
GPU-Friendly High-Quality Terrain Rendering

Jens Schneider
Computer Graphics and Visualization Group

Technische Universität München

Lehrstuhl I15, Boltzmannstraße 3

D-85748 Garching bei München

jens.schneider@in.tum.de

Rüdiger Westermann
Computer Graphics and Visualization Group

Technische Universität München

Lehrstuhl I15, Boltzmannstraße 3

D-85748 Garching bei München

westermann@in.tum.de

ABSTRACT

We present a LOD rendering technique for large, textured terrain, which is well-suited for recent GPUs. In a pre-

process, we tile the domain, and we compute for each tile a discrete set of LODs using a nested mesh hierarchy.

This hierarchy can be encoded progressively. At run time, continuous LODs can simply be generated by inter-

polation of per-vertex height values on the GPU. Any mesh re-triangulation at run-time is avoided. Because the

number of triangles in the mesh hierarchy is substantially decimated and by progressive transmission of vertices,

our approach significantly reduces bandwidth requirements. During a typical fly-over we can guarantee extremely

small pixel errors at very high frame rates.

Keywords
Terrain rendering, hierarchical meshing, GPUs, progressive data transfer, geomorphs

1. INTRODUCTION
Despite the advances in CPU and GPU technology, for

the largest available terrain data sets rendering tech-

niques still cannot run at acceptable rates and qual-

ity. As processing, memory, and bandwidth capabil-

ities continue to increase, so does the resolution of

scanned landscapes and recent display technology. To-

day, satellite range scans comprised of over a billion

of samples are available, making even the handling of

such data sets difficult to perform due to memory con-

straints. In addition, high resolution displays of about

10 Mpixels [IBM] demand a substantial increase in

the number of primitives to be transferred to and pro-

cessed on the GPU. The requirements imposed by cur-

rent and future data acquisition and display technology

make real-time visualizations difficult to perform on

even the most powerful workstations. Therefore, the

need for a terrain rendering system that comprehen-

sively addresses the aforementioned issues is clear.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice

and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Journal of WSCG ISSN 1213-6972, Vol.14, 2006

Plzen, Czech Republic.

Copyright UNION Agency

2. RELATED WORK
From a high-level view, previous approaches for ter-

rain rendering can be classified into the three follow-

ing categories.

View-dependent refinement
View-dependent refinement methods construct a con-

tinuous LOD triangulation on the CPU with respect

to a given world- and screen-space error. Gross et

al. [GGS95] employ a wavelet decomposition to gen-

erate adaptive quadtree meshes for terrain data, com-

bined with a lookup-table to store an irregular trian-

gulation for each of the possible quadtree leafs. Pa-

jarola [Paj98] introduced restricted quadtrees [HB87]

for terrain rendering. Duchaineau et al. [DWS+97]

used triangle bintrees to perform the remeshing. Tri-

angulated irregular networks (TINs) where first pro-

posed by Peucker et al. [PFL78], and later automated

by Fowler et al. [FL79]. Garland et al. [GH95] em-

ployed a greedy insertion strategy to construct a TIN.

Progressive meshes (PMs) were modified with respect

to the demands in terrain rendering by Hoppe [Hop98].

To speed up the remeshing process, frame-to-frame

coherence can be exploited. Priority queues that can

be updated incrementally to guide the remeshing are

one alternative [DWS+97]. A different approach up-

dates a quadtree data structure incrementally to keep

track of vertex dependencies [LKR+96]. Hoppe pro-

posed a method that keeps active cuts to achieve an in-

cremental update [Hop98]. While the exploitation of

frame-to-frame coherence usually results in a reason-

Journal of WSCG 49 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 1: A 360◦ panorama of the Alps (7K×1K pixels), generated with our method in less than 4 seconds.

This time includes rendering, reading data back from the GPU, and writing the final image to the disk.

able speed up, for particular camera movements such

as shoulder views in an airplane simulation a consid-

erable loss in performance can be observed. Further-

more, frame-to-frame coherent approaches are usually

harder to implement due to LOD constraints. This

was recognized by Lindstrom et al. [LP01, LP02], who

proposed a simple to implement, yet efficient method

to rebuild the mesh from scratch in every frame. They

improve the error metric proposed by Blow [Blo00].

