaMar et al. [LHJ99],

Weiler et al. [WWH+00], Boada et al. [BNS01] and

Guthe et al. [GWGS02]. This is particularly suited to

increase the render speed for perspective projections

in a small view port, focusing on a detail of the

volume. However, orthogonal projections of the

entire volume in high resolution view ports, as is

common in medical applications, can only profit from

this technique at the cost of the image quality.

Space-skipping and space-leaping are techniques to

accelerate volume rendering, that origin from ray-

casting methods, see e.g. Levoy [Lev90], Zuiderveld

et al. [ZKV92] and Yagel and Shi [YS93]. It is based

on skipping empty parts of the volume. The idea of

space-skipping can be applied to texture-mapping

volume rendering as has been shown by Westermann

and Sevenich [WS01].

Octree is an established multi-level data structure

when dealing with voxel volumes, which has been

used in numerous different applications. E.g.

Srinivasan et al. [SFH97] apply an octree structure in

volume rendering. Orchard and Möller [OM01]

demonstrated the benefits of using adjacency

information in splatting volume rendering.

Parker et al. have combined bricking and multi-level

data structures to accelerate CPU-based iso-surface

ray-tracing of volume data sets on multi-processor

platforms and clusters [PSL+99, DPH+03]. Grimm et

al have applied a two-staged space skipping, based on

bricking and octrees, combined with gradient

caching, to CPU-based ray-casting [GBKG04].

Roettger et al. [RGW+03] describe a GPU-based pre-

integrated texture-slicing including advanced

lighting. The authors also describe a GPU-based ray-

tracing approach with early ray termination. Krüger

and Westermann [KW03] propose a method to

accelerate volume rendering based on early ray

termination and space-skipping in a GPU-based ray-

casting approach. The space-skipping addresses the

rasterization bottleneck, using a single octree level

only.

We have combined some of the techniques cited

above, to accelerate GPU volume rendering on a

single workstation, using off-the-shelf hardware.

Often we found that acceleration of volume rendering

has been treated as a singular problem to solve. We

rather focus on the individual bottlenecks that are

encountered while performing volume rendering, and

tailor the different techniques to address specifically

those bottlenecks.

3. BOTTLENECKS
Figure 1 illustrates the graphics pipeline, employed

for GPU-based volume rendering [Zel02]. Here we

discuss the most important points in the pipeline that

result in a bottleneck.

on - chip cache memory video memory

system

memory

frame buffer

commands

pre - TnL

cache

texture

cache

triangle

throughput

limited

fragment

shader

limited

CPU

limited

texture cache size

limited

frame buffer limited

rasterization

limited

bus

limited

CPU

textures

geometry

rasterization

vertex

shading

(T&L)

triangle setup

fragment

shading

and

raster

operations

post - TnL cache

Figure 1: The graphics hardware pipeline and its

bottlenecks [Zel02], light grey: memory units,

dark grey: data structures, blue: processing units,

red: bottlenecks.

The bus - The volume data has to be transferred

over the bus from the system memory into the

Journal of WSCG 10 ISBN 1213-6972 ISBN 80-86943-09-7

graphics card memory. Since this is the slowest part

of the entire pipeline, these transfers have to be as

few as possible.

Triangle throughput - The triangle throughput

is mainly limited by the vertex shading and triangle

setup phase. A straight forward implementation of

texture-mapping volume rendering would involve

only few triangles, but techniques for space-skipping

may increase the amount of triangles considerably. If

the triangle count becomes too high, this will become

a limiting factor for the frame rate.

Rasterization - When performing volume

rendering based on texture slicing, the vast majority

of the pixels on the screen are accessed multiple

times. Space-skipping techniques may be used to

reduce the amount of pixels to be accessed, but this

also increases the triangle count.

Texture cache size - Texture lookup is one of

the more time consuming operations performed

during the rasterization step. When the texture fits in

the cache, these lookup operations will be faster.

Fragment shader - Fragment shader programs

impact the duration of the rasterization step. Simple

fragment programs, such as applying a lookup table,

generally do not limit the frame rate, however more

complex operations, such as specular lighting

[MGS02, RGW+03], multi-dimensional transfer

functions [KKH01] or pre-integrated rendering

[EE02, EKE01, RGW+03], can form a bottleneck.

