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ABSTRACT 

Volume Rendering methods employing the GPU capabilities offer high performance on off-the-shelf hardware. 

In this article, we discuss the various bottlenecks found in the graphics hardware when performing GPU-based 

Volume Rendering. The specific properties of each bottleneck and the trade-offs between them are described. 

Further we present a novel strategy to balance the load on the identified bottlenecks, without compromising the 

image quality. Our strategy introduces a two-staged space-skipping, whereby the first stage applies bricking on a 

semi-regular grid, and the second stage uses octrees to reach a finer granularity. Additionally we apply early ray 

termination to the bricks. We demonstrate how the two stages address the individual bottlenecks, and how they 

can be tuned for a specific hardware pipeline. The described method takes into account that the rendered volume 

may exceed the available texture memory. Our approach further allows fast run-time changes of the transfer 

function. 
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1. INTRODUCTION 
New developments in medical imaging modalities, 

numerical simulations, geological measurements, etc. 

lead to ever increasing sizes in volumetric data. The 

ability to visualize and manipulate the 3D data 

interactively is of great importance in the analysis and 

interpretation of the data. The interactive 

visualization of such data is a challenge, since the 

frame rate is heavily depending on the amount of data 

to be visualized. Inherently, the demand for faster 

visualization methods is always existing, in spite of 

hardware innovations. 

An established method for interactive volume 

rendering on consumer hardware is GPU-based 

texture slicing [Ake93, CCF94, CN93, EE02, 

EKE01, MGS02, RGW+03, KW03]. Although this 

approach performs very well compared to CPU-based 

algorithms, since it benefits from the parallelism 

available in the GPU pipeline, it can be accelerated 

significantly by taking into account the various 

bottlenecks that are encountered in the graphics 

hardware. Every individual bottleneck has a different 

optimal data chunk size and data throughput. In this 

article, we present a novel approach to accelerate 

GPU-based volume rendering that allows to tailor 

and balance the load on the individual bottlenecks to 

reach an optimal exploitation of the graphics 

hardware power. 

In section 2, we present an overview of related work. 

Section 3 discusses the main bottlenecks that come 

into play when performing GPU-based volume 

rendering. Then an outline of the proposed approach 

is drawn in section 4. Sections 5, 6 and 7 deal with 

the details of our approach. In section 8, the results 

are presented and discussed, and in section 9 we 

summarize our conclusions. 

2. RELATED WORK 
The first rendering methods using the 3D texture 

capabilities of the graphics hardware were proposed 

by Cullip and Neumann [CN93], Akeley [Ake93] and 

Cabral et al. [CCF94]. Essentially these techniques 

consist of drawing polygons, which slice the volume 

in a back to front order. The data set is mapped as 

texture information on the polygons using tri-linear 

interpolation. The successive polygons are blended 

into the existing image. 
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Bricking is a technique to divide the volume data set 

into chunks, called bricks [Eck98, WWE04]. It can 

be employed to deal with data sets exceeding the 

available texture memory. The bricks have then a size 

that is equal to or smaller than the size of the texture 

memory, and are loaded sequentially from main 

memory into the texture memory while rendering. 

However, this leads to significantly lower frame rates, 

since the bus architecture, connecting the graphics 

hardware to the main memory and CPU, proves to be 

a major bottleneck. Tong et al. [TWTT99] propose a 

bricking technique that allows skipping empty 

regions. Their method, however, requires new 

textures to be generated for every change of the 

transfer function, which is time consuming for very 

large data sets. 

Texture compression can help to fit the entire volume 

in the main memory, and to alleviate the bus 

bottleneck. However, all presently available 

compression methods supported by graphics 

hardware (S3TC, FXT1, DXT1, VTC, etc) are 

limited to lossy 8-bit RGB(α) compression, which 

make them unsuitable for the compression of the 

(often 12- or 16-bit) scalar values found in medical 

data, and therefore we do not use them. Further, 

Meissner et al. [MGS02] show that the lossy 

compression algorithms severely reduce the image 

quality. Wavelet compression, as proposed by Guthe 

et al. [GWGS02] is a promising technique, but there, 

not all parts of the volume are rendered at the highest 

resolution. 