If the terrain gets excessively large, many of the men-

tioned algorithms choose to partition the terrain into

square blocks or chunks of data, which can then be

processed independently from each other [KLR+95,

SN95]. The advantage is that these chunks can also be

paged independently. However, care has to be taken to

avoid invalid vertices (so-called T-vertices) at chunk

boundaries. One elegant approach to avoid these in-

valid vertices in a quadtree was taken by Röttger et

al. [RHSS98]. By restricting the error metric, they au-

tomatically guaranteed a valid mesh. However, a gen-

eralization to chunked meshes is not trivial and would

also limit the error metric to a Manhattan distance.

More recently, Ulrich [Ulr00] suggested to use restrict-

ed quadtree meshes without boundary constraints for

the chunks, and to fill possible cracks between them

using flanges or skirts – fins of geometry along the

boundaries pointing downwards from the terrain. How-

ever, ensuring correct anisotropic texture filtering at

these boundaries is not trivial due to the different view-

ing angle. A more general approach is to stitch bound-

aries together using so-called zero-area triangles (also

called ribbons in [Ulr00]), which guarantees correct

filtering.

Pomeranz [Pom00] suggested to use clusters of ROAM

triangulations (RUSTiC). To ensure validity, clusters

are enforced to uphold an edge constraint: on shared

edges the clusters must share vertices exactly. This

approach is also one of the first terrain rendering algo-

rithms exploiting graphics hardware. RUSTiC achieves

improved performance over ROAM by rendering clus-

ters as triangle strips. Hwa et al. [HDJ04] used 4-

8 meshes that induce a diamond-based hierarchy on

both textures and the height field. Combined with a

space-filling curve memory layout this allows for ef-

ficient out-of-core rendering of the terrain, utilizing

GPU memory as a cache. However, since each other

texture level is rotated by 45◦, a costly update of vertex

texture coordinates has to be performed.

Pre-computed geometry batches
Based on the observation that on recent GPUs the time

that is saved by rendering less triangles due to adap-

tive re-triangulation is entirely amortized by the time

needed to perform the re-triangulation, several authors

suggested to pre-triangulate the input data as much as

possible. Cignoni et al. [CGG+03a] suggested to re-

place triangles in the remeshing process by a batch, a

new primitive that approximates the terrain over a tri-

angular part of the input domain using a pre-computed

TIN. Stripping these TINs prior to rendering made them

highly efficient. Batches were kept in a bintree, for

which usual run-time re-meshing is performed, hence

the name of the method: Batched Dynamic Adaptive

Meshes (BDAM).

In [CGG+03b], the authors improved on their previ-

ous work to successfully render planet-size meshes at

interactive rates. Their system does not support ge-

omorphs, but a screen-space error of one pixel for a

640×480 view port can usually be guaranteed. How-

ever, this could become a problem soon, as displays

are about to reach 10Mpixels. Consequently, consider-

ably more triangles would have to be rendered to meet

a given screen-space error.

Non-adaptive triangulation
Only very recently, Losasso et al. [LH04] took full ad-

vantage of the speed of current consumer class GPUs.

They abandoned any view-dependent remeshing in fa-

vor of so-called geometry clipmaps, a triangulation

that is approximately screen-space uniform. Specifi-

cally they used concentric, uniformly tessellated, square

patches around the camera dropping exponentially in

resolution with distance. During run time, geometry

is fetched from a toroidal buffer residing on the GPU.

The update of this buffer is done by the CPU.

Since the heighfield raster data is used directly, it can

be compressed very efficiently. By applying a com-

pression scheme derived from Microsoft’s WMV for-

mat [Mal00], compression ratios of up to 100:1 can

be achieved. Because decoding the compressed data

puts a considerable amount of work on the CPU, the

Journal of WSCG 50 ISBN 1213-6972 ISBN 80-86943-09-7

decoder can eventually fall behind faster camera mo-

tions, resulting in a blurry representation of the ter-

rain. Despite the fact that geomorphs are not an issue

for this system, both the screen-space and world-space

errors are hard to control, implying an rms of about

1.5m. Optimal geometry filtering cannot be performed

due to the screen-space aligned topology. Also, since

height fields compress a lot better than regular images,

the application of photo textures will most likely result

in a major increase in memory requirements. Still, ex-

tremely high frame rates for virtually arbitrarily large

data sets can be achieved using this method.

3. CONTRIBUTIONS
In this work, we combine the advantages of contin-

uous LOD semi-regular meshes with the advantages

of a discrete LOD hierarchy, thus avoiding any re-

triangulation at run-time. In contrast to BDAM we

also avoid expensive irregular triangulations, greatly

improving pre-processing from several hours to some

minutes. The proposed method generates high qual-

ity renderings by supporting a continuous LOD repre-

sentation including geomorphs and photo-texturing. In

contrast to previous methods, the terrain is guaranteed

to be refined within a user-defined screen- and world-

space error. Aliasing is avoided by employing opti-

mal geometry filtering, at the best possible geomet-

ric resolution. At run-time, discrete sets of decimated

mesh structures are transmitted progressively, result-

ing in high bandwidth efficiency. To obtain a contin-

uous LOD representations, these sets are interpolated

and rendered using functionality on recent GPUs.