Especially fragment programs that perform multiple

texture lookups (e.g. on-the-fly gradient calculation

for specular lighting) are relatively slow.

4. OUR APPROACH
When performing volume rendering usually only a

fraction of all voxels actually contribute to the final

image, since a relatively small amount of voxels are

of interest and another amount of them are occluded.

In 3D medical data sets (obtained by e.g. ultrasound,

CT, MR or rotational angiography [KodBA98,

vdB03]) the anatomical structures of interest

encapsulated in the data sets occupy only a part of the

total data. Typically 5% to 40% of all voxels contain

visible data, and even highly filled CT or MR data

sets rarely exceed 55%. Especially vascular data sets

can be marked as sparse data sets, since vessels, due

to their tubular form, occupy only a small percentage

of the volume (1% to 8%).

In this article, we seek to reach the maximum benefit

in exploiting skipping void parts of the volume

(space-skipping). The novelty we introduce lies in

dividing the space-skipping in two stages; a course

division using bricking (figure 2a) and a finer one

using octrees (figure 2b). These steps are based on an

analysis of the bottlenecks encountered in the

graphics pipeline when performing texture-mapping

volume rendering. The first stage, bricking, is

chopping the volume in so called texture bricks. The

bricks are loaded into the video memory, to serve as

data for the volume rendering algorithm, which is

executed by the GPU. The bricks address the bus-

and texture cache size-bottleneck. To further alleviate

the load on the fragment shaders, we additionally

perform early ray termination to each brick. This

benefits especially highly-filled data sets. The second

stage is employing an octree within each brick. The

octrees address the rasterization bottleneck. As we

demonstrate, the two stages have to be balanced,

because lifting one bottleneck may overload another

bottleneck (e.g. rasterization bottleneck versus

triangle throughput bottleneck).

The role of the transfer function in volume rendering

is to map the scalar voxel information to optical

properties (e.g. color and opacity) [KKH01]. The

above described approach is implemented such that

the flexibility to change the transfer function at run-

time is preserved. This offers the possibility to focus

on different scalar ranges in the volume, without

lengthy calculations. To accomplish this, the

unmodified scalar voxel values are stored in the brick

textures, and a fragment shader program is used, to

lookup the RGBα values post-interpolatively.

(a)

(b)

(c)

Figure 2: The same volume fragment, rendered with (a) bricking cubes visible, (b) octree cubes visible

(note the various cube sizes) and (c) both bricking and octree cubes visible

Journal of WSCG 11 ISBN 1213-6972 ISBN 80-86943-09-7

5. BRICKING
As mentioned in section 2, the voxel volume can be

divided into chunks, called bricks, in order to cope

with voxel data sets sizes exceeding the size of the

texture memory of the graphics hardware. Note that

our bricks contain the original scalar values of the

voxel volume, thus the values before applying the

transfer function. This enables us to change the

transfer function on the fly, since a transfer function

change does not require creating new textures.

To obtain a correct interpolation at the bricks'

boundaries it is necessary that the data held by

adjacent bricks overlap. The overlap depends on the

convolution kernel used for interpolation [ML94],

and should correspond to (kernelsize - 1). For nearest

neighbor interpolation that means that no overlap is

needed, since the width of the kernel is one. For tri-

linear interpolation the overlap should be one voxel

in every direction (for other kernels the overlap may

even be larger). Pre-integrated rendering [EE02,

EKE01, RGW+03] or the on-the-fly calculation of

gradients require the overlap to be increased by

another voxel in every direction. For bricks of b
3

voxels and an overlap of n voxels, the memory

overhead is approximately (3n/b)·100%.

The bricks are loaded into the video memory as 3D

textures. Many graphics cards require 3D texture

sizes to be a power of 2 in every direction. If the

volume dimensions do not divide evenly into brick

dimensions, either an additional layer of partially

empty bricks should be added in each direction, or

smaller rest-bricks should be used.

When the amount of data in the textures exceeds the

available texture memory, textures are swapped

between the main memory and the texture memory. If

a requested brick is not resident in the texture

memory, it is loaded from the main memory,

replacing resident textures [SWND03]. In most

OpenGL implementations resident textures are

swapped out on a Least Recently Used (LRU) base.