Not rendering all parts of the volume in the highest 

resolution possible is a way to reach higher frame 

rates, as demonstrated by LaMar et al. [LHJ99], 

Weiler et al. [WWH+00], Boada et al. [BNS01] and 

Guthe et al. [GWGS02]. This is particularly suited to 

increase the render speed for perspective projections 

in a small view port, focusing on a detail of the 

volume. However, orthogonal projections of the 

entire volume in high resolution view ports, as is 

common in medical applications, can only profit from 

this technique at the cost of the image quality. 

Space-skipping and space-leaping are techniques to 

accelerate volume rendering, that origin from ray-

casting methods, see e.g. Levoy [Lev90], Zuiderveld 

et al. [ZKV92] and Yagel and Shi [YS93]. It is based 

on skipping empty parts of the volume. The idea of 

space-skipping can be applied to texture-mapping 

volume rendering as has been shown by Westermann 

and Sevenich [WS01]. 

Octree is an established multi-level data structure 

when dealing with voxel volumes, which has been 

used in numerous different applications. E.g. 

Srinivasan et al. [SFH97] apply an octree structure in 

volume rendering. Orchard and Möller [OM01] 

demonstrated the benefits of using adjacency 

information in splatting volume rendering. 

Parker et al. have combined bricking and multi-level 

data structures to accelerate CPU-based iso-surface 

ray-tracing of volume data sets on multi-processor 

platforms and clusters [PSL+99, DPH+03]. Grimm et 

al have applied a two-staged space skipping, based on 

bricking and octrees, combined with gradient 

caching, to CPU-based ray-casting [GBKG04]. 

Roettger et al. [RGW+03] describe a GPU-based pre-

integrated texture-slicing including advanced 

lighting. The authors also describe a GPU-based ray-

tracing approach with early ray termination. Krüger 

and Westermann [KW03] propose a method to 

accelerate volume rendering based on early ray 

termination and space-skipping in a GPU-based ray-

casting approach. The space-skipping addresses the 

rasterization bottleneck, using a single octree level 

only. 

We have combined some of the techniques cited 

above, to accelerate GPU volume rendering on a 

single workstation, using off-the-shelf hardware. 

Often we found that acceleration of volume rendering 

has been treated as a singular problem to solve. We 

rather focus on the individual bottlenecks that are 

encountered while performing volume rendering, and 

tailor the different techniques to address specifically 

those bottlenecks.  

3. BOTTLENECKS 
Figure 1 illustrates the graphics pipeline, employed 

for GPU-based volume rendering [Zel02]. Here we 

discuss the most important points in the pipeline that 

result in a bottleneck. 
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Figure 1: The graphics hardware pipeline and its 

bottlenecks [Zel02], light grey: memory units, 

dark grey: data structures, blue: processing units, 

red: bottlenecks. 

The bus - The volume data has to be transferred 

over the bus from the system memory into the 
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graphics card memory. Since this is the slowest part 

of the entire pipeline, these transfers have to be as 

few as possible. 

Triangle throughput - The triangle throughput 

is mainly limited by the vertex shading and triangle 

setup phase. A straight forward implementation of 

texture-mapping volume rendering would involve 

only few triangles, but techniques for space-skipping 

may increase the amount of triangles considerably. If 

the triangle count becomes too high, this will become 

a limiting factor for the frame rate. 

Rasterization - When performing volume 

rendering based on texture slicing, the vast majority 

of the pixels on the screen are accessed multiple 

times. Space-skipping techniques may be used to 

reduce the amount of pixels to be accessed, but this 

also increases the triangle count. 

Texture cache size - Texture lookup is one of 

the more time consuming operations performed 

during the rasterization step. When the texture fits in 

the cache, these lookup operations will be faster. 

Fragment shader - Fragment shader programs 

impact the duration of the rasterization step. Simple 

fragment programs, such as applying a lookup table, 

generally do not limit the frame rate, however more 

complex operations, such as specular lighting 

[MGS02, RGW+03], multi-dimensional transfer 

functions [KKH01] or pre-integrated rendering 

[EE02, EKE01, RGW+03], can form a bottleneck. 

Especially fragment programs that perform multiple 

texture lookups (e.g. on-the-fly gradient calculation 

for specular lighting) are relatively slow. 

4. OUR APPROACH 
When performing volume rendering usually only a 

fraction of all voxels actually contribute to the final 

image, since a relatively small amount of voxels are 

of interest and another amount of them are occluded. 