Algorithm overview
The domain is first partitioned into a set of equally

sized tiles. For each tile, a discrete set of LODs is

computed by means of a nested mesh hierarchy. The

construction of such a hierarchy is described in sec-

tion 4. This hierarchy has several beneficial properties:

Firstly, for each level of the mesh the terrain is deci-

mated according to a given world-space error, reduc-

ing the total amount of triangles. Secondly, to compute

a continuous LOD representation, vertices at finer res-

olutions only have to be morphed in height onto the

next coarser level. Third, as the hierarchy is nested,

each finer level is represented by all vertices at coarser

levels plus additional vertices required to resolve the

current level properly. These additional vertices can

be transmitted progressively.

The terrain hierarchy, including per-vertex morph val-

ues, is then prepared for rendering on the GPU. The

particular data structure used is discussed in-depth in

section 5. For textures, the S3TC standard is employed,

which enables high-resolution mipmaps to be used.

All data is stored in vertex buffers and 2D textures that

are handled by a memory manager to minimize bus

transfer. This issue is subject of section 6.

4. NESTED MESH HIERARCHY
The most common way to avoid sampling artifacts in

terrain rendering is by means of a LOD representation.

Such a hierarchy can either be represented implicitly

by adaptive re-triangulation at run time, or it can be

explicitly pre-computed for discrete LOD levels.

Figure 2: Levels of the nested mesh hierarchy.

A given height field H : N
2 7→ Z can be approximated

by a triangular mesh parameterized over a 2D domain.

The surface of this mesh defines a reconstruction H ′

of H. The approximation quality of the mesh is then

measured by a point-wise error metric δ : R×R 7→ R,

extended to the entire domain. In the current work, we

use the canonical extension of the Lmax error metric to

measure the error between H and H ′:

δ (H,H ′) := maxx,y δ (H(x,y),H ′(x,y))

By generating approximations of the height field with

decreasingly lower approximation error, a mesh hier-

archy that represents the original terrain at ever finer

scales is constructed. The hierarchy employed in this

work is nested with respect to the triangulation: For

each triangle on level i with canonic parameterization

Ωi there is a triangle on the next coarser level i−1 with

parameterization Ωi−1 such that Ωi ⊆ Ωi−1. That is, if

both triangles are projected onto the domain, the trian-

gle at level i is contained entirely in the triangle at level

i + 1. Such a hierarchy is automatically generated by

restricted quadtree [HB87, Paj98], bintree [DWS+97]

or red-green refinement [BSW83].

To generate a discrete set of nested hierarchy levels,

the terrain is partitioned into equal tiles of size 2572,

with an overlap of one sample in either direction. Then,

an error vector (ε0,ε1, . . . ,εn−1) of exponentially de-

creasing entries εi := 2n−1−i is built, where the εi are

Journal of WSCG 51 ISBN 1213-6972 ISBN 80-86943-09-7

usually measured in meters or feet. The particular

choice is motivated in section 5. Starting with ε0, a hi-

erarchy {Mi}
n−1

i=0
of restricted quadtree meshes satisfy-

ing Vi ⊆Vi+1 and εi+1 ≤ δ (H ′
i ,H) ≤ εi is constructed.

Here Vi and Vi+1 are the sets of vertices at hierarchy

levels i and i + 1. More precisely, in a top-down ap-

proach we construct each Mi+1 by refining Mi, and

we stop the construction if δ (H ′
i+1

,H) ≤ εi+1.

To generate the next finer hierarchy level from the cur-

rent mesh, recursive quadtree refinement is performed

until one of the following two conditions is met.

1. the maximum deviation between the new mesh

and the original terrain is less than the error thres-

hold defined for the level.

2. the spacing between vertices of the mesh be-

comes smaller than the error threshold defined

for the level.

The second criterion is enforced by prohibiting the

quadtree from being refined below a certain scale. This

weakens the requirement εi+1 ≤ δ (H ′
i ,H)≤ εi, but ge-

nerally δ (H ′
i ,H) is still less than εi. In this way we can

avoid aliasing artifacts due to subsampling along the

domain axes. In a second step (following the Push/Pull

paradigm), geometry changes are propagated from fine

to coarse and sub-quadtrees are refined where needed

to avoid T-vertices.