Traditionally bricking in texture based rendering is

used to be able to render data sets which exceed the

size of the texture memory of the graphics hardware.

The bricks are then chosen to be as large as possible,

and they are sequentially loaded from the main

memory into the texture memory. Which implies that

for each frame the entire volume data is transferred

over the bus.

In our approach, however, we choose brick sizes

which are considerably smaller. The smaller the brick

size is, the bigger is the chance of bricks being

completely void after applying the transfer function,

and void bricks do not need to be drawn. Therefore,

once they are swapped out of the texture memory,

they are never reloaded into the texture memory, and

thus the bus bottleneck is alleviated.

We even apply bricking to volumes which completely

fit into the texture memory to improve data locality,

which will result in less cache trashing on the

graphics card [HG97, CBS98, IEP98]. On the other

hand smaller bricks could introduce a larger overhead

due to the overlap needed for interpolation. Thus the

optimal brick size needs to be defined depending on

the available texture memory, optimal texture size

(see section 3), nature of the data set, overhead due to

overlap, and the constraints posed by the graphics

hardware.

6. EARLY RAY TERMINATION
To be able to perform early ray termination at all, the

volume has to be traversed in a front-to-back order.

This can be done by evaluating the volume rendering

integral in discrete steps, using the under operator:

Ci+1 = (1 - Ai) · αi · ci + Ci

Ai+1 = (1 - Ai) · αi + Ai

Whereby C, A denote the color, respectively the

opacity value of the current ray, c, α the color and

opacity value given by applying the transfer function

to the current sample in the volume, and i denotes the

(a)

(b)

(c)

Figure 3: Test volumes: (a) 512
3
 volume, used for testing early ray termination, (b) vascular 512

3
volume,

(c) gigabyte volume of 642 · 642 · 1284 voxels, generated by duplicating a large 3D-RA volume.

Journal of WSCG 12 ISBN 1213-6972 ISBN 80-86943-09-7

sample index. A ray is then saturated when Ai

approximates 1.

Before a brick is rendered, early ray termination is

applied to its destination pixels. This is tested by

executing a fragment shader program, while drawing

a solid bounding box around the brick with back face

culling switched on. The fragment shader program

writes the maximal value in the depth buffer for

saturated rays [KW03, RGW+03]. When slicing the

brick texture the early z-test will prevent any

fragment operations to be executed for those rays,

reducing the load on the rasterization and fragment

shader bottlenecks. Early ray termination is only

performed once per brick, and not more often (e.g.

for every octree node or every sample) because the

overhead involved (changing fragment shaders,

performing the test) would otherwise annihilate the

benefits.

7. OCTREE
By not rendering the void bricks, the load on the

rasterization bottleneck is already reduced. We seek

to reduce it further by applying octrees. Every brick

possesses its own octree. Every octree node

corresponds to a cuboid part of the voxel volume,

which can be divided into eight parts, corresponding

to the child nodes (see figure 4). Our octree is kept in

main memory. It only describes the geometry of the

visible data. The actual voxel data is to be found in

the brick textures.

For tri-linear interpolation, let a cell be defined as a

cube, whose eight corners adjacent voxel values are

assigned. For every position within the cell an

intensity value is defined as the tri-linear

interpolation of the corner values. Therefore a cell

can only be completely void if its eight corner values

are completely transparent (α = 0) after applying the

transfer function. This definition can easily be

extended to any given interpolation kernel, by setting

the size of a cell to (kernelsize - 1)
 3
.

level 0

level 1

level 2

Figure 4: An octree division and its tree.

Every octree node carries a variable describing the

ratio r of visible data to total data within its cube. At

the final level of the octree, every node represents

uniquely one cell, and is considered either completely

filled (r = 1) or void (r = 0). Every higher octree level

nodes ratio can be calculated by averaging the ratios

of its children. This calculation only needs to be

performed when the transfer function has changed.

Rendering an image means that the bricks have to be

processed in a front to back order. For each brick the

respective octree is traversed, starting with its parent

node. Depending on its ratio r there are three ways to

process a node:

r = 0: The node is completely void. It is not drawn at

all, and is not traversed any further.