In 3D medical data sets (obtained by e.g. ultrasound, 

CT, MR or rotational angiography [KodBA98, 

vdB03]) the anatomical structures of interest 

encapsulated in the data sets occupy only a part of the 

total data. Typically 5% to 40% of all voxels contain 

visible data, and even highly filled CT or MR data 

sets rarely exceed 55%. Especially vascular data sets 

can be marked as sparse data sets, since vessels, due 

to their tubular form, occupy only a small percentage 

of the volume (1% to 8%). 

In this article, we seek to reach the maximum benefit 

in exploiting skipping void parts of the volume 

(space-skipping). The novelty we introduce lies in 

dividing the space-skipping in two stages; a course 

division using bricking (figure 2a) and a finer one 

using octrees (figure 2b). These steps are based on an 

analysis of the bottlenecks encountered in the 

graphics pipeline when performing texture-mapping 

volume rendering. The first stage, bricking, is 

chopping the volume in so called texture bricks. The 

bricks are loaded into the video memory, to serve as 

data for the volume rendering algorithm, which is 

executed by the GPU. The bricks address the bus- 

and texture cache size-bottleneck. To further alleviate 

the load on the fragment shaders, we additionally 

perform early ray termination to each brick. This 

benefits especially highly-filled data sets. The second 

stage is employing an octree within each brick. The 

octrees address the rasterization bottleneck. As we 

demonstrate, the two stages have to be balanced, 

because lifting one bottleneck may overload another 

bottleneck (e.g. rasterization bottleneck versus 

triangle throughput bottleneck). 

The role of the transfer function in volume rendering 

is to map the scalar voxel information to optical 

properties (e.g. color and opacity) [KKH01]. The 

above described approach is implemented such that 

the flexibility to change the transfer function at run-

time is preserved. This offers the possibility to focus 

on different scalar ranges in the volume, without 

lengthy calculations. To accomplish this, the 

unmodified scalar voxel values are stored in the brick 

textures, and a fragment shader program is used, to 

lookup the RGBα values post-interpolatively. 

 

(a) 

 

(b) 

 

(c) 

Figure 2: The same volume fragment, rendered with (a) bricking cubes visible, (b) octree cubes visible 

(note the various cube sizes) and (c) both bricking and octree cubes visible 
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5. BRICKING 
As mentioned in section 2, the voxel volume can be 

divided into chunks, called bricks, in order to cope 

with voxel data sets sizes exceeding the size of the 

texture memory of the graphics hardware. Note that 

our bricks contain the original scalar values of the 

voxel volume, thus the values before applying the 

transfer function. This enables us to change the 

transfer function on the fly, since a transfer function 

change does not require creating new textures. 

To obtain a correct interpolation at the bricks' 

boundaries it is necessary that the data held by 

adjacent bricks overlap. The overlap depends on the 

convolution kernel used for interpolation [ML94], 

and should correspond to (kernelsize - 1). For nearest 

neighbor interpolation that means that no overlap is 

needed, since the width of the kernel is one. For tri-

linear interpolation the overlap should be one voxel 

in every direction (for other kernels the overlap may 

even be larger). Pre-integrated rendering [EE02, 

EKE01, RGW+03] or the on-the-fly calculation of 

gradients require the overlap to be increased by 

another voxel in every direction. For bricks of b
3
 

voxels and an overlap of n voxels, the memory 

overhead is approximately (3n/b)·100%. 

The bricks are loaded into the video memory as 3D 

textures. Many graphics cards require 3D texture 

sizes to be a power of 2 in every direction. If the 

volume dimensions do not divide evenly into brick 

dimensions, either an additional layer of partially 

empty bricks should be added in each direction, or 

smaller rest-bricks should be used. 

When the amount of data in the textures exceeds the 

available texture memory, textures are swapped 

between the main memory and the texture memory. If 

a requested brick is not resident in the texture 

memory, it is loaded from the main memory, 

replacing resident textures [SWND03]. In most 

OpenGL implementations resident textures are 

swapped out on a Least Recently Used (LRU) base. 

Traditionally bricking in texture based rendering is 

used to be able to render data sets which exceed the 

size of the texture memory of the graphics hardware. 

The bricks are then chosen to be as large as possible, 

and they are sequentially loaded from the main 

memory into the texture memory. Which implies that 

for each frame the entire volume data is transferred 

over the bus. 