Figure 3: Quadtree mesh and Π-order traversal.

The quadtree is then decomposed into recursive trian-

gle fans [RHSS98] or a single triangle strip [LP02].

Using triangle strips is possible in our framework, but

generating them increases the time spend for pre-pro-

cessing considerably. Triangle fans, on the other hand,

are easy to implement, reduce meshing time and are

similarly cache friendly as strips. However, generat-

ing fans results in a lot of separate primitives. In order

to render these primitives efficiently, primitive restarts

are employed. Primitive restarts are available on re-

cent nVidia GPUs and are exposed in OpenGL by the

GL primitive restart NV extension. When rendering

indexed vertices, the user may define a special index.

Whenever this index is encountered, no vertex is fetch-

ed but instead a new primitive is started. This allows

for a list of fans to be rendered efficiently by using

only a single draw call, reducing state changes and

setup overhead. To generate fans the quadtree is tra-

versed recursively in depth-first order. As a result, we

visit each fan in the order of a Π-order space-filling

curve (see figure 3), which was successfully used in

[LP02] to linearize memory layouts. This traversal has

the nice property that fans generated after each other

have a very high probability to be adjacent (in a full

quadtree all consecutive fans are adjacent), in which

case the newer one can re-use two or even three ver-

tices of the previous one. Since each fan has at most 9

vertices, the last fan will always be cached entirely on

current GPUs.

Figure 4: Best and worst cases for vertex cache

re-usal of fans. The gray fan can re-use the red

vertices of the white fan, resulting in a cache

coherence of at least 25%

Thus, recursive fans can re-use between 2/8 and 3/6

of their vertices (see figure 4).

To obtain a continuous LOD representation, we inter-

polate between the discrete LODs Mi. This is known

as Geomorphing [FEKR90]. In a nested hierarchy,

vertices retain their position within the domain during

morphing. Due to the property Vi ⊆ Vi+1 each vertex

at level i thus stores one height value for level i and

each coarser level k < i. To render a LOD between

two consecutive levels, the triangle mesh at the finer

level is rendered and vertices are morphed accordingly.

Although higher order interpolation is possible, only

linear interpolation is considered in this work for effi-

ciency reasons. This is described later in more detail.

5. RENDERING FRAMEWORK
As a benefit of the nested mesh hierarchy, tiles can

be uploaded progressively to the GPU. On the GPU,

an appropriate data structure accommodates real-time

rendering at high quality, including photo-texturing.

Optionally, if high resolution view ports require the

screen space error to be increased, geomorphing is per-

formed on the GPU. At the same time, the CPU per-

forms view frustum culling and level of detail com-

putations on a per-tile basis. Since all GPU tasks are

programmed in a high-level shading language, the en-

tire framework is extendable and can easily be tailored

to fit custom needs.

GPU data structures
As soon as a particular tile has to be rendered, a vertex

buffer large enough to store all shared vertices of that

Journal of WSCG 52 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 5: The GPU data structures used to enable

progressive transmission of vertices and indices.

tile is created. In this buffer, vertices are organized in

blocks according to their respective hierarchy levels.

(see figure 5). The associated topology is stored in one

separate element array for each level. The ith element

array contains only indices into the first i + 1 blocks

of the vertices. Such a shared vertex representation

has two major advantages. Firstly, it reduces storage

requirements compared to non-shared representations.

This is of special importance when additional vertex

attributes, such as geomorphs have to be stored. Sec-

ondly, it enables progressive transmission by re-using

vertices of coarser levels.

Because the tiles used in this work always have a res-

olution of 2572, relative domain coordinates are en-

coded in 9 bits. The height value can be considerably

larger. It is therefore encoded using 14 bits. All three

values are stored in two 16 bit vertex attribute compo-

nents. They are decoded in the vertex shader during

rendering.

If geomorphs are enabled, additional storage require-

ments arise. The method is still memory efficient, as

only one additional height value per coarser level needs

to be stored. Since usually only small offsets to the

original height are needed, 8 bits per value are suffi-

cient. This allows us to morph vertices within a range

of +127 . . .−128 units.

Run time processing
For each tile we keep an axis-aligned bounding box to

accommodate view frustum culling on the CPU. For

every frame, visible tiles are depth-sorted to exploit the

early-depth test, if available, and to reduce overdraw.

A memory manager, which is described below, ensures

that all visible tiles can be rendered by paging in data

not yet resident on the GPU.