0 < r < threshold: The nodes children will be

traversed, and to each child node this strategy will be

applied recursively.

r ≥ threshold: The node is drawn completely. It is not

traversed any further.

If the threshold is set to 1, exactly all filled cells will

be drawn, and no void cells. However, that would

lead to a lot of tiny cubes at the boundaries of the

visible data structures, and thus the load on the

triangle throughput bottleneck becomes too high.

Therefore the threshold should be chosen in such a

way that some degree of void data is allowed to be

drawn. A further strategy we use to prevent too much

overhead is setting an octree level at which nodes,

lower in the hierarchy, are not traversed any further.

At this level, any node that is not void, will be drawn

completely.

When traversing a node, its children have to be sorted

in a front to back order. Since there are eight

children, it would seem that there are 8! = 40320

ways to arrange the children. But since the

arrangement along the three perpendicular axes is the

same for all children, there remain 2
3
 = 8 possible

orders. When a node is to be drawn, the cuboid box

corresponding to this node is sliced, and the slices are

rasterized and blended into the previously drawn

slices. The slices can be axis-aligned or viewport-

aligned. For the most straight-forward form of

volume rendering, the brick texture is interpolated on

every slice, taking its position in the brick into

account, and after interpolation the transfer function

is applied. However, it is also possible to perform

more sophisticated forms of volume rendering on the

slices, like pre-integrated volume rendering or

include specular lighting [MGS02, RGW+03].

The octree is generated and traversed on the CPU. Its

purpose is to lower the workload on the graphics

pipeline, and thus the GPU. The octree reduces the

time that the GPU spends on processing data which

never contribute to the final image. The actual

volume rendering algorithm, as well as interpolation,

the post-interpolative transfer function, and

optionally, specular lighting, is being performed by

the GPU.

Journal of WSCG 13 ISBN 1213-6972 ISBN 80-86943-09-7

8. RESULTS
The described approaches have been tested with

several different graphics cards: the nVidia

QuadroFX 3400 (256MB on board memory), the ATi

FireGL X1 (128MB), and the 3DLabsWildcat 7110

(256MB). With each card the volume in figure 3b has

been rendered, using the same lookup table settings.

The volume data concerned the iliac vein, acquired

through 3D rotational angiography. Since contrast

media was injected into the vein, the vein could easily

be classified using the transfer function. Only 3% of

the voxels in this volume contain visible data. All

results have been obtained, using a view port of 800
2

pixels and the sample rate for the volume rendering

equation was set to 1.5 samples per voxel.

Since the optimal brick size is mainly determined by

the properties of the texture memory (see section 5)

and the optimal octree limit is primarily used to

balance the rasterization load and the triangle

throughput (see sections 3 and 7) they can be

considered to be fairly orthogonal variables.

Therefore their optimum can be found by varying one

variable, while keeping the other one constant.

On each graphics card the test volume was rendered

with different brick sizes, see figure 5, while the

octree limit was set to 8
3
 voxels.

0 20 40 60 80 100

Wildcat 7110

FireGL X1, non xy

aligned

FireGL X1, xy

aligned

QuadroFX 3400

16³

32³

64³

128³

256³

512³

fps

brick

sizes

Figure 5: Performance using different brick sizes.

The ATi FireGL X1 and the 3DLabs Wildcat 7110

clearly show that their optimal brick size is

considerably smaller than their largest possible brick

size. The nVidia QuadroFX 3400 does not benefit

from the bricking for the 256MB test volume.

However, also this card clearly profits from the

bricking for the sparse 1GB volume in figure 3c: the

optimal brick size is then 64
3
 voxels, with an average

frame rate of 37 fps, while for 256
3
 bricks only a

mere 3.1 fps is reached.

The performance of the ATi FireGL X1 depends

heavily on the sampling direction of the bricks,

because the ATi card treats the 3D textures as a stack

of 2D slices. When the bricks are traversed in the x or

y direction, the slices are accessed rather linear, and

the performance is much better than when they are

traversed in the z direction. It is inevitable to traverse

in the z direction, when the viewing direction and the

z-axis of the textures differ more than 45°. This effect

can be reduced by alternating the orientation of the

textures for each consecutive brick [WWE04].