In our approach, however, we choose brick sizes 

which are considerably smaller. The smaller the brick 

size is, the bigger is the chance of bricks being 

completely void after applying the transfer function, 

and void bricks do not need to be drawn. Therefore, 

once they are swapped out of the texture memory, 

they are never reloaded into the texture memory, and 

thus the bus bottleneck is alleviated. 

We even apply bricking to volumes which completely 

fit into the texture memory to improve data locality, 

which will result in less cache trashing on the 

graphics card [HG97, CBS98, IEP98]. On the other 

hand smaller bricks could introduce a larger overhead 

due to the overlap needed for interpolation. Thus the 

optimal brick size needs to be defined depending on 

the available texture memory, optimal texture size 

(see section 3), nature of the data set, overhead due to 

overlap, and the constraints posed by the graphics 

hardware. 

6. EARLY RAY TERMINATION 
To be able to perform early ray termination at all, the 

volume has to be traversed in a front-to-back order. 

This can be done by evaluating the volume rendering 

integral in discrete steps, using the under operator: 

Ci+1 = (1 - Ai) · αi · ci + Ci 

Ai+1 = (1 - Ai) · αi  + Ai 

Whereby C, A denote the color, respectively the 

opacity value of the current ray, c, α the color and 

opacity value given by applying the transfer function 

to the current sample in the volume, and i denotes the 

 

(a) 

 

(b) 

 

(c) 

Figure 3: Test volumes: (a) 512
3
 volume, used for testing early ray termination, (b) vascular 512

3 
volume, 

(c) gigabyte volume of  642 · 642 · 1284 voxels, generated by duplicating a large 3D-RA volume. 
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sample index. A ray is then saturated when Ai 

approximates 1. 

Before a brick is rendered, early ray termination is 

applied to its destination pixels. This is tested by 

executing a fragment shader program, while drawing 

a solid bounding box around the brick with back face 

culling switched on. The fragment shader program 

writes the maximal value in the depth buffer for 

saturated rays [KW03, RGW+03]. When slicing the 

brick texture the early z-test will prevent any 

fragment operations to be executed for those rays, 

reducing the load on the rasterization and fragment 

shader bottlenecks. Early ray termination is only 

performed once per brick, and not more often (e.g. 

for every octree node or every sample) because the 

overhead involved (changing fragment shaders, 

performing the test) would otherwise annihilate the 

benefits. 

7. OCTREE 
By not rendering the void bricks, the load on the 

rasterization bottleneck is already reduced. We seek 

to reduce it further by applying octrees. Every brick 

possesses its own octree. Every octree node 

corresponds to a cuboid part of the voxel volume, 

which can be divided into eight parts, corresponding 

to the child nodes (see figure 4). Our octree is kept in 

main memory. It only describes the geometry of the 

visible data. The actual voxel data is to be found in 

the brick textures. 

For tri-linear interpolation, let a cell be defined as a 

cube, whose eight corners adjacent voxel values are 

assigned. For every position within the cell an 

intensity value is defined as the tri-linear 

interpolation of the corner values. Therefore a cell 

can only be completely void if its eight corner values 

are completely transparent (α = 0) after applying the 

transfer function. This definition can easily be 

extended to any given interpolation kernel, by setting 

the size of a cell to (kernelsize - 1)
 3
. 

 

  

  

  

 

level 0 

level 1 

level 2 
 

Figure 4: An octree division and its tree. 

Every octree node carries a variable describing the 

ratio r of visible data to total data within its cube. At 

the final level of the octree, every node represents 

uniquely one cell, and is considered either completely 

filled (r = 1) or void (r = 0). Every higher octree level 

nodes ratio can be calculated by averaging the ratios 

of its children. This calculation only needs to be 

performed when the transfer function has changed. 

Rendering an image means that the bricks have to be 

processed in a front to back order. For each brick the 

respective octree is traversed, starting with its parent 

node. Depending on its ratio r there are three ways to 

process a node:  

r = 0: The node is completely void. It is not drawn at 

all, and is not traversed any further.  

0 < r < threshold: The nodes children will be 

traversed, and to each child node this strategy will be 

applied recursively. 

r ≥ threshold: The node is drawn completely. It is not 

traversed any further. 

If the threshold is set to 1, exactly all filled cells will 

be drawn, and no void cells. However, that would 

lead to a lot of tiny cubes at the boundaries of the 

visible data structures, and thus the load on the 

triangle throughput bottleneck becomes too high. 