Then for each visible tile the appropriate LOD is com-

puted. The index buffer as well as the vertices required

to render the respective level are sent to the GPU, if not

already resident. If a tile has been rendered previously,

at least a subset of vertices has already been sent to

the GPU. In this case, only the remaining vertices re-

quired to render the current level are transmitted and

written to the respective vertex buffer on the GPU. In

this way, even though an array large enough to keep

all vertices has to be allocated on the GPU, bandwidth

requirements at run time are substantially reduced.

To avoid cracks at tile boundaries, neighboring tiles

are stitched together using zero-area triangles. For

each tile and each level in the hierarchy, the set of bor-

der vertices along with all attributes is duplicated in

system memory. Whenever two neighboring tiles are

visible, the necessary triangles to fill out T-junctions

are generated on the CPU and are then rendered. Since

this process uses exact duplicates of the vertices on

the GPU and the same GPU programs are employed,

cracks are avoided without numerical precision issues.

Level of detail
Determining the appropriate LOD for each tile and

vertex requires the projection of the user-defined pixel

error to object space. Previous approaches rely on con-

servative estimates of this error and are often equiva-

lent to a linear approximation of the projection. Since

such estimates usually over-estimate the error, even for

pixel errors larger than one aliasing might still occur.

We compute a more precise error metric by directly us-

ing the current projection matrix, which maps homo-

geneous object coordinates v = (v1,v2,v3,1) to screen-

space coordinates s = (s1,s2,s3). Here, s3 corresponds

to the depth value. The appropriate scale of details ρ
can then be computed in a similar way as the appropri-

ate mipmap scale for texturing [Wil83]:

ρ :=

√

√

√

√

√

∑
3

i=1

(

∂vi

∂ s1

ds1 + ∂vi

∂ s2

ds2

)2

ds2

1
+ds2

2

To compute ρ , s is expressed in parametric form s(v),
already including perspective division and scaling of

the canonic frustum to pixel coordinates. The Jacobi

matrix at v consists of the partial derivatives Ji j(v) :=
∂ si/∂v j. The inverse transpose of J(v) contains ex-

actly the partial derivatives required to compute ρ . The

differentials dsi are required to map from units of the

height field (eg.,feet or meters) to pixels. Computing

ρ yields the optimum scale corresponding to a screen-

space error τ equal to 1 pixel. If the user selects a

different screen-space error, the frustum is scaled to

pixel coordinates divided by τ instead of using the en-

tire resolution. Then, ρ is the object space distance

that projects onto τ pixels.

On the CPU, ρ j is computed per tile for each corner j

of its bounding box. Because entries of the error vec-

tor are given by εi = 2n−1−i units, the optimum LOD

value is computed by λ j := λmax −blog2(ρ j)c, where

Journal of WSCG 53 ISBN 1213-6972 ISBN 80-86943-09-7

λmax = n− 1 is the number of available levels. The

mesh Mmin j{λ j} is then selected for rendering the tile.

Geomorphing
As mentioned before, high resolution displays coupled

with a low screen-space error can require most of the

terrain to be rendered at the highest resolution. In or-

der to maintain stable and interactive frame rates, the

tolerable screen-space error has to be increased. To

prevent popping artifacts, geomorphs are applied. For

every vertex v in a tile, the λ j at box corners are tri-

linearly interpolated on the GPU to get an approximate

vertex LOD λ (v). Geomorphing [FEKR90] now con-

sists of linearly interpolating height values Hbλ (v)c and

Hbλ (v)c+1,using the fractional part λ (v)−bλ (v)c as in-

terpolation weight.

Finding the correct height values on the GPU could

be implemented in a straight forward manner using

conditionals. As conditionals are costly on current

GPUs, we avoid them by implementing a different ap-

proach based on clamped forward differences. In this

approach, we treat height values {Hi}
n−1

i=0
as the con-

trol points of a piecewise linear interpolant in λ . To

Figure 6: Basis-functions η ′ for geomorphs.

obtain H(λ), we compute shifted basis-functions that

can be reduced using simple dot product arithmetic.

Firstly, we compute a vector-valued function

η(λ) := clamp
(

(λ ,λ ,λ ,λ , . . .)t − (0,1,2,3, . . .)t ,0,1
)

Each component i of η contains a linear ramp between

λ = i and λ = i+1. For λ ≤ i it is 0, and for λ ≥ i+1

it is 1. Then, the desired basis function is obtained by

computing forward differences on η :

η ′
i (λ) :=

{

1−η0(λ) if i=0

ηi−1(λ)−ηi(λ) else
Finally, the η ′

i contain the well-known basis functions

for linear interpolation (see figure 6). Interpolation can

now be written as the dot product H(λ) = ∑
n−1

i=0
η ′

i (λ) ·
Hi. This method is highly efficient on the GPU and

in our case (n = 9) outperformed the straight-forward

implementation using conditionals by a factor of 2.5.