Especially striking is the fact that the optimal brick

size and octree limit is different for each sampling

direction. When sampled in the xy-plane direction

larger bricks benefit from linear traversal, while in

other directions smaller bricks benefit from less cache

trashing. In figures 5 and 6 this fact is illustrated by

the performance measurement when sampling aligned

to the xy-plane, and when not.

0 20 40 60 80

Wildcat 7110

FireGL X1, non xy

aligned

FireGL X1, xy

aligned

QuadroFX 3400

2³

4³

8³

16³

32³

64³

octree

limits

fps

Figure 6: Performance using different octree

limits.

Further the volume was rendered with a fixed brick

size of 64
3
 voxels and variable octree limits (the

octree limit is the smallest octree cube allowed). Not

every octree branch reaches this limit, see section 7.

Figure 6 unsurprisingly shows that there is an

optimum octree size for every graphics card. Smaller

octree limits lead to too much CPU overhead and

triangle count, and larger octrees to too much

rasterization overhead. The 64
3
 octree level

Graphics card (a) Optimized (b) Non-optimized (a) / (b)

nVidia QuadroFX 3400 73.5 fps 9.6 fps 7.66

ATi FireGL X1, xy aligned 83.3 fps 0.23 fps 362

ATi FireGL X1, non xy aligned 27.4 fps 0.23 fps 119

3Dlabs Wildcat 7110 21.3 fps 0.38 fps 56.1

Table 1: Average frame rates reached when using (a) best combination of bricking and octrees, (b) GPU

rendering without bricking or octrees.

Journal of WSCG 14 ISBN 1213-6972 ISBN 80-86943-09-7

corresponds to not using any octrees at all, only

bricking.

Table 1 shows the acceleration achieved, using the

volume in figure 3b, with an optimal combination of

brick size and octree depth for each particular

graphics card versus the same GPU volume rendering

routines applied without any bricking or octrees at

all. Since early ray termination does not provide any

performance gain for sparse data sets, it was not used

on this volume.

Early ray termination was tested on the QuadroFX

3400 using the volume in figure 3a. GPU volume

rendering without optimizations yielded 2.2 fps, using

64
3
 bricks and 8

3
 octree limits 5.2 fps were reached,

and with additionally early ray termination switched

on, the average frame rate was 16.1 fps.

Since the rendering primarily depends on the graphics

card, replacing e.g. a Xeon 3.0GHz by a Xeon

1.7GHz delivered approximately the same

performance figures. The only part which is bounded

by the CPU and main memory performance is

building a new octree after the transfer function has

been changed. For a volume consisting of 512
3
 voxels

(16 bit per voxel, 256MB for the entire volume),

rendered with a brick size of 64
3
 voxels and an octree

limit of 8
3
 voxels, building all new octrees for the

entire 512
3
 volume took 6.5 milliseconds on the Xeon

1.7GHz and 3.5 milliseconds on the Xeon 3.0GHz

machine.

9. CONCLUSIONS
In this paper, we presented an approach to accelerate

GPU-based volume rendering. The approach

consisted of a two staged space-skipping and early

ray termination, and was tailored to lift the various

bottlenecks encountered in the graphics pipeline.

In the first stage, the entire volume is chopped into

bricks, and from these bricks 3D textures are created.

Empty bricks are never drawn, nor kept in the video

memory, and therefore the bus bottleneck is relieved.

The optimal brick size depends on the nature of the

data (there should be a reasonable chance that there

are bricks which are completely void), the available

texture memory, the texture cache size and the

overhead introduced by brick overlap. Since the brick

textures’ content does not depend on the transfer

function, they need to be created only once for static

data.

The octrees, which form the second stage, focus on

skipping data that is not visible after applying the

transfer function. In this way the rasterization

bottleneck is addressed. To prevent too much

overhead to be introduced, a certain amount of void

data per octree box is allowed, and there is a limit to

the granularity of the octree boxes. The optimal

octree parameters are determined by the weight of the

rasterization phase (i.e. are there complex fragment

shader programs involved, etc.) and the trade-off

between less rasterization operations and more

triangles (triangle throughput bottleneck). Since the

octree depends on the transfer function, it has to be

recalculated when the transfer function changes.