Therefore the threshold should be chosen in such a 

way that some degree of void data is allowed to be 

drawn. A further strategy we use to prevent too much 

overhead is setting an octree level at which nodes, 

lower in the hierarchy, are not traversed any further. 

At this level, any node that is not void, will be drawn 

completely. 

When traversing a node, its children have to be sorted 

in a front to back order. Since there are eight 

children, it would seem that there are 8! = 40320 

ways to arrange the children. But since the 

arrangement along the three perpendicular axes is the 

same for all children, there remain 2
3
 = 8 possible 

orders. When a node is to be drawn, the cuboid box 

corresponding to this node is sliced, and the slices are 

rasterized and blended into the previously drawn 

slices. The slices can be axis-aligned or viewport-

aligned. For the most straight-forward form of 

volume rendering, the brick texture is interpolated on 

every slice, taking its position in the brick into 

account, and after interpolation the transfer function 

is applied. However, it is also possible to perform 

more sophisticated forms of volume rendering on the 

slices, like pre-integrated volume rendering or 

include specular lighting [MGS02, RGW+03]. 

The octree is generated and traversed on the CPU. Its 

purpose is to lower the workload on the graphics 

pipeline, and thus the GPU. The octree reduces the 

time that the GPU spends on processing data which 

never contribute to the final image. The actual 

volume rendering algorithm, as well as interpolation, 

the post-interpolative transfer function, and 

optionally, specular lighting, is being performed by 

the GPU. 
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8. RESULTS 
The described approaches have been tested with 

several different graphics cards: the nVidia 

QuadroFX 3400 (256MB on board memory), the ATi 

FireGL X1 (128MB), and the 3DLabsWildcat 7110 

(256MB). With each card the volume in figure 3b has 

been rendered, using the same lookup table settings. 

The volume data concerned the iliac vein, acquired 

through 3D rotational angiography. Since contrast 

media was injected into the vein, the vein could easily 

be classified using the transfer function. Only 3% of 

the voxels in this volume contain visible data. All 

results have been obtained, using a view port of 800
2
 

pixels and the sample rate for the volume rendering 

equation was set to 1.5 samples per voxel. 

Since the optimal brick size is mainly determined by 

the properties of the texture memory (see section 5) 

and the optimal octree limit is primarily used to 

balance the rasterization load and the triangle 

throughput (see sections 3 and 7) they can be 

considered to be fairly orthogonal variables. 

Therefore their optimum can be found by varying one 

variable, while keeping the other one constant. 

On each graphics card the test volume was rendered 

with different brick sizes, see figure 5, while the 

octree limit was set to 8
3
 voxels.  
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Figure 5: Performance using different brick sizes. 
 

The ATi FireGL X1 and the 3DLabs Wildcat 7110 

clearly show that their optimal brick size is 

considerably smaller than their largest possible brick 

size. The nVidia QuadroFX 3400 does not benefit 

from the bricking for the 256MB test volume. 

However, also this card clearly profits from the 

bricking for the sparse 1GB volume in figure 3c: the 

optimal brick size is then 64
3
 voxels, with an average 

frame rate of 37 fps, while for 256
3
 bricks only a 

mere 3.1 fps is reached. 

The performance of the ATi FireGL X1 depends 

heavily on the sampling direction of the bricks, 

because the ATi card treats the 3D textures as a stack 

of 2D slices. When the bricks are traversed in the x or 

y direction, the slices are accessed rather linear, and 

the performance is much better than when they are 

traversed in the z direction. It is inevitable to traverse 

in the z direction, when the viewing direction and the 

z-axis of the textures differ more than 45°. This effect 

can be reduced by alternating the orientation of the 

textures for each consecutive brick [WWE04]. 

Especially striking is the fact that the optimal brick 

size and octree limit is different for each sampling 

direction. When sampled in the xy-plane direction 

larger bricks benefit from linear traversal, while in 

other directions smaller bricks benefit from less cache 

trashing. In figures 5 and 6 this fact is illustrated by 

the performance measurement when sampling aligned 

to the xy-plane, and when not. 
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Figure 6: Performance using different octree 

limits. 

Further the volume was rendered with a fixed brick 

size of 64
3
 voxels and variable octree limits (the 

octree limit is the smallest octree cube allowed). Not 

every octree branch reaches this limit, see section 7. 