Texturing
By default, a pre-lit 2D texture is mapped onto the ter-

rain. This can be a photo texture or, as for the Puget

Sound, a synthesized 2D texture. During pre-process-

ing, the texture is dyadically downsampled using a Lanc-

zos filter with radius 2 to obtain a single, large mipmap.

Now tiles are cut out of the mipmap to precisely match

the tiles of our mesh hierarchy. To save GPU memory

and bandwidth, each texture tile is then compressed

using the S3 compression scheme. More specific, tiles

are encoded using the DXT1 format, which yields good

results for most photographic or synthetic textures at

a compression rate of 6:1. We store the 16K2 Puget

Sound texture including 9 (11) mipmap levels for the

16K2 (4K2) geometry in about 170 MB.

If a pre-lit texture is not available, it is computed from

the original terrain in a pre-process. Alternatively, nor-

mals could be stored as additional vertex attributes.

However, besides the additional memory overhead that

is introduced (at least two 8 bit values to cover the up-

per hemisphere), lighting artifacts due to non-continu-

ous changes of normals during LOD transitions can

only be resolved by storing one normal per vertex and

level. On the other hand, a DXT1 pre-lit texture with

4 texels per vertex has the same storage requirements

as a single per-vertex normal, but it avoids any light-

ing artifacts because texture filtering is performed af-

ter lighting.

6. MEMORY MANAGEMENT
After building the discrete LOD hierarchy, for high-

resolution terrains including morph values and textures,

the data is far too large to be stored in local video

memory of recent GPUs. To avoid frequent paging of

textures and vertex buffers, and to optimize progres-

sive updates we have implemented a memory manager.

At initialization time, the memory manager allocates

chunks of exponentially growing sizes in GPU mem-

ory, to prevent external fragmentation. Sizes range

from 32KB to a maximum size that allows the largest

vertex buffer to be stored in such a chunk. Addition-

ally a number of textures with a fixed resolution is allo-

cated. The memory manager stores meta-data for each

memory block, i.e. size, a time stamp, and the num-

ber of levels already sent to the GPU. Paging is now

implemented as a mixture between a last recently used

(LRU) and a tightest fit (TF) strategy.

Whenever a tile A is to be rendered, the system de-

termines if there is already a chunk associated with

A. If not, and also no appropriate chunk is available,

the tile B with the earliest time stamp large enough to

completely store A is determined. B is then marked

as non-resident, and the chunk is overwritten with the

data of A. To efficiently determine B, we keep a prior-

ity list for each available size. This allows us to weight

the LRU strategy against a TF criterion. Once a chunk

has been associated with A, all data required to render

the current level is sent to the GPU. If there already

was a chunk associated with A, the memory manager

determines whether the chunk contains all necessary

data. If not, the CPU sends all missing vertices and the

Journal of WSCG 54 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 7: Test data sets in this paper. From left to right: Puget 16K×16K, Paris, Grand Canyon, and Alps.

Observe the high degree of geometric details present even in regions further away from the viewer.

Data Set Resolution Texture original Size Storage fps τ = 1 M∆/sec τ = 1 fps τ = 5

Puget4K 4K×4K 16K×16K 800MB 412MB 202 78.85 199

Puget16K 16K×16K 16K×16K 1.25GB 1.25GB 60 25.69 57

Grand Canyon 4K×2K 8K×4K 112MB 80MB 289 74.60 292

Paris 9.7K×5.8K 19.5K×11.7K 763MB 267MB 36 100.87 65

Alps 8.9K×8.5K 8.9K×8.5K 361MB 546MB 145 65.43 155

Table 1: Timings and Results. Original size only includes height field and texture, without taking mipmaps

into account. τ refers to the pixel error. For τ = 1 geomorphs were disabled, for τ = 5 they were enabled.

required index buffer to the GPU. Since vertices are

shared across levels, this update is usually very cheap

compared to the upload of all vertices. Whenever a tile

is rendered, its time stamp is updated.

The memory manager supports uniform load on the

bus connecting the CPU and the GPU, thus avoiding

’paging hiccups’: when a non-resident tile enters the

view frustum, there is usually another one that has to

be released, the texture tile has to be uploaded, and

an initial LOD has to be sent to the GPU. However,

with high probability this initial LOD requires only a

few vertices. On the other hand, if a tile was already

resident, performing an update only requires a fraction

of the entire data to be sent.