In this article it has been shown how the individual

bottlenecks have been addressed by a two-folded

approach. First the bus bottleneck and texture cache

size has been addressed by bricking, and

consequently the rasterization bottleneck has been

addressed by the octrees. The rasterization and

fragment shader bottleneck were further lifted by

employing early ray termination. The results show

that the parameters can be optimized for different

graphics cards. Since the transfer function only leads

to recalculating the octrees, and not reloading the

bricks, it can also be changed quickly and

interactively.

The graphics industry are introducing more powerful

hardware at an impressive pace. However

developments in medical imaging modalities are

equally impressive, resulting in larger volume data

sets. Which means that in the foreseeable future the

techniques that were presented here will preserve

their benefits.

10. REFERENCES
[Ake93] K. Akeley. Reality Engine Graphics. In Proc.

SIGGRAPH'93, volume 27, pp. 109-116, 1993.

[BNS01] I. Boada, I. Navazo, and R. Scopigno.

Multiresolution Volume Visualization with a Texture-

based Octree. The Visual Computer, (17), pp. 185-197,

2001.

[CBS98] M. Cox, N. Bhandri, and M. Shantz. Multi-Level

Texture Caching for 3D Graphics Hardware. In ISCA

'98, pp. 86-97, 1998.

[CCF94] B. Cabral, N. Cam, and J. Foran. Accelerated

Volume Rendering and Tomographic Reconstruction

using Texture Mapping Hardware. Proc. of the 1994

symposium on Volume visualization, pp. 91-98, 1994.

[CN93] T. Cullip and U. Neumann. Accelerating Volume

Reconstruction with 3D Texture Hardware. Technical

Report TR93-027, 1993.

[DPH+03] D. E. DeMarle, S. Parker, M. Hartner,

C. Gribble, C. Hansen. Distributed Interactive Ray

Tracing for Large Volume Visualization. In Proc. 2003

IEEE Symposium on Parallel and Large-Data

Visualization and Graphics, pp. 87-94, 2003.

[Eck98] G. Eckel. OpenGL Volumizer Programmer's

Guide. Silicon Graphics, Inc, 1998.

[EE02] K. Engel and T. Ertl. Interactive High-Quality

Volume Rendering with Flexible Consumer Graphics

Hardware. In Eurographics '02 - State of the Art

Report, 2002.

[EKE01] K. Engel, M. Kraus, and T. Ertl. High-quality

Pre-integrated Volume Rendering using Hardware-

Accelerated Pixel Shading. Proc. of the 2001

Journal of WSCG 15 ISBN 1213-6972 ISBN 80-86943-09-7

Eurographics workshop on Graphics hardware,

pp. 9-16, 2001.

[GBKG04] S. Grimm, S. Bruckner, A. Kanitsar and

E. Gröller. Memory Efficient Acceleration Structures

and Techniques for CPU-based Volume Raycasting of

Large Data. IEEE Symposium on Volume

Visualization and Graphics, pp. 1-8, 2004.

[GWGS02] S. Guthe, M. Wand, J. Gonser, and

W. Strasser. Interactive Rendering of Large Volume

Data Sets. Proc. IEEE Visualization 2002, pp. 53-60,

2002.

[HG97] Z. S. Hakura and A. Gupta. The Design and

Analysis of a Cache Architecture for Texture Mapping.

In ISCA '97: Proc. of the 24th annual international

symposium on Computer architecture, pp. 108-120,

1997.

[IEP98] H. Igehy, M. Eldridge, and K. Proudfoot.

Prefetching in a Texture Cache Architecture. In Proc.

of the 1998 Eurographics Workshop on Graphics

Hardware, pp. 133-142, 1998.

[KKH01] J. Kniss, G. Kindlmann, and C. Hansen.

Interactive Volume Rendering using Multi-

Dimensional Transfer Functions and Direct

Manipulation Widgets. Proc. IEEE Visualization 2001,

pp. 255-262, 2001.

[KodBA98] R. Kemkers, J. op de Beek, and H. Aerts.