Figure 6 unsurprisingly shows that there is an 

optimum octree size for every graphics card. Smaller 

octree limits lead to too much CPU overhead and 

triangle count, and larger octrees to too much 

rasterization overhead. The 64
3
 octree level 

Graphics card (a) Optimized (b) Non-optimized (a) / (b) 

nVidia QuadroFX 3400 73.5 fps 9.6 fps 7.66 

ATi FireGL X1, xy aligned 83.3 fps 0.23 fps 362 

ATi FireGL X1, non xy aligned 27.4 fps 0.23 fps 119 

3Dlabs Wildcat 7110 21.3 fps 0.38 fps 56.1 

 

Table 1: Average frame rates reached when using (a) best combination of bricking and octrees, (b) GPU

rendering without bricking or octrees. 
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corresponds to not using any octrees at all, only 

bricking. 

Table 1 shows the acceleration achieved, using the 

volume in figure 3b, with an optimal combination of 

brick size and octree depth for each particular 

graphics card versus the same GPU volume rendering 

routines applied without any bricking or octrees at 

all. Since early ray termination does not provide any 

performance gain for sparse data sets, it was not used 

on this volume. 

Early ray termination was tested on the QuadroFX 

3400 using the volume in figure 3a. GPU volume 

rendering without optimizations yielded 2.2 fps, using 

64
3
 bricks and 8

3
 octree limits 5.2 fps were reached, 

and with additionally early ray termination switched 

on, the average frame rate was 16.1 fps. 

Since the rendering primarily depends on the graphics 

card, replacing e.g. a Xeon 3.0GHz by a Xeon 

1.7GHz delivered approximately the same 

performance figures. The only part which is bounded 

by the CPU and main memory performance is 

building a new octree after the transfer function has 

been changed. For a volume consisting of 512
3
 voxels 

(16 bit per voxel, 256MB for the entire volume), 

rendered with a brick size of 64
3
 voxels and an octree 

limit of 8
3
 voxels, building all new octrees for the 

entire 512
3
 volume took 6.5 milliseconds on the Xeon 

1.7GHz and 3.5 milliseconds on the Xeon 3.0GHz 

machine. 

9. CONCLUSIONS 
In this paper, we presented an approach to accelerate 

GPU-based volume rendering. The approach 

consisted of a two staged space-skipping and early 

ray termination, and was tailored to lift the various 

bottlenecks encountered in the graphics pipeline. 

In the first stage, the entire volume is chopped into 

bricks, and from these bricks 3D textures are created. 

Empty bricks are never drawn, nor kept in the video 

memory, and therefore the bus bottleneck is relieved. 

The optimal brick size depends on the nature of the 

data (there should be a reasonable chance that there 

are bricks which are completely void), the available 

texture memory, the texture cache size and the 

overhead introduced by brick overlap. Since the brick 

textures’ content does not depend on the transfer 

function, they need to be created only once for static 

data. 

The octrees, which form the second stage, focus on 

skipping data that is not visible after applying the 

transfer function. In this way the rasterization 

bottleneck is addressed. To prevent too much 

overhead to be introduced, a certain amount of void 

data per octree box is allowed, and there is a limit to 

the granularity of the octree boxes. The optimal 

octree parameters are determined by the weight of the 

rasterization phase (i.e. are there complex fragment 

shader programs involved, etc.) and the trade-off 

between less rasterization operations and more 

triangles (triangle throughput bottleneck). Since the 

octree depends on the transfer function, it has to be 

recalculated when the transfer function changes. 

In this article it has been shown how the individual 

bottlenecks have been addressed by a two-folded 

approach. First the bus bottleneck and texture cache 

size has been addressed by bricking, and 

consequently the rasterization bottleneck has been 

addressed by the octrees. The rasterization and 

fragment shader bottleneck were further lifted by 

employing early ray termination. The results show 

that the parameters can be optimized for different 

graphics cards. Since the transfer function only leads 

to recalculating the octrees, and not reloading the 

bricks, it can also be changed quickly and 

interactively. 

The graphics industry are introducing more powerful 

hardware at an impressive pace. However 

developments in medical imaging modalities are 

equally impressive, resulting in larger volume data 

sets. Which means that in the foreseeable future the 

techniques that were presented here will preserve 

their benefits. 
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