Speculative prefetches are also supported, if there are

unused memory chunks. If the number of chunks need-

ed to render the current view falls below a certain frac-

tion of all allocated chunks, the user’s view is pre-

dicted. Whenever the user moves, a list containing

the last viewing parameters is updated. By fitting a

spline through these parameters, new viewing param-

eters can be extrapolated and tiles that are predicted to

become visible in the near future can be prefetched, as

long as a maximum time budget is not expired. In this

way, very smooth fly-overs at high frame rates can be

achieved.

7. RESULTS
Our results and timings are summarized in table 1. All

timings were done on a P4 3.0GHz with 2GB RAM

and GeForce 6800GT with 256MB. The machine was

equipped with a single standard 120GB IDE hard disk.

All data sets were rendered to a 1024×768 view port.

Enabling 8x full-screen anti-aliasing and 4x anisotropic

texture supersampling, the frame rate dropped about

30%. The timings should be fairly comparable to more

recent publications. Though we have a newer graphics

card, we render a considerably larger view port com-

pared to many other systems.

Pre-processing of the geometry to a 9 level hierarchy

processes approximately 15M vertices per minute and

is linear in the amount of vertices. Memory consump-

tion is constant, as tiles are processed independently of

each other. Generating a 16K×16K texture hierarchy

including filtering takes about 5 Minutes.

The Puget4K and the Grand Canyon data sets are only

medium sized, and consequently our system is neither

triangle nor memory limited. For the Paris data set

with its 2.8M∆ per frame, we become triangle limited.

Note however that this is a worst-case scenario, as our

triangulation faithfully reconstructed all the steep sides

of the buildings. A lot of these triangles are backfaces

that are culled by OpenGL (but they are still counted

since they pass the geometry stage). However, the

Paris dataset is an excellent benchmark for the raw tri-

angle throughput that our system can achieve.

The Puget16K dataset on the other hand is large enough

to demonstrate the effects of the memory system. The

lower triangle throughput reflects that our paging strat-

egy does not come for free, but it still allows for highly

interactive fly-overs

The Alps data set is a good mixture between these

extremes. It contains lots of flat terrain around Mu-

nich and a considerable amount of very rough terrain

around the Alps.

As our results show, frame rates for highly triangu-

lated data sets, such as Paris, can also be improved by

increasing the pixel error and enabling geomorphing.

For these highly triangulated datasets we also hope to

benefit from continuously increasing vertex processor

throughput on future graphics chips.

Journal of WSCG 55 ISBN 1213-6972 ISBN 80-86943-09-7

8. CONCLUSION & FUTURE WORK
We have presented an efficient rendering system for

large and textured terrain data that provides excellent

quality and highly detailed views. In particular, at

equal frame rates our system guarantees a smaller pixel

error than previous approaches. We achieve these prop-

erties by exploiting a special discrete LOD hierarchy,

as well as processing and rendering functionality on

recent GPUs.

In the future, we will investigate dedicated compres-

sion schemes that are amenable to GPU decoding, such

as vector quantization. Both, the possibility to com-

press mesh hierarchies as well as texture will be con-

sidered. As GPUs are become increasingly powerful,

adaptive on-the-fly texture synthesis will become an

important feature.

Acknowledgements
We would like to thank the DLR and ISTAR for the

Paris and Alps data sets and the people from GA Tech

[Geo] for making the Puget Sound and Grand Canyon

datasets publicitly available.

9. REFERENCES
[Blo00] J. Blow. Terrain rendering at high levels of

detail. In Game Developer’s Conference, 2000.

[BSW83] R. E. Bank, A. H. Sherman, and A. Weiser.

Refinement algorithms and data structures for regular

local mesh refinement. In Scientific Computing, pages

3–17, 1983.

[CGG+03a] P. Cignoni, F. Ganovelli, E. Gobbetti,

F. Marton, F. Ponchio, and R. Scopigno. BDAM –

batched dynamic adaptive meshes for high

performance terrain visualization. Computer Graphics

Forum, 22(3):505–514, 2003.

[CGG+03b] P. Cignoni, F. Ganovelli, E. Gobbetti,

F. Marton, F. Ponchio, and R. Scopigno. Planet-sized

batched dynamic adaptive meshes (p-bdam). In Proc.

IEEE Visualization ’03, pages 147–154, 2003.