3D-Rotational Angiography: First Clinical

Applications. Proc. in Computer Assisted Radiology

and Surgery, pp. 182-187, 1998.

[KW03] J. Krüger and R. Westermann. Acceleration

Techniques for GPU-based Volume Rendering. In

Proc. IEEE Visualization 2003, pp. 287-292, 2003.

[Lev90] M. Levoy. Effcient Ray Tracing of Volume Data.

ACM Transactions on Graphics 9(3), pp. 245-261,

1990.

[LHJ99] E. LaMar, B. Hamann, and K. I. Joy.

Multiresolution Techniques for Interactive Texture-

Based Volume Visualization. In Proc. IEEE

Visualization '99, pp. 355-361, 1999.

[MGS02] M. Meissner, S. Guthe, and W. Strasser.

Interactive Lighting Models and Pre-Integration for

Volume Rendering on PC Graphics Accelerators. In

Graphics Interface 2002, pp. 209-218, 2002.

[ML94] S. R. Marschner and R. J. Lobb. An Evaluation of

Reconstruction Filters for Volume Rendering. Proc.

IEEE Visualization '94, pp. 100-107, 1994.

[OM01] J. Orchard and T. Möller. Accelerated Splatting

using a 3D Adjacency Data Structure. In Graphics

interface 2001, pp. 191-200, 2001.

[PSL+99] S. Parker, P. Shirley, Y. Livnat, C. Hansen,

P.-P. Sloan, M. Parker. Interacting with Gigabyte

Volume Datasets on the Origin 2000. The 41st Annual

Cray User's Group Conference , 1999.

[RGW+03] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl,

and W. Strasser. Smart Hardware-Accelerated Volume

Rendering. In VisSym'03: Proc. of the symposium on

Data Visualisation 2003, pp. 231-238, 2003.

[SFH97] R. Srinivasan, S. Fang, and S. Huang. Rendering

by Template-based Octree Projection. Proc. of the 8th

Eurographics Workshop on Visualization in Scientific

Computing, pp. 155-163. Eurographics, 1997.

[SWND03] D. Shreiner, M. Woo, J. Neider, and T. Davis.

OpenGL Programming Guide: The Offcial Guide to

Learning OpenGL (red book). Addison-Wesley Pub

Co, 4 edition, 2003.

[TWTT99] X. Tong, W. Wang, W. Tsang, and Z. Tang.

Efficiently Rendering Large Volume Data Using

Texture Mapping Hardware. In Joint Eurographics -

IEEE TCVG Symposium on Visualization (VisSym),

pp. 121-132, 1999.

[vdB03] J. C. van den Berg. Three-Dimensional Rotational

Angiography. Endovascular Today, (March 2003),

2003.

[WS01] R. Westermann and B. Sevenich. Accelerated

Volume Ray-Casting using Texture Mapping. Proc.

IEEE Visualization 2001, pp. 271-278, 2001.

[WWH+00] M. Weiler, R. Westermann, C. Hansen,

K. Zimmerman, and T. Ertl. Level-Of-Detail Volume

Rendering via 3D Textures. In Proc. Volume

Visualization and Graphics Symposium 2000, pp. 7-13,

2000.

[WWE04] D. Weiskopf, M. Weiler, T. Ertl. Maintaining

Constant Frame Rates in 3D Texture-Based Volume

Rendering. Computer Graphics International 2004

(CGI'04), pp. 604-607, 2004.

[YS93] R. Yagel and Z. Shi. Accelerating Volume

Animation by Space-Leaping. Proc. IEEE

Visualization '93, pp. 62-69, 1993.

[Zel02] C. Zeller. Balancing the Graphics Pipeline for

Optimal Performance, Graphics Developer Conference

2002, http://developer.nvidia.com/, 2002.

[ZKV92] K. J. Zuiderveld, A. H. J. Koning, and

M. A. Viergever. Accelaration of Ray-Casting Using

3D Distance Transform. Proc. of Visualization in

Biomedical Computing II, pp. 324-335, 1992.

Journal of WSCG 16 ISBN 1213-6972 ISBN 80-86943-09-7

	E43-full.pdf