[DWS+97] M. A. Duchaineau, M. Wolinsky, D. E. Sigeti,

M. C. Miller, C. Aldrich, and M. B. Mineev-Weinstein.

ROAMing terrain: real-time optimally adapting

meshes. In Proc. IEEE Visualization ’97, pages 81–88,

1997.

[FEKR90] R. L. Ferguson, R. Economy, W. A. Kelly, and

P. P. Ramos. Continuous terrain level of detail for

visual simulation. In IMAGE V Conference ’90, pages

144–151, 1990.

[FL79] R. J. Fowler and J. J. Little. Automatic extraction

of irregular network digital terrain models. In Proc.

ACM SIGGraph ’79, pages 199–207, 1979.

[Geo] Georgia Institute of Technology. Large Geometric

Models Archive.

http://www.cc.gatech.edu/projects/large models.

[GGS95] M. H. Gross, R. Gatti, and O. Staadt. Fast

multiresolution surface meshing. In Proc. IEEE

Visualization ’95, pages 135–142, 1995.

[GH95] M. Garland and P. Heckbert. Fast polygonal

approximation of terrains and height fields. Technical

Report CMU-CS-95-181, Carnegie Mellon University,

1995.

[HB87] B. Von Herzen and A. H. Barr. Accurate

triangulations of deformed, intersecting surfaces. In

Proc. ACM SIGGraph ’87, pages 103–110, 1987.

[HDJ04] L. M. Hwa, M. A. Duchaineau, and K. I. Joy.

Adaptive 4-8 texture hierarchies. In In Proc.

Visualization, pages 219–226, 2004.

[Hop98] H. Hoppe. Smooth view-dependent

level-of-detail control and its application to terrain

rendering. In Proc. IEEE Visualization ’98, pages

35–42, 1998.

[IBM] IBM Corp. T221 Flat Panel Monitor.

http://www.ibm.com.

[KLR+95] D. Koller, P. Lindstrom, W. Ribarsky, L.F.

Hodges, N. Faust, and G.A. Turner. Virtual GIS: A

real-time 3D geographic information system. In Proc.

IEEE Visualization ’95, pages 94–100, 1995.

[LH04] F. Losasso and H. Hoppe. Geometry clipmaps:

terrain rendering using nested regular grids. In Proc.

ACM SIGGraph ’04, pages 769–776, 2004.

[LKR+96] P. Lindstrom, D. Koller, W. Ribarsky, L. F.

Hodges, N. Faust, and G. A. Turner. Real-time,

continuous level of detail rendering of height fields. In

Proc. ACM SIGGraph ’96, pages 109–118, 1996.

[LP01] P. Lindstrom and V. Pascucci. Visualization of

large terrains made easy. In Proc. IEEE Visualization

’01, pages 363–370, 2001.

[LP02] P. Lindstrom and V. Pascucci. Terrain

simplification simplified: A general framework for

view-dependent out-of-core visualization. IEEE

Transactions on Visualization and Computer Graphics,

8(3):239–254, 2002.

[Mal00] H. S. Malvar. Fast progressive image coding

without wavelets. In Proc. IEEE Data Compression,

pages 243–252, 2000.

[Paj98] R. Pajarola. Large scale terrain visualization

using the restricted quadtree triangulation. In Proc.

IEEE Visualization ’98, pages 19–26, 1998.

[PFL78] T. K. Peucker, R. J. Fowler, and J. J. Little. The

triangulated irregular network. In Proc. ASP-ACSM

Symposium on DTM’s, 1978.

[Pom00] A. A. Pomeranz. ROAM using surface triangle

clusters (RUSTiC). Master’s thesis, Center for Image

Processing and Integrated Computing, University of

California, Davis, 2000.

[RHSS98] S. Röttger, W. Heidrich, P. Slusallek, and H. P.

Seidel. Real-time generation of continuous levels of

detail for height fields. In Proc. WSCG ’98, pages

315–322, 1998.

[SN95] M. Suter and D. Nüesch. Automated generation

of visual simulation databases using remote sensing

and GIS. In IEEE Visualization ’95, pages 86–93,

1995.

[Ulr00] T. Ulrich. Rendering massive terrains using

chunked level of detail. ACM SIGGraph Course

“Super-size it! Scaling up to Massive Virtual Worlds”,

2000.

[Wil83] L. Williams. Pyramidal parametrics. In Proc.

ACM SIGGraph ’83, pages 1–11, 1983.

Journal of WSCG 56 ISBN 1213-6972 ISBN 80-86943-09-7

	E43-full.pdf